J. Bradley Atherton

EEL 5666

IMDL – University of Florida

Instructor: Eric M. Schwartz

8-07-2007


Predominant Efforts

I have aimed my predominant efforts with A.D.D. towards improving my assembly programming skills with the Atmega128.  Sufficient programming fundamentals have been completed, including UART serial transmission, string reading and storing, ADC,  timer functions, and interfacing with the CMUcam both on a hardware and software level.  All of these tasks have been accomplished using interrupts, but for compatibility with the CMUcam, some polling was required. 

Software Platform

I found it very worthwhile to invest my latest efforts in creating more flexible subroutines and functions that can be used in a more general manner in order to reduce the overhead amount of code and complexity of the flow charts.  To actualize this concept, I created many checkpoints and “control flow parameters” (both declared as data variables), which, after being properly initialized (which did take a lot of thought), better managed the program flow. 
MOTOR AND DRIVER UNIT

The platform I purchased included a motor and driver board.  The only feature of the driver board that I have used is the 6 transistor H-bridge.  After an attempt to research the data sheet for the chip that controls the H-bridge, I realized this component to be obsolete, but I did find the pinouts for the transistors.  With some intuition and trial and error, I determined which line controls the forward and reverse current, and then soldered a jumper to connect each to the microcontroller.  To ensure a safe level of current demands from the output ports, I performed current measurements for each direction when driven by a 5 volt source.  The forward direction pulled approximately 400 mA; reverse pulled about 150 mA.  Both values were excessive, so I connected a potentiometer in series with the voltage source, and while viewing the ammeter, I continued to adjust the resistance until approximately 40 uA were drawn at a peak resistance of 10 kOhms.  No noticeable change occurred in the motor performance while sweeping through the range of resistances, so the best case scenario with the least current draw was taken and I soldered a 10 kOhm resistor in series with each control line.  

STEERING

The steering system is also pre-manufactured, but some modifications were made to incorporate a servo to actuate the rack-and-pinion unit.  Originally, a small motor inside a small casing with stops was used to drive the rack.  This only permitted full turning, so I removed the motor assembly, and with a small amount of fabrication, I installed a servo to control the position of the rack-and-pinion.  The servo will be controlled by one of the servo ports on the CMUcam.  The camera features 5 servo ports, which only require a short string to be sent via serial Tx to the camera's servo register.  Because this method controls the position of the servo, less code will be required for the Atmega128’s PWM section, therefore reserving more processing power for other tasks.  

SENSORS

 A.D.D. currently uses two types of sensors:  four GP2Y0A02YK analog IR sensors and one CMUcam2+.  The IR sensors are used strictly for object avoidance, while the CMUcam's main function is object and color detection and servo control for the rack-and-pinion steering.  The sensors are paired in an “X” formation, one pair in the front and another pair in the back of A.D.D..  The angles were determined through experimentation and a few measurements, but I installed the IR sensors each on a swivel joint to permit finer tuning if necessary.

The IR sensors

Each IR sensor is connected to an input channel of the ADC.  The ADC control registers provide three options for the reference voltage: 1)an externally connected voltage, 2)internally selected 5v Vref, and 3)internally selected 2.56 Vref.  Based on the measurements shown on the IR Plot (see Fig.1), I chose 2.56v as the reference voltage because this peak value will likely occur between 5 and 8 inches, which is less than the minimum distance required for turning or stopping for A.D.D.. 



The Measurements

In order to observe the ideal vs. actual performance of the IR sensors, two sets of measurements were made.  The first set, labeled "Free Space" (the red plot in Fig.1), shows the performance in an "ideal" environment.  I positioned the sensor on the edge of the counter, approximately 4 ft. above the floor, more than 8 feet to the nearest wall directly across, and more than 8 feet to the nearest wall to each side.  The peak value occurs at 5 inches, producing 2.97 volts Vsig.  This is outside the range of the ADC (max of 2.56v). 

I made the second set of measurements with the IR sensor mounted to the platform and placed over a reflective surface with the intention of acquiring readings that might occur in reality, and to make note of the differences between real and ideal responses.  The green curve titled "Counter Top" very closely resembles the ideal plot, but is shifted upward by approximately 0.6v.  The peak still occurs at 5 inches, but the minimum detectable distance that yields 2.56 volts occurs between 10 and 11 volts.  If this larger distance becomes an issue, I will change the reference voltage to 5 volts, trading more range detection for less resolution.  An observed limitation was found beyond 2'2".  The signal voltage becomes very unreliable to detect objects beyond this distance.   

SPECIAL SENSOR- The CMUcam

The CMUcam's primary functionality is to provide data of the surrounding visual enviroment.  The camera also has secondary functions such as auxiliary I/O ports and PWM-servo outputs.  

The CMUcam works by command input strings.  In general, if the camera is in ASCII mode (not raw mode), the commands are accomplished by sending out a string via serial communication with the following format: "CommandAcronym Operand Operand ... Operand \r".  To realize the "\r" element, a hexadecimal "D" was placed at the end of the string to complete the command.  The "\r" character is the end of string (EOS) indicator, which completes the command and prepares the CMUcam to send back a confirmation string, and, if applicable, a data packet.

With the exception of commands that strictly set control parameters, all other commands have a return string.  These return strings are defined by their "format", either F, T, H, or S type.  F type strings were not needed to accomplish A.D.D.'s special behaviors, and I have no clue how data is encoded into the string.  H type strings contain statistical data returned from the "GH" (get histogram) command and shows the densities of pixel amplitudes (for a given color, R,G, or B, commanded by the GH string) that fall into one or 27 intervals from 16 to 240. T-type returned strings contain object location data and are used very heavily by A.D.D.. S-type strings also contain color statistics, but instead of separating one primary color into intervals of intensity (as in the H-type), the S string contains an overall average of each primary color, ranging from 16-255, and the standard deviations of each color.  

I am using the CMUcam to: 1)produce a PWM waveform for the steering servo and 2) to locate the track by its color and send back data to update the steering controller.    


The colors of the objects were determined experimentally by using the CMUcam as a crude spectrum analyzer.  By sending the GM (get mean) command and taking note of the lighting conditions during each experiment, I was able to observe the variations of RGB for the same object in different lighting conditions.  This provided a starting point for using the TC (track color) command, which requires a minimum and maximum value of each color, R,G, and B.  The camera uses the ranges of color to distinguish and locate the object from background imagery.  Proximity to other objects with too similar of color distributions decreases to confidence interval of the TC command, therefore a loss of accuracy results.
Fundamentally, the concept of "location" is a relative term.  You cannot do much with a location unless you have a reference, which the CMUcam defines very painfully for the average individual.  Since I understand everything backwards, this was not too much of an issue after performing a few trials and plotting the coordinates.  The trials were based on moving a small red piece of paper around a white backgroud (for ease of color distinction), executing the TC command, and interpreting the coordinates to determine the origin and the directions that each axis increases/decreases.  Oddly enough, the coordinate system is defined in a typical manner if you are looking INTO the camera!  Since this is dislexic, I will speak in terms of looking out of the camera.  In this case, the origin is in the bottom right corner, the y-axis increases in an upward manner, and the x-axis increases moving to the left (essentially the x-axis is flipped from its usual orientation).  The coordinates were contracted by viewing the return string of the TC command, which returned the center of the red mass and the top left and bottom right coordinates of the box that encloses the object (the red mass).       

Challenges and Difficulties

The most significant challenge that the CMUcam posed was a timing problem between send and return strings.  Through much experimentation and observation with an oscilloscope, I determined that the CMUcam cannot be receiving new strings until the string it is returning from the most recent command has been completely sent outward.

Another issue with the camera is a poorly triggered receive function either in the UART of the CMUcam or in the programming.  The combination of this flaw and the timing constraints of the send and receive posed a severe challenge in isolating the problems and determining that two problems exist instead of just one.  I redesigned my code with many "control flow parameters" which prevent timing problems by polling the parameters in order to not let the code get ahead of schedule.  It was from this code that I was able to confirm that, in fact, the second problem (send and return string timing) exists in addition to the faulty receive function.

CONCLUSION
It works! Eighty percent of the time.

