EEL 5666

Intelligent Machine Design Lab
Final Report

Project “ Transformer”
An Autonomous Robot

University of Florida
Department of Computer and Electrical Engineering

Su Va (Andy) Fong
8/03/98

Content
EXECULIVE SUMIMAIYottt e e e et e e e re e ane e D
Lo [(o] o PR - |
Mobile Platform.o e D
WalKING PAILEIN. e e e e e e e e e e e et ee e e O

AU ON. ..o e e e 10

IMEOLION SENSOT ... 11

BUMP SENSOIS......coiiiiiiiiee e 13
TOUCH/POSITION SENSOIS.....ceieieeereeeeererarareeerareeeeeeeees 14

BENAVIONS.....ceeee ettt b et et be b e neenreere e 15
Programming TEChNIQUE........cc.eoiiiieiieieee e et 16
Dynamic colliSION @VOITANCE.........cceeiiriiriesieeie et 16
WalKing AIQOMtNML.......oiieeeeee e s 17
DYNamiC SENSOr POSITION.ccuiiuiirieeieeeesee e eeesieesteesee e sbesseeseesseessesneesreeneesneens 18
VATE= (et gl (o Te [o (0o = o SRR 19
(@0 070: (11 o] o 1R 20

APPENIX — SOUICE COUE........eiiueeieeieesieeie sttt bbbt e e sre e e 21

Abstract:

Before taking this class, | always wanted to build a robot. | wanted to build
something with legs. When | saw the Robobug, | was so fascinated and wished to build
one too. Finally, | got the chance to take this class and to build a robot. | want to build
something from scratch instead of buying some already made model and assembling it.
However, | found out that building a Robobug from scratch is not something | can do in
one semester, especially for someone like me who knows nothing about mechanics.
However, | still want to build something with legs. | read through some mechanics books
and finally found the ‘kneeless’ leg mechanism. It is relativlely easy to build and to
control. After more thinking and struggling, | feel that a walking robot sometimes is not
very practical and it consumes a lot of power. Also, | cannot do much with just a walking
robot. So, | decided to combine a tank robot and a walking robot into one. The tradeoff is
that | have to make the legs shorter in order to make the transformation possible. | also
need two sets of sensors for the waking mode and the tank mode because they are
walking or moving in different direction.

Executive Summary:

This is the newest member in my family. Sometimes, it is a tank robot.
Sometimes, it is a six-leg crawling creature. It's characteristic is it unpredictable
(random) behavior. | cannot predict when it will transform from one mode to another. It
will walk around and avoid obstacles. It also likes human. It tends to look for human to
play with. When it sees a human right in front of it. It will jiggle its tail. This is my

newest pet.

Introduction

Transformer is an autonomous agent which can transform between a tank robot
and a walking robot. It acts like a pet and tends to look for a human to play with.
Whenever it sees a human in front of it, it will jiggle its tail. | intended to make this robot
act by itself, more like areal pet that | cannot predict what it will do.

In this report, | will talk about the integrated system, mobile platform, actuation,

sensors, behavior and some programming technique | used on this robot.

Integrated System

The robot is controlled by 68HC11EVBU with ME11 which has 32k memory
expansion, two motor driver using output compare 2 and 3, and a 40 kHz modulated
output port for IR LEDs. The ME11l aso makes the 68HC11 ready for 1/O port
expansion. | added three input ports and output ports for reading the sensors and
controlled the legs.

In order to drive the six legs, | aso built a small motor driver board which
contains three motor driver chips and two 74’04 chips. The motor driver is a replicate of
the DC motor driver in the ME11. | made three of them and put them together in a small
board. For circuit diagram, please refer to the ME1l Assembly Manua fig 8

(http://Mmww.mil.ufl.edu/novasoft).

Mobile Platform

This robot will be able to transform between a walking robot and a tank robot.
The body is made of aluminum angle and pivoted together. | also use aluminum channel
for the legs. | choose to use aluminum because it is strong and relatively light.

Walking Mechanism

The leg mechanism | use is very straight forward and is relatively easy to build

and control. Fig 1 shows the mechanism of asingle leg.

fig 1 The 'kneeless' leg mechanism

Point A and C are pivots. Point A is attached to a motor so that point B circles
around point A. As point B turns, point C can move up and down. Therefore, point D can
trace out an oval orbit which enable the robot to move back and forth. Fig 2 shows one

side of the robot with the legs attached.

fig 2 Side view of the walking robaot

The middle leg must be 180 degree out of phase of the other two legs. The legs on
one side must be 180 degree out of phase with the legs on the other side.

Walking pattern

The walking patterns are shown in fig 3. This walking pattern is very essential
and | try to maintain this walking pattern after each move when walking forward or
turning left or right. To turn left, just reserve the motor direction on the left right side. To
turn right, just reserve the motor direction on the right side. Some programming is need

to keep the legs synchronized which will be cover in the programming technique section.

O L O ® O @

@ €l & o @ €

mowement

'.' = Contact on ground

fig 3 Walking pattern (top wiew)

The tracks

The tracks are cut out from a toy and mounted on the side of the robot. When it
transforms to a tank robot, it retracts all the legs to its highest position and let the tracks
touch the ground as shown in fig 4. Fig 5 shows the top view of the robot with the

position of the tracks and the legs.

ol|
|

—B

[= gl |
\ |
T

=9
[

fig 4 Tank robat and the leg position
& (2 O
O O @

fig & Top wview of teh tank robot

Actuation

This robot contains eight motors. Two for the tracks and Six for the legs. Because
| need relatively high torque to move the legs and the motor must be able to turn 360
degree to move the leg forward, the motors are fully hacked from some used servo. All
the electronics parts are taken out from the servo. The main gear is also modified so that
360 degree turn is possible. To get full power from the motors, the power is supplied
directed from the 8-pack battery pack.

The motors for the legs are driven by the motor drivers board | build using three
SN754410 and two 74’04 chips. Twelve output pins are connected to the motor drivers
board to control the direction of the motors and enable the motors. Zero in the direction
pins will move the legs backward and one will move the legs forward. Zero in the enable
pinswill stop the legs and one will move the legs.

The motors for the tracks are controlled by the ME11. The signals are pulse width

modulated using output compare two and three.

10

Sensors

Five types of sensors are used in this robot: Motion sensor, IR sensors, Bump
sensors, Touch sensors and Leg Position sensors.
Motion Sensor

The motion sensor is used to detect the present of a human. It is a hack from a
backyard motion activated light. The signal is tapped out from pin 7 of the op-amp on the
circuit board. The signa from the op-amp is very small. The voltage sway is from -0.5
volt to +0.5 volt with a DC offset of 12v. The signa isin very low frequency. It actually
looks like a DC signal in the oscilloscope. The signa will move up and down if a heat
source in front of it is moving to left or right respectively. Since the signal can be
negative, it is not suitable for the A/D converter of the 6BHC11. | need to filter off the
12v dc offset and give it a 2.5v offset and amplify it so that the range of the signal will be
limited to about O to 5 volt. Then, | found out that after the amplifier, the signal does not
move up and down as smooth as the original signal. It suddenly jumps up for a very short
time and come back down. That might not be very useful if | connect it directly to the
A/D converter of the 68HC11. So, | add a comparator and a D-Flip Flop to latch the
result so that | can reset the D-FF and read the result anytime | want. The final circuit is

shown it fig. 6.

11

O put frond

47k RSV
WVh— FW“-LH ,1r MPU
Signal |} 1) \:\m B

= + e ﬁ ! 7
r*—4 " &
L2 Jua, i

o 'FLW — S0k 25k

fig 6 Motion Detector Amplifier

Because of the noise from the motors, whenever the motors move, the D-FF will
be set and give a false result. | have to power up the motion sensor unit with a separate
battery. When using battery to power up the motion sensor unit, it takes about five
minutes to charge up the capacitors. So, | used a ten battery pack to reduce the charging
time. The sensitivity will aso benefit from the ten battery pack instead of eight battery

pack.

IR sensors

The IR sensors are hacked from the Sharp digital IR sensors. After the hacking,
the sensors can give out analog signal from 1.5v to 2.5v depending on the distance of the
object away from the sensors. So, that is used for collision avoidance. | used 330 ohm
resistors for the IR LED and it can see while objects from 77 to 36”. The position of the

IR sensorsis showninfig. 7.

12

fig 7 IR Zenscors

Bump Sensors

Since the IR sensors cannot see black object, | also added four bump sensors at
the four corners for collision avoidance. The bump sensors have higher priority over the
IR sensors. Fig. 8 shows the position and the structure of the bump sensors. The design is

borrow from “ Critter” study in class.

O

A

| [|0
Shnnnuni®

.

»

fig. 8 Bump Sensors

13

The input port for the bump sensors are pull up to Vcc when the sensors are not
bumped. The meta wire in the middle of the spring is grounded. Therefore, whenever it

hit something, the input of the bump sensor will be grounded.

Touch/Position Sensors

The Touch sensors are momentary push buttons and the Position sensors are mini-
level switches. When the switches are open, they are pulled up to Vcc; otherwise, they

are pull to ground. Fig. 9 shows the position of the touch sensors and the position sensors.

PD?fE}Qﬁ“EEESDrS

e

ars B
\

fig. 9 Touch Sensors and Position Sensors

The touch sensors are used to synchronize the legs movement. It enables the
program to know when to stop the legs and when to move the legs. More about
controlling the legs will be discussed in the programming technique section.

The position sensors are use for transformation from walking mode to tank mode.

It enables the legs to retract to their highest position and stop.

14

Behaviors

One of the main behavior of this robot is its unpredictable behavior. | intended to

make it more like a real animal, so | put a lot of random decision in the program.

However, | do make some choices happen more likely over the others by comparing

severa bits of the TCOUNT register. Therefore, | cannot predict when it will transform

and when it will look for a human to play with.

The following is a summary of the robot’s behavior :

Dynamic Collision Avoidance

Transform between Tank mode and Walking mode

Tend to look for and walk to human

When something isright in front of it, it will either turn around or transform
When the power islow or it istired (turn too many times) or if the legs dlip or

stuck, it will transform back to tank mode

When it sees a human right in front of him, it will jiggle its tail

15

Programming Technique

In this section, | will talk about some of the programming technique that | used
for the brain of transformer. | am using assembly for my program and sometimes, it takes
a whole day to figure out a very small bug like missing a # sign, jump to the wrong
label...etc. But | enjoy doing assembly because | have the control and | know what’s
going on in terms of hardware.

Dynamic collision avoidance

| use the IR reading to directly calculate the speed of the track. The range of the
IR reading is about 87 to 130. To control the speed of the right track, | take the reading
from the front left IR sensor and subtract it by 120. If the result is positive, the object is
very closed to the front left corner. So, | reverse the direction of the right track. The speed
of the track is the result multiplied by 25. (The full speed of the track is 255) If the result
is negative, | will move the right track forward and the speed of the track will be the
result multiplied by 7. So, when the IR sees nothing, the track speed will be 231. The
control of the left track is the same.

This technique is very easy to implement. It does not require a lot of if ... else
decision. The turn is very smooth and nature. However, there is one drop back of this
technique. When an object is big and right in front of both sensors (Same reading from
both the left and right IR sensors), it will slow down and finally stop. In this state, the
robot is trapped and is going nowhere. Something, it will finally turn away but it takes a
long time. So, | programmed to robot to either transform or turn away when the speed of
both tracks is lower than certain level. That way, the robot will never be trapped again. It

will “hesitate”’ in front of abig object and than do something to get away.

16

Walking Algorithm

The walking algorithm depends heavily on the walking pattern. The walking
algorithm is very ssimple. By changing the pattern and the direction of the motors, | can
use the same walking algorithm to move forward or backward and turn left or right.
When it first transform to awalking robot, the pattern is 101010. Bit O of the pattern it the
front left leg of the robot. Bit 1 is the middle left leg. Bit 3 isthe front right leg ... and so
forth. A zero in the pattern means the leg is pointing backward (opposite direction of the
motor movement). A one in the pattern means the leg is point forward (same direction of
the motor movement). When the robot first transforms to waking mode the legs
direction is shown in fig. 10a. For the waking agorithm, | first load in the walking
pattern and store it to LEG_EN which will enable leg 1, 3 and 5. Then | read the touch
sensors of the three legs, negate it and put it into LEG_EN. So leg 1, 3 and 5 will stop
whenever it leaves the ground. The legs' direction is shown in fig. 10b. Then | negate the
walking pattern and store it into LEG_EN. Now, the pattern becomes 010101. So, leg 0, 2
and 4 will move. Then | read in the touch sensor and put it into LEG_EN. So, leg 0, 2 and
4 will stop when they touch the ground. Now the direction of the legs is as shown in fig
10c. That finished one moving step and | store the walking pattern back to W_PATTERN
and return. If the walking algorithm is call again, it will move another step forward and
the walking pattern will go back to the original 101010 as shown in fig. 10d — fig. 10e. If
| want to walk backward, | just need to reverse the direction of the motors and call the

walk algorithm again.

17

2 1 0 2 1 0 2 1 0 2 1 0 2 1 0
L IR R T e I S R SR S < > €
AR R S S R = SR S R R I S I~
5 4 3 5 4 3 5 4 3 5 4 3 5 4 3

fig 10a fig 10b fig 10c fig 10d fig 10e

If 1 want to turn left, | just need to reverse the direction of the motors on the left hand
side. Then, negate bit 0-2 of the walking pattern and call the walk algorithm. After the
turn is done, | negate bit 0-2 of the walking pattern and store it back to W_PATTERN
and | am redly to make another left turn, right turn or move forward ... etc. The

sequence is shown in fig 11a—fig. 11d.(assuming the starting pattern is 101010)

2 1 0 2 1 0 2 1 0 2 1 0
L IR S e A R e S SR Sl 2
AR AR SR R e R SR S IR
5 4 3 5 4 3 5 4 3 5 4 3

fig 11a fig 11b fig 11c fig 11d

(101010) (101101) (010010) (010101)

To make aright turn, just reverse bit 3-5 of the walking pattern and reverse the direction

of the motors on the right hand side. Then, call the walk algorithm. After its done, reverse

bit 3-5 of the walking pattern and store it back to W_PATTERN.

Dynamic Sensors Position

In my program, | have a function call “M_SET”. It will determine which sensors
is the Front Left sensor, which one is the Front Right sensor, which one is the Rear

sensors, etc... depending on what mode the robot isin. So, whenever it transforms, it just

18

call that function and determine the position of the sensors. That way, | can use the same

collision avoidance algorithm without changing anything.

Watchdog Program

| also use the RTI interrupt to write a small watchdog program to monitor the
walking subroutine. If it stuck in the loop for more than five seconds, it will transform
back to tank mode. Since the walking algorithm depends heavily on the touch sensors and
the walking surface will affect the sensors' reading dramatically, this is a safety feature

for preventing any problems happen when in the walking mode.

19

Conclusion

The project was successful. | could make it transform as its own will. Compare to
other robots, my robot is not as useful because mine is just walking around. However,
that is what | intended to do. | wanted to make it act like a read pet. My future
development will be adding more complex behavior, programming it to look for food and
learn how to walk. In this project, | learned a lot of practical knowledge which | can
never learn in other classes. Things look very easy on paper is not that easy when I
actually built it. Nothing is easy when it comes to the real world. Using the right tools
and finding the right parts are also critical. With the right tools, it will take just minutes to
finish the job. With the wrong tools, it takes days to do the same job. Cutting aluminum
with a Dremel is not a very good idea, but that's the only tool | have. | also found that
Epoxy Strip was extremely useful when | mount my bump sensor onto the body. It can
mold like clay but after it’s dry, it is very strong and can stick almost anything together. It
can be found in Radio Shack. | enjoy this class and doing this project. Especialy working
with other people in the lab overnight. Sometimes, | think | put too much pressure on

myself and that could be very stressful.

20

Appendix — source code

Title

Fi | ename

Pr ogr amer
Dat e

Ver si on
Descri ption

E I N

Machine Intelligence Design Lab (Summer 98)

T-For mer . ASM

(Andy) Su Va Fong

07/ 31/ 97

1.0

This programis the brain of ny robot - Transforner

EE R R R R R R Ok kR O

* Define the address | ocations of the various registers and user-defined

* constants used in the program
EE R R R R R I R R O

BAUD EQU
SCCR1 EQU
SCCR2 EQU
SCSR EQU
SCDR EQU
ECS EQU
CR EQU
LF EQU
ESC EQU
BASE EQU
PORTD EQU
DDRD EQU
ADCTL EQU
OPTION EQU
ADR1 EQU
ADR2 EQU
ADR3 EQU
ADR4 EQU
TOC2 EQU
TOC3 EQU
TOCA4 EQU
PACTL EQU
TCTL1 EQU
TMSK1 EQU
TFLGL EQU
TFL& EQU
TMSK2 EQU
TCNT EQU
BUMP1 EQU
BUMP2 EQU
BUMP3 EQU
BUMP4 EQU
* Masks

BI TO EQU
BIT1 EQU
Bl T2 EQU
BI T3 EQU
Bl T4 EQU
BI TS5 EQU
BI T6 EQU
BI T7 EQU

out 1byt equ
outcrlf equ
Period EQU
LEG EN EQU
LEG DI R EQU
CDS_SEL EQU
MOTI ON EQU
LED EQU
IR_ADR EQU

$102B ; BAUD rate control register to set the BAUD rate
$102C ; Serial Communication Control Register-1

$102D ; Serial Communication Control Register-2

$102E ; Serial Communication Status Register

$102F ; Serial Communication Data Register

$04 ; User-defined End OF String (EOS) character
$0D ; Carriage Return Character
$0A ; Line Feed Character

$1B ; Escape Charracter

$1000 ; Beginning of Registers

$08 ; Port D

$09 ; Data Direction Register of Port D
$30

$39

$31 ; A/D Register 1

$32 ; A/ D Register 2

$33 ; A/ D Register 3

$34 ; A/ D Register 4

$18 ; Qutput Conpare 2 register
$1A ; Qutput Conpare 3 register
$1C ; Qutput Conpare 4 register
$26 :

$20 ; Timer Control register

$22 ; Timer Maskl Register

$23 ; Timer Flagl Register

$25 ; Timer Flag2 Register

$24 ; Timer Mask2 Register

$OF

%©0000001 ; Bunp Sensor 1 postion
%©0000010 ; Bunp Sensor 2 postion
%©0000100 ; Bunp Sensor 3 postion
%©0001000 ; Bunp Sensor 4 postion
%9©0000001

290000010

%9©0000100

290001000

%9©0010000

%©0100000

%©1000000

%4.0000000

$ed4f F ; outlbyt subroutine address
$e508 ; outcrlf subroutine address
$FFFF ; Period of the PWM for both tracks
$4000 ; Leg enabl e address

$5000 ; Leg direction address
$6000 ; CDS cell selection address
$6000 ; Motion detection address
$6000 ; LED out put address

$7000 ; R LED out put address

21

T_ADR EQU $5000 ; Touch sensor input adress

B ADR EQU $6000 ; Bunp sensor input address

PCS_ADR EQU $4000 ; Leg position sensor input address

IR TH EQU 120 ; IR threshol d val ue

IR_MAX EQU 130 ; IR range (maxinmm

IR MN EQU 80 ; IR range (m ninmm

BACKWARD EQU %©0000000 ; Direction of legs for wal king backward
FORWARD EQU %0111111 ; Direction of legs for wal king forward
Rl GHT EQU %©0000111 ; Direction of legs for turning right
LEFT EQU %9©0111000 ; Direction of legs for turning left

*
EE R R R S R R R S

* Initialize Interrupt Junp Vectors
EE R R R S R R R R kR

* Junmp Vector for TOC2_I SR

ORG $00DC
JMP TOC2l SR
* Junmp Vector for TOC3_I SR
ORG $00D9
JMP TOC3I SR
* Junmp Vector for RTI_ISR
ORG $00EB
JMP RTI _I SR
EE R R R R R R T R S kR
* Define Strings for displaying nessages
EE R R R R R R T R S kR
ORG $8000
JMP Mai n
CrScr FCB ESC, $5B, $32, $4A ; ANSI sequence to clear screen
FCB ESC, $5B, $3B, $48 ; and nove cursor to home
FCB ECS ; ECS character

EE R R R T R Rk R T

* Data Section

EE R R R R R R T I R R

*Tank Mode Dat a

TrackO FCB 0 ; Left Track Speed

Trackl FCB 0 ; Right Track Speed

Dir0 FCB 0 ; Left Track Direction

Dirl FCB 0 ; Right Track Direction

Hi gh0 FDB $0000 ; High time of the PMM for the left track
Hi ghl FDB $0000 ; High time of the PMM for the right track

*Sensors Data

Touch FCB 0 ; Reading fromtouch sensors

Positn FCB 0 ; Reading fromleg position sensors
FL_BUWP FCB 0 ; Reading from Front left bunp sensor
FR_BUWP FCB 0 ; Reading from Front Right bunp sensor
RL_BUWP FCB 0 ; Reading from Rear Left bunmp sensor
RR_BUWP FCB 0 ; Reading from Rear Ri ght bunp sensor
Bunp FCB 0

Mbtion FCB 0 ; Reading fromthe notion detection

I RO FCB 0 ; Reading fromIR sensor 0

I R1 FCB 0 ; Reading fromIR sensor 1

I R2 FCB 0 ; Reading fromIR sensor 2

I R3 FCB 0 ; Reading fromIR sensor 3

| R4 FCB 0 ; Reading from IR sensor 4

| RS FCB 0 ; Reading fromIR sensor 5

CDS0 FCB 0 ; Reading fromIRCDS 0

CDs1 FCB 0 ; Reading fromIRCDS 1

CDS2 FCB 0 ; Reading fromIRCDS 2

CDS3 FCB 0 ; Reading fromIRCDS 3

CDs4 FCB 0 ; Reading from|RCDS 4

BATTERY FCB 0 ; Reading fromBattery potential neter
MODE FCB 0 ; mode of the robot (0 - tank, 1 - walk)
FL_IR RMB 2 ; front left IR sensor address

FR IR RMB 2 ; front right IR sensor address

22

R IR RVB 2 ; rear | R sensor address

CA L FCB 0 ; Collision avoidance (left notor control)
CA_R FCB 0 ; Collision avoidance (right motor control)
WALK_P FCB %©0101010 ; Wal king pattern

COUNT FDB 0 ; Count from RTlI (Testing only)

W COUNT FDB 0 ; Count for wal king tinmeout

Ti meout FCB 0 ; Timeout - set if Wcount > 1250

QUTPUT3 FCB 0 ; Buffer for output port 3

HUMAN FCB 0 ; Set when human is detected

T C FCB 0 ; Count how many turns are made when wal ki ng
EE R R R S R R R R T IR kS
* MAI N PROGRAM

EE R R R S R R R R IR S R

* Initialization

Mai n LDS #$0041 ; Initial the stack pointer
LDX #BASE ; Base address for systemregister
LDAA #0 ; Disable |l egs when first start
STAA LEG EN
JSR InitOC ; Initialize Qutput Conpare
JSR InitRTI ; Initialize RTI
CLI ; Enable the interrupt system
BSET OPTION, X BI T7 ; Turn on A/ D converter
LDAA #%©0110000 ; Setting for A/D converter
STAA ADCTL, X ; Scan continuously and nultiple channel
LDAA #40 ; Wait until the power of A/D converter
VAI T DECA ; tostablize. (Charge up the Caps)
BNE VWA T
LDAA #9©0110000 ; Direction of PortD 5:4 for L & R tracks
STAA DDRD, X ; Set to output to cortrol the tracks
JSR Sensors ; Get the sensors reading
JSR Sensors ; Usually the first reading is junky
* Always start in tank node
LDAA POS_ADR ; Retract all the legs to their highest pos
ANDA #9©0111111 ; and start in tank node
EORA #99©0111111 ; If not all of the position sensors are closed
BEQ START ; call the subroutine to transformto tank node
LDAA #1
STAA MODE
JSR ML_MD

* Reset the npotion sensor
START LDY #OUTPUT3 Reset the D-FF in the notion detection
BCLR 0,Y BIT7 ; amplifying circuit
LDAA OUTPUT3
STAA MOTI ON
BSET 0,Y BIT7
LDAA OUTPUT3
STAA MOTI ON

REPEAT JSR M _SET ; Set the position of sensors according to
; the node
JSR Sensors ; Get readings fromall the sensors
JSR C_AvO D ; Collision avoi dance
* Check if Battery is ok
LDAA BATTERY ; Check battery
LSRA ; if lower than 9v, turn on alLED
CMPA #$68 ; and transformto tank node
BCE B K
LDY #OUTPUT3

23

BSET 0,Y BIT3
LDAA OUTPUT3

STAA LED
JSR ML_MD
B OK LDAA TCNT, X ; Randoml y check (spin around) if
ANDA #941111100 ; any humen around
BNE CONT
JSR D _HUMAN ; Check if anyone in front of nme
CONT LDAA MODE ; Check the node, and call the corresponding
BEQ A0 ; arbitrator
* Check if the legs are stuck
LDAA Ti meout ; I'f stuck nmore than 5 secs, transform back
BEQ Al ; to tank node
JSR ML_MD
LDAA #0 ; Reset the timeout variable
STAA Ti meout
BRA A0 ;
Al JSR MD_ML ; else transformto wal ki ng node
JSR MODE1 ; Call wal king nmode arbitrator
REPEAT_ BRA REPEAT
A0 JSR ML_MD ; otherw se, transformto tank node

JSR MODEQ ; Call tank node arbitrator

* Qutput sensors reading to termnal (Testing only)

PSHX

LDX #1 RO

JSR out 1byt

JSR out 1byt

JSR out 1byt

JSR out 1byt

JSR out 1byt

JSR out 1byt

JSR out 1byt

JSR out 1byt

JSR out 1byt

JSR out 1byt

JSR out 1byt

JSR out 1byt

jsr outcrlf

LDX #$FFFF
TEST DEX

BNE TEST

PULX

BRA REPEAT_
EE R R R R R R R R R R kR S R
* SUBROUTI NE - I nitOC
EE R R R R R R R R R kS
InitOC PSHA

PSHX

LDX #BASE

BCLR TMSK2, X BI T1 ; Set the pre-scaler frequency for TCNT

BCLR TMSK2, X BI T2 ; PR1: PRO=00 for 2MHz

* Initialize Qutput conpare OC2 and OC3

LDAA #9%40100000 ; OMR: A2 = 10 for setting to | ow
STAA TCTL1, X ; OM3 OL3 = 10 for setting to | ow
LDAA #9%9©1100000 ; Enable interrupt from OC2 and OC3

STAA TMBK1, X

PULX

24

PULA

RTS
R R R R R R Rk
* Interupt Service Routine - TOC2I SR
* Create the PWM according to Highl
R R R R R Rk
TOC21 SR LDX #BASE
BRCLR TFLGL, X BI T6 TOC2RTI ; Check for correct interrupt
LDAA #BIl T6 ; Clear the OC2 flag
STAA TFLGL, X
LDD Hi ghl
BNE MOVEL
STOP1 BCLR TCTL1, X BI T6
BRA TOC2RTI

MOVEL BRSET

TCTL1, X BIT6 LASTHI 1

BSET TCTL1, X BIT6
LDD #Peri od
SUBD Hi ghl
ADDD TOC2, X
STD TOC2, X
BRA TOC2RTI
LASTH 1 BCLR TCTL1, X BI T6
LDD Hi ghl
ADDD TOC2, X
STD TOC2, X
TOC2RTI RTI
EE R R R R T R R R Rk
* Interupt Service Routine - TOC3I SR
* Create the PWM according to Hi ghO
EE R R R S R R R R R kR R
TOC3I SR LDX #BASE
BRCLR TFLGL, X BI T5 TOC3RTI ; Check for correct interrupt
LDAA #BIl T5 ; Clear the OC3 flag
STAA TFLGL, X
LDD Hi ghO
BNE MOVEO
STOPO BCLR TCTL1, X BI T4
BRA TOC3RTI

MOVEQ BRSET
BSET
LDD
SUBD

ADDD
STD
BRA

LASTHI 0 BCLR
LDD
ADDD
STD

TOC3RTI RTI

TCTL1, X BI T4 LASTHI O
TCTL1, X BI T4

#Peri od

Hi ghO

TOC3, X
TOC3, X
TOC3RTI

TCTL1, X BI T4
Hi ghO

TOC3, X

TOC3, X

EE R R R R R R kR R

* Interupt Service Routine - RTI_ISR

EE R R T R R R R kR

RTI _I SR LDX
BRCLR

LDAA

#BASE
TFLG2, X BI T6 RTI _RTI

#BIl T6

25

STAA TFLG2, X

LDX COUNT ; I'ncrease the COUNT (FOR TESTI NG ONLY)

I NX

STX COUNT

LDAA MODE ; If in wal king node

BEQ RTI _RTI

LDX W_COUNT ; Start counting

I NX

STX W _COUNT

CPX #1250 ; If in the walkin subroutine for > 5 secs

BLT RTI _RTI

LDAA #1 ; Timeout, tranform back to tank

STAA Ti meout

LDX #0 ; Reset the counter

STX W _COUNT
RTI _RTlI RTI
EE R R R R R R T R kR
* Tank Moving Mechani sm Control - TMMC
* Change the direction of the tracks according to Dir0O & Dirl
* Cal cul ate Hi ghO & Highl according to TrackO & Trackl

EE R R R R R R T R S kR

TMVC PSHA
PSHB
PSHX
LDX #BASE

* Left Track
LEFT1 LDAA Dir0

BNE BACKO
FORW) BCLR PORTD, X BIT5
BRA Set_HO

BACKO BSET PORTD, X BI T5

Set _HO LDAA TrackO

LDAB #S$FF
MUL
STD Hi gho

* Right Track
RI GHT1 LDAA Dirl

BNE BACK1
FORM BCLR PORTD, X BI T4
BRA Set _H1

BACK1 BSET PORTD, X BI T4

Set _H1 LDAA Trackl

LDAB #SFF

MUL

STD Hi ghl

PULX

PULB

PULA

RTS
EE R R R R T R R R IR R
* Sensors Data Gathering - Sensors
* Gather all sensors information

EE R R R R R R T I R R S O

Sensors PSHA
PSHX
LDX #BASE

LDAA $4000
STAA Positn

26

LDAA
STAA
LDAA
STAA

LDAA
STAA

LDAA
STAA

CHECK BRCLR

$5000
Touch
$6000

Bunp

#SFF
| R_ADR

#99©0010000
ADCTL, X

; Turn on IR LED

; Start sanpling Channel

ADCTL, X BI T7 CHECK

LDAA ADR1, X
STAA | RO
LDAA ADR2, X
STAA | R1
LDAA ADR3, X
STAA | R2
LDAA ADR4, X
STAA | R3

* Select the first CDS
LDAA QUTPUT3
ANDA #941111000
STAA CDS_SEL
STAA OUTPUT3

* LDAA #9%0©0000000

* STAA CDS_SEL
LDAA #99©0010100
STAA ADCTL, X

CHECK2 BRCLR

ADCTL, X BI T7 CHECK2

LDAA ADR1, X
STAA | R4
LDAA ADR2, X
STAA | R5
LDAA ADR3, X
STAA CDS0
LDAA ADR4, X
STAA BATTERY
LDAA #0
STAA | R_ADR

* Sel ect the second CDS
LDAA QUTPUT3
ANDA #941111000
EORA #%9©0000001
STAA CDS_SEL
STAA OUTPUT3

* LDAA #9%0©0000001

* STAA CDS_SEL
LDAA #%9©0000110
STAA ADCTL, X
LDAA #6

WAI T3 DECA
BNE WAI T3
LDAA ADR1, X
STAA CDS1

* Select the third CDS
LDAA OUTPUT3
ANDA #941111000
EORA #%9©0000010
STAA CDS_SEL

i

Turn off the IR LED

1 -

4

27

STAA OUTPUT3

* LDAA #9%0©0000010

* STAA CDS_SEL
LDAA #%90000110
STAA ADCTL, X
LDAA #6

WAl T4 DECA
BNE WAI T4
LDAA ADR1, X
STAA CDS2

* Select the forth CDS
LDAA OUTPUT3
ANDA #941111000
EORA #%9©0000011
STAA CDS_SEL
STAA QOUTPUT3

* LDAA #9%©0000011

* STAA CDS_SEL
LDAA #%90000110
STAA ADCTL, X
LDAA #6

WAI T5 DECA
BNE WAI T5
LDAA ADR1, X
STAA CDS3

* Select the fifth CDS
LDAA QOUTPUT3
ANDA #941111000
EORA #%9©0000100
STAA CDS_SEL
STAA OUTPUT3

* LDAA #9%0©0000100

* STAA CDS_SEL
LDAA #%90000110
STAA ADCTL, X
LDAA #6

WAI T6 DECA
BNE WAI T6
LDAA ADR1, X
STAA CDs4
PULX
PULA
RTS

R R R R R I kR Rk

R R R R R R T R R Rk S R O

SUBROUTI NE - | nitSCl

*

I nput

Cut put
Destroys
Calls

*
*
*
*
*
*
*
*

Descri ption:

sets up the SCI port for

1 stop bit.

It also enab

This subroutine initializes the BAUD rate to 9600 and

1 start bit, 8 data bits and

les the transmtter and receiver.

Effected registers are BAUD, SCCR1, and SCCR2.

None.

Initializes SCl.

None.
None.

EE R R R R T R R R IR R

*

I nitSCl PSHA

LDAA
STAA
LDAA
STAA
LDAA
STAA

#$30

BAUD

#3$00

SCCR1
#99©0001100
SCCR2

i

i

; Save contents of A register
Set BAUD rate to 9600

Set SCI Mobde to 1 start bit,

8 data bits, and 1 stop bhit.

Enable SCI Transnitter
and Receiver

28

PULA ; Restore A register

RTS ; Return fromsubtoutine
*

EE R R R S R R T R Rk

* Set the node of the robot (track or wal king) - MSET

* Det erm ne which sensors are the front sensors and the rear sensors
* etc. So that | can use the sanme subroutine in either walking
* or tank node.

EE R R R R R I R Rk kS

M SET PSHX

PSHA
LDAA MODE
BNE M WALK
* Tank Mode
M TANK LDX # R2
STX FR IR
LDX #1 R3
STX FL_IR
LDX #| R5
STX R IR

LDAA #BUWP1
STAA FL_BUwWP
LDAA #BUMP2
STAA RL_BUWP
LDAA #BUMP3
STAA FR_BUWP
LDAA #BUWP4
STAA RR_BUWP

BRA M SET_E

* Wl ki ng Mode

M WALK LDX #1 RO
STX FRIR
LDX #l R1
STX FL_IR
LDX #l R4
STX R IR

LDAA #BUMP3
STAA FL_BUW
LDAA #BUWPL
STAA RL_BUWP
LDAA #BUMP4
STAA FR_BUWP
LDAA #BUMP2
STAA RR_BUWP

M SET_E PULA

PULX

RTS
EE R R R R R R R T Rk
* Col I'i sion Avoi dance - C AVA D

EE R R R R R I R R kR

C_AvA D PSHA

PSHB
PSHX

c4 LDX FL_IR
LDAA 0, X
SUBA #120
CLV
BGT cL
NEGA
LDAB #7
MUL
STAB CAR
LDAA #O0
STAA Dirl
BRA c2

29

c1 LDAB #25

MUL
STAB CAR
LDAA #1
STAA Dirl
2 LDX FR IR
LDAA 0, X
SUBA #120
cLV
BGT c3
NEGA
LDAB #7
MUL
STAB CA L
LDAA #O0
STAA Dir0
BRA CAE
c3 LDAB #25
MUL
STAB CA L
LDAA #1

STAA Dir0

CAE PULX
PULB
PULA

*
IR R R SR RS EEEEEEE RS SR SRR EEE R SRR EEEREEREREEREEEEEEEEEEREEEEEERESEEEERESEERESERESESEEES
IR R R R R RS EEEEE SR RS SR SRR EEE RS SRR R EREEREREEREEEEEEEREEEREEEEEEESEESEERESEERESERESESEEES
* Arbitrator in Tank node - MODEO
IR R R R R RS EEEEEEE RS SR SRR EEE R SRR EEEREEREREEEEEEEEEEEEREEEEEERESEESEERESERSERSESEEES
MODEO PSHA

PSHB

PSHX
* Bunp sensor check
FL_C LDAA B_ADR

ANDA FL_BUWP

BNE FR C
FL_B LDAA #1

STAA Dirl

STAA Diro

LDAA #3$00
STAA TrackO
LDAA #$FF

STAA Trackl
JSR TMVC

FL_.BC LDAA B_ADR
ANDA FL_BUWP

BEQ FL_BC

LDAA #$05
FL_BDLl LDX HSFFFF
FL_BD2 DEX

BNE FL_BD2

DECA

BNE FL_BD1

BRA TRAP_

FRC LDAA B_ADR
ANDA FR BUWP
BNE RL_C

FRB LDAA
STAA
STAA

LDAA
STAA
LDAA
STAA

JSR

FR_BC LDAA
ANDA
BEQ

LDAA
FR BD1 LDX
FR BD2 DEX
BNE
DECA
BNE

TRAP_ BRA

RL.C LDAA
ANDA
BNE

RLB LDAA
STAA
STAA

LDAA
STAA
LDAA
STAA

JSR

RL_BC LDAA
ANDA
BEQ

LDAA
RL_BD1 LDX
RL_BD2 DEX
BNE
DECA
BNE

BRA

RR C LDAA
ANDA
BNE

RR B LDAA
STAA
STAA

LDAA
STAA
LDAA
STAA

JSR
RR_BC LDAA

ANDA

BEQ

LDAA
RR_BD1 LDX

#1
Dirl
Dir0

#SFF
TrackO
#3$00
Trackl

TvC

B_ADR
FR_BUMP
FR_BC

#$05
#SFFFF

FR_BD2
FR_BD1
TRAP

B_ADR
RL_BUMP
RR C
#0
Dirl
Dir0

#3$00
TrackO
#$FF
Trackl

TvvC

B_ADR
RL_BUMP
RL_BC

#$05
#SFFFF

RL_BD2
RL_BD1

TRAP

B_ADR
RR_BUMP
TRAP

#0
Dirl
Dir0

#$FF
TrackO
#3$00
Trackl

T™C
B_ADR

RR_BUMP

RR_BC

#$05
#SFFFF

31

RR _BD2 DEX

BNE RR_BD2
DECA
BNE RR_BD1

* if traped, turn; otherwise followi ng the IR reading
TRAP LDAA CA L

ANDA #9%0.1100000

BNE MODEO_E

LDAA CAR
ANDA #9%41100000
BNE MODEO_E

LDX #BASE ; If traps, randomy transform
LDAA TCNT, X
ANDA #96.1110000

BNE MO _ M4
JSR MD_ML
BRA END
MD_ M4 LDX #BASE ; Randomly turn left or right whentraped

LDAA TCNT, X
ANDA #94.0000000

BEQ Mo
LDAA #0
STAA Dir0
LDAA #1
STAA Dirl
BRA MLO

ve) LDAA #0
STAA Dirl
LDAA #1

STAA Dir0

MLO LDAA #%$80
STAA TrackO
STAA Trackl

JSR TvvC
LDAA #05
MB1 LDX #$FFFF
MBO DEX
BNE MBO
DECA
BNE MB1
BRA END

* following the IR reading for collision avoi dance
MODEO_E LDAA CA L

STAA TrackO

LDAA CA R

STAA Trackl

JSR T™™VC
END PULX

PULB

PULA

RTS

EE R R R R R R T I R R S O
EE R R R R R R T R S R S

* Transform from Tank nbde to Wal ki ng node - M)_ML

EE R R R R R R T R R R Rk

MD_M. PSHA
LDAA
BNE

LDAA
STAA
STAA

JSR

LDAA
STAA
cK LDAA
ANDA
BEQ
STAA
BRA
ST1 LDAA
ANDA
BEQ
STAA
BRA
ST2 LDAA
STAA

LDAA
STAA

MD_ML_E LDAA
STAA
PULA
RTS

MODE
M_ML_E

#3$00
TrackO
Trackl

TVvVC

#%00101010
LEG DI R
T_ADR
#900010101
ST1

LEG EN
K

T_ADR
#900101010
ST2

LEG EN

ST1

#0

LEG EN

#%00101010
VALK _P

#1

MODE

i

i

i

i

Return if already in node 1

Stop the tracks

Set the leg direction

nmove three legs until they touch the ground

nmove other three legs |ikew se

Set the wal king pattern

Set node to 1

EE R R R S R R R R R S R

* Transform from Wal ki ng node to Tank node -

ML_MD

EE R R R R T R R R Rk

ML_MD PSHA
LDAA
BEQ

LDAA
STAA

CH LDAA
ANDA
EORA
BEQ
STAA
BRA

SP LDAA
STAA

ML_MD_E LDAA
STAA
PULA

RTS

MODE
ML_MD_E

#990010101
LEG DI R
POS_ADR
#990111111
#990111111
sP
LEG EN
CH
#0
LEG EN

#0
MODE

i

i

i

Return if already

in node 0

Set direction of the |egs

Move all the |egs
sensors are closed

until all the position

EE R R R I R R R Rk R R Rk

* Wal ki ng al gorithm - WALK

EE R R R R R R T IR S

WALK PSHA
PSHB

LDD
STD
LDAA
BNE
LDAA

STAA

w LDAA
ANDA
EORA
BEQ

#0
W _COUNT
Ti meout

VALK _P

LEG EN

T_ADR
VALK _P
VALK_P

i

i

Reset W count

Check if the Timeout flag is set by the RTI

move the | egs according to the wal king pattern

keep moving until

the |l egs touch the round

33

STAA LEG EN
LDAA Ti meout ; Check for timeout
BNE B
BRA WL
W2 LDAA WALK_P ; negate and update the wal king pattern
EORA #9%90111111 ; move the other legs forward
STAA LEG EN
STAA WALK_P
* Wait until all three legs left the ground
Wb LDAA T_ADR
ANDA WALK_P
BEQ W6
Wi LDAA T_ADR ; move until the legs touch the round
ANDA WALK_P
BEQ B8
STAA LEG EN
LDAA Ti meout ; Check for timeout
BNE B8
BRA wi
B LDAA #0 ; Stop all the legs
STAA LEG EN
PULB
PULA
RTS
EE R R R S T R R T R R R
* TURNI NG LEFT - TURN_L
* Change the direction of the legs and wal king pattern and then call
* the wal k subroutine
EE R R R R R R R T R S
TURN_L PSHA
LDAA #LEFT
STAA LEG DI R
LDAA WALK_P
EORA #RI GHT
STAA WALK_P
JSR WALK
LDAA WALK_P
EORA #RI GHT
STAA WALK_P
I NC T C
PULA
RTS
EE R R R R R R T R
* TURNI NG RI GHT - TURN_R
* Change the direction of the legs and wal ki ng pattern and then call
* the wal k subroutine

EE R R R R R R R R Rk

TURN_R PSHA

LDAA #RI GHT

STAA LEG DIR

LDAA WALK_P

EORA #LEFT

STAA WALK_P

JSR WALK

LDAA WALK_P

EORA #LEFT

STAA WALK_P

I NC T C

PULA

RTS
EE R R R T R R R R Rk
* Wal ki ng FORWARD - WALK_F
* Change the direction of the legs and wal king pattern and then call
* the wal k subroutine

EE R R R R R R R T R S R

WALK_F PSHA

LDAA #FORWARD
STAA LEG DI R
JSR WALK

PULA

RTS
R R R R R R T R R R S
* Wal ki ng BACKWARD - WALK_B
* Change the direction of the legs and wal ki ng pattern and then call
* the wal k subroutine

R R R R R Rk

WALK_B PSHA
LDAA #BACKWARD
STAA LEG DI R
JSR WALK
LDAA WALK_P
EORA #990111111
STAA WALK_P
PULA
RTS

EE R R R R R T R kR R S

* Arbitrator in WALKING node - MODE1l
IR R R R R RS EEEEEEEEE SR SRR EEEREE SRR R EREEREEREEEEEREEEEREEEREEEEEERESEEEERESEERESERESESEEES
MODE1 PSHA

PSHB

PSHX

* Check the bunmp sensors
FL_C1 LDAA B_ADR
ANDA FL_BUMP

BNE FR C1
JSR TURN R
BRA FL_C1

FRCL LDAA B_ADR
ANDA FR BUWP

BNE RL_C1
JSR TURN_L
BRA FR C1

RL_C1 LDAA B_ADR
ANDA RL_BUWP

BNE RR_C1
JSR TURN_L
BRA RL_C1

RR C1 LDAA B_ADR
ANDA RR BUWP

BNE TRAP1
JSR TURN_R
BRA RR_C1
* if traped, turn; otherwise followi ng the IR reading
TRAP1 JSR D _MOTN ; spin around and detect hunan
LDAA CA L
ANDA #94.1100000
BNE MODE1_E

LDAA CAR
ANDA #9%41100000

BNE MODE1_E
* JSR D_MOTN
LDAA HUMAN ; jiggle the tail if see a human
BNE H1
JSR S TAIL
H1 LDX #BASE ; Maybe transform back to tank

LDAA TCNT, X
ANDA #900010000
BNE ML_T

JSR ML_MD
BRA ENDL1

ML_T

ML_9

LDX #BASE ; O turn left or right
LDAA TCNT, X
ANDA #9%6.0000000

BEQ ML_9
JSR TURN L
JSR TURN_L
JSR TURN_L
JSR TURN_L
BRA MODEL_E
JSR TURN_R
JSR TURN R
JSR TURN_R
JSR TURN_R

* following the IR reading for collision avoidance
MODE1_E LDAA Dir0

H2

ML_R

ML_1

ML_B

END1

*

I ni t RTI

EORA Dirl

BEQ ML_1
LDAA Dir0
BEQ ML_R
LDAA HUVAN ; Whenever see a human in front of it,
BNE H2 ; jiggle the tail
JSR S TAIL
JSR TURN_L
BRA END1
LDAA HUMAN
BNE H3
JSR S TAIL
JSR TURN_R
BRA END1
LDAA Dir0
BEQ ML_F
LDAA HUMAN
BNE H4
JSR S TAIL
JSR WALK_B
BRA END1
JSR WALK_F
LDAA T C ; If turned too many tines, transform back
ANDA #94.1110000 ; to tank node
BEQ END1
LDAA #0
STAA T C
JSR ML_MD
PULX
PULB
PULA
RTS
R R R R R Rk kS
SUBROUTI NE - | ni t RTI
R R R R R kR
PSHA
PSHX
LDX #BASE
LDAA #$00 ; interrupt every 4 ns

STAA PACTL, X
LDAA #99©1000000
STAA TMBK2, X

36

PULX
PULA
RTS

R R R R R Rk

*

SUBROUTI NE - D_HUMAN

* Spin around the detect hunman, stop when detected. Or keep noving
* around after a while and no human around. Return 1 in Human when
* det ect ed

EE R R R R R T R Rk

D _HUVAN PSHA
PSHX
PSHY

LDAA
BNE
TO LDAA
STAA
LDAA
STAA

LDAA
STAA
STAA

JSR

LDAB
LDX
JSR

LDAA

BNE

DEX

BNE

DECB

BNE

BRA

=3

Tl LDAB
JSR
JSR
LDAA
BNE
DECB
BNE

BRA
M_M JSR

DH E PULY
PULX
PULA
RTS

Dir0

#$B0
TrackO
Trackl

TVVC

#$0A
HSFFFF
D_MOTN

HUMAN

MD_M2

M_M

MD_MB

DH E

#10
TURN_L
D_MOTN
HUMAN
MD_M2

T1

R R R R Rk R Rk R

*

SUBROUTI NE - D_MOTN

* Reset the D-FF of the notion sensors. Wait for a while, if human

* is detected, return 1 in Human.
IR R R SR RS EEEEEEE RS SR SRR EEE R SRR EEEREEREREEEEEREEREEREEEREEEEEERESEESEERESEERESERESESEEES

D MOTN PSHA
PSHY

LDAA
STAA

LDY

BCLR
LDAA
STAA
BSET

#0
HUMAN

#OUTPUT3
0,Y BIT7
OUTPUT3
MOTI ON
0,Y BIT7

37

LDAA OUTPUT3
STAA MOTI ON

LDAA #SFF
D1 DECA
BNE D1

LDAA MOTION
ANDA #9%90010000
BEQ DM E

LDAA #1

STAA HUMAN

DM E PULY

PULA
RTS
EE R R R R R R T R
* SUBROUTI NE - S TAIL
* Jiggle the tail by noving the track in the rear end back and forth

EE R R R R R R R T R R S

S TAIL PSHA

PSHB
PSHX
JSR ML_MD
LDAA #0
STAA Trackl
LDAA #$FF
STAA TrackO
LDAA #0
LDAB #6
S W LDX #$1000
S W STAA Dir0
JSR TMVC
DEX
BNE S W
EORA #%90000001
DECB
BNE S W8
LDAA #0
STAA TrackO
STAA Trackl
JSR TwMVC
JSR MD_ ML
ST_E PULX
PULB
PULA

RTS

