
Intelligent Machines Design Lab
EEL5666

Final Report

"Shaggy"

Brian R. Harris
July 31, 1998

2

Table of Contents

A. Abstract

B. Executive Summary

C. Introduction

D. Integrated System

E. Mobile Platform and Actuation

F. Sensors

G. Behaviors

H. Conclusion

I. References

Appendix A: Source Code

3

A. Abstract

Successful completion of EEL5666 requires an autonomous robot that has
integrated behaviors and sensors. Shaggy uses IR sensors and sonar to find and
differentiate between golf balls and tennis balls. After collecting these objects,
Shaggy will deposit them in a central location denoted by a sonar transmitting
beacon.

B. Executive Summary

Successful completion of EEL5666 requires an autonomous robot that has
integrated behaviors and sensors. Shaggy uses IR sensors and sonar to find and
differentiate between golf balls and tennis balls. After collecting these objects,
Shaggy will deposit them in a central location denoted by a sonar transmitting
beacon.

Shaggy is based on the TalrikII platform. A collection bay is mounted on the front
of the robot to trap balls. A gated arm, controlled by a servo, moves up and down
to trap and release the balls.

Shaggy has a multilevel breakbeam sensor on the front of the collection bay. This
sensor is based on IR detection and the two height levels of the of the IR sensors
exploit the differences in height between a golf ball and tennis ball. When a ball is
detected, the collection mechanism is triggered, and the type of ball is assessed.

The robot must take the balls to a beacon. The beacon is marked by a 40kHz
sonar transmitter. The robot has a sonar receiver and uses the signal for direction
and distance measurements to find the beacon. The sonar is based on the Maxim
266 filter chip.

C. Introduction

Successful completion of EEL5666 requires an autonomous robot that has
integrated behaviors and sensors. Shaggy uses IR sensors and sonar to find and
differentiate between golf balls and tennis balls. After collecting these objects,
Shaggy will deposit them in a central location denoted by a sonar transmitting
beacon.

Shaggy is based on the TalrikII platform. A collection bay is mounted on the front
of the robot to trap balls. A gated arm, controlled by a servo, moves up and down
to trap and release the balls. This gate implements the behavior of ball collection
and deposition.

4

Shaggy has a multilevel breakbeam sensor on the front of the collection bay. This
sensor is based on IR detection and the two height levels of the of the IR sensors
exploit the differences in height between a golf ball and tennis ball. The LEDs are
mounted across from the IR sensors. When the beam is broken, a ball has been
detected. After a ball is detected, the collection mechanism is triggered, and the
type of ball is assessed. This represents two more behaviors: ball detection and
ball differentiation.

The robot must take the balls to a beacon. The beacon is marked by a 40kHz
sonar transmitter. The robot has a sonar receiver and uses the signal for direction
and distance measurements to find the beacon. The sonar is based on the Maxim
266 filter chip. Sonar works by sending and receiving sound at particular
frequencies. A receiver can be designed by using a high quality audio filter. The
sonar implements two more behaviors: beacon detection and beacon location.

Finally, code must be written to integrate all these behaviors.

D. Integrated System

My robot will travel around an area and collect golf balls and tennis balls. The
robot will then deposit these objects in a central location.

The robot uses a multi-level break beam sensor mounted at the end of the arms of
the robot to detect golf and tennis balls. The robot has a collection bay and a
movable arm that raises and lowers to collect and deposit the balls. Shaggy finds a
central location to deposit its balls by using sonar. A receiver is mounted on the
robot and a transmitter station marks the beacon and deposition area.

5

This flowchart shows the simple operation of the system. The robot begins with
random motion around a given area while looking for a ball. When it detects a
ball, it collects the object. The robot then looks for a sonar beacon and travels
toward the beacon. After finding the beacon the robot will deposit the ball and
begin the process again. The only factor the chart does not reflect is object
avoidance. This behavior must be integrated into the program, and it will be done
with some difficulty. Several of the operations such as traveling to the sonar
beacon and finding the direction of the sonar beacon must begin again if motor
control shifts from that module to object avoidance.

E. Mobile Platform and Actuation

The robot is based on the TalrikII platform. This platform provides a broad wheel
base, and it is large enough to allow a collection bay to be mounted in the front of
the robot.

Wheels
The robot uses two hacked servos to provide actuation for the wheels.

6

Collection Bay
The collection bay is a custom made design mounted on the front of the robot, and
it is a substantial change to the basic circular platform. It consists of two arms
extending from the wheel wells of the robot. Castors are mounted at the front of
the arms to support the additional weight. A moving arm, made from a single
piece of pine wood, is attached across the extensions. The arm forms the
collection bay of the robot, and it opens and closes and collected and deposit balls.
The arm is driven by the same servos that control the wheels of the robot.
However, this is truly a servo; it is not hacked like the robot's motors.

I considered several other design before implementing this option. I considered a
brush the would constantly rotate and push the balls into the collection bay. This
design would be difficult to implement because of the height difference between
the golf and tennis balls. I would also be concerned about that assembly pushing
the balls away from the robot. The robot would be operating on a hard, slick
floor, and it would be difficult for the brush to grip the balls and suck them into the
collection bay.

Another design I considered was a gate in the front of the robot. The gate would
be driven by a single servo and would raise and lower to collect and deposit the
objects. This seemed feasible but difficult to implement because of all the moving
parts. Specifically, the problem of the gate jamming in its rails was a concern. If
this problem occurred it would be difficult to solve while the robot was operating
and would essentially disable the robot from completing its tasks. Another
problem was determining if the gate was open or closed. A piece of string would
connect the servo to the gate. This would provide no sure way for exact operation
of closing and opening the gate, and a malfunction would again disable the robot.

7

This figure is my first design of the collection bay. The arms, mounted by the sides
of the robot at the wheel bays, are approximately 14 inches long. This design
looked great, but functionally it was horrible. The arms were too long and the
castors, mounted at the very ends of the arms, put too much weight away from the
center of the robot. The robot had trouble traveling straight. Also, when the
robot rotated (as in the program to find the sonar beacon) its motion was very
unwieldy. The wheels slipped, and the robot could not longer stop at a precise
location. Also, the weight at the end of the arms made the robot tend to want to
rotate at the ends of the arms instead of at the center of the circular body.

With these problems, my algorithm for finding and traveling to the sonar beacon
no longer worked. The collection bay had to be redesigned.

My final collection bay design incorporates many of the lessons I learned from the
previous attempt. The arms are mounted closer together, and at 7 ¾ inches they
are almost half the length of the previous 14 inch arms. The new design places the
castors approximately in the middle of the arms instead of at the end of the arms
(as in the previous design).

The handling characteristics of this design are much, much better than the previous
attempt. And, the handling characteristics of the robot with these arms are similar
to the handling characteristics before the collection bay was added to the robot.
My previously written sonar algorithms work well with this new collection bay,
and the bay is still big enough to find and collect golf and tennis balls.

F. Sensors

The robot uses three distinct sensor systems. IR sensors provide simple object
avoidance. A second system is a multilevel IR break beam sensor that is mounted
in front of the collection bay. This system will detect golf balls and tennis balls for

8

the robot to collect, and it will differentiate between the two types of objects.
Finally, the robot will use a sonar sensor to take the balls to a central location. A
sonar transmitter beacon will mark the central location. The robot will have a
receiver that will allow it to find the station and travel to its location.

1. Object Avoidance

Object avoidance is simply based on Sharp IR sensors and LEDs oscillating at
40kHz.

2. IR Break Beam Sensor

System Overview and Diagram

My sensor system will use a two-level IR break beam to differentiate between golf
balls and tennis balls. The IRs will be mounted at two different level and will be
mounted across from their LEDs. The IR sensors will continuously receive a
strong signal. When a ball rolls between the sensors the beam will be broken and
the IRs will no longer receive a strong signal. A tennis ball will break both beams
while a golf ball will only break the lower beam.

Sensor Positioning and Data

The sensors are positioned seven inches from the LEDs. This will be the width of
the collection bay. The IRs sensors are at 2.0 cm and 5.5 cm heights. The LEDs
are positioned directly across from the IR sensors.

9

The LEDs are mounted in cylinders to try to control the direction of the beam. To
effectively implement this design the top IR must only receive a signal from the top
LED and the bottom IR must only receive a signal from the bottom LED. I will
discuss this problem more later in the report.

I took several data readings to determine the feasibility of this design. The tennis
ball and golf ball readings are with the balls positioned at random places
between the sensors. The IR sensors and the LEDs are mounted seven inches
apart for all readings.

The IR sensors are connected to an A/D port (port E) on the MC68HC11. The IR
sensors give values between 85 (no LED detection) and 130 (full strength LED
detection).

IR Sensors at 5.5 cm and 2.0 cm with an LED at 5.5 cm

IR sensor at 5.5 cm with Tennis Ball with Golf Ball
129 85 129
129 85 129
129 85 129
129 85 129
129 85 129

IR sensor at 2.0 cm with Tennis Ball with Golf Ball
126 86 118
125 86 125
125 87 87
125 88 88
126 88 87

Ideally, in this setting, the bottom IR sensor should always read 85 (no
LED detection), and the top IR sensor will receive a full reading until blocked by a
tennis ball.

Practically, the bottom IR sensor receives substantial interference from the
top LED even though the LEDs are shielded in tubes. This accounts for the full
readings when no tennis or golf ball is present and the sporadic reading when a
golf ball is present. The variation in the bottom IR sensor when the golf ball is
present is due to the positioning of the ball. When the golf ball is closer to the
LED it is not high enough to block the light and the bottom IR receives a stronger
reading. When the golf ball is closer to the IR sensors then it shields the bottom
IR sensor from the LED and the sensor registers a lower value.

The top IR sensor provides the desired results. The sensor receives a full
reading until blocked by a tennis ball. The position of the tennis ball in the beam

10

doesn't affect the readings. The sensor is unaffected by the presence of a golf ball
in the beam.

IR Sensors at 5.5 cm and 2.0 cm with an LED at 2.0 cm

IR sensor at 5.5 cm with Tennis Ball with Golf Ball
123 85 84
124 84 88
124 84 118
124 85 86
124 84 116

IR sensor at 2.0 cm with Tennis Ball with Golf Ball
130 86 86
130 88 86
130 89 89
130 88 89
130 86 88

In this set of readings we would expect the bottom IR sensor to receive a
full reading until the beam is broken by a golf ball or tennis ball. The top IR
should register a minimum reading at all times.

The bottom sensor received a maximum reading when no ball was in the
beam. A golf ball or tennis ball broke the beam and the IR sensor received a
minimum reading. The position of the ball within the beam did not effect the value
of the readings. This was as desired.

The top sensor received interference from the bottom sensor. The sensor
received a near maximum value with no ball in the beam. A tennis ball completely
blocked the beam. A golf ball gave sporadic values. When the golf ball was
toward the LED sensor it shielded the beam emanating from the LED and the top
IR sensor received a small reading. When the golf ball was closer to the IR sensor
the beam wasn't blocked and the top IR received a higher reading, similar to the
initial readings when no ball was in the beam.

IR Sensors at 5.5 cm and 2.0 cm and LEDs at 5.5 cm and 2.0 cm

IR sensor at 5.5 cm with Tennis Ball with Golf Ball
129 86 129
129 86 129
129 86 129
129 86 129

11

129 87 129

IR sensor at 2.0 cm with Tennis Ball with Golf Ball
129 87 112
130 87 115
130 93 90
130 90 89
130 89 111

This is the first trial with the whole system. The top sensor worked as
expected. The top IR received a full reading with no balls in the beam. A golf ball
did not break the beam and the tennis ball broke the beam without regard to its
positioning.

The bottom sensor received a full reading with no ball in the beam. A
tennis ball broke the beam with only a slight variation in readings. The golf ball,
however, provided spurious results. The high readings are due to interference
from the top LED. When the golf ball is close to the IR sensors it shields it from
both LEDs and the bottom IR registers minimal values. When the golf ball is
toward the LEDs then the top LED gives substantial interference to the bottom IR
sensor.

IR Sensors at 5.5 cm and 2.0 cm and LEDs at 5.5 cm and 2.0 cm
with a 2.5 cm overhanging shield

To get the sensors to work correctly, the bottom IR sensor must be
shielded from the top LED. This is my first trial with a simple physical shield that
extends approximately 2.5 cm out from the IR sensor like an awning.

12

IR sensor at 5.5 cm with Tennis Ball with Golf Ball
129 89 129
129 87 129
129 86 129
129 86 129
129 86 129

IR sensor at 2.0 cm with Tennis Ball with Golf Ball
130 86 114
130 87 110
130 88 93
130 87 95
130 87 116

(IR Sensors at 5.5 cm and 2.0 cm and LEDs at 5.5 cm and 2.0 cm
with a 2.5 cm overhanging shield)

I received similar results to the last test without the shield. The top LED
still interfered with the bottom IR sensor when a golf ball was in the beam. My
next trial increases the length of the shield.

IR Sensors at 5.5 cm and 2.0 cm and LEDs at 5.5 cm and 2.0 cm
with a 3.5 cm overhanging shield

IR sensor at 5.5 cm with Tennis Ball with Golf Ball
n/a n/a n/a
n/a n/a n/a
n/a n/a n/a
n/a n/a n/a
n/a n/a n/a

IR sensor at 2.0 cm with Tennis Ball with Golf Ball
130 n/a 91
130 n/a 91
130 n/a 89
130 n/a 92
130 n/a 96

In this final test I extended the length of the shield, and I retested the
pertinent readings. I received the desired results. The bottom IR sensor still
received a full reading when no ball was in the beam. When a golf ball was in the

13

beam the shield adequately protected the bottom IR from interference from the top
LED.

3. Sonar

My sonar design is based on Michael Apodaca's circuit from the Spring 1998
semester. The design is based on the Maxim 266 filter chip.

The output of the filter chip is a sine wave, and this is not suitable for inputting
into the HC11's analog ports. However, by filtering out the DC component the
chip will produce analog values between 115 (for no sonar detection) and 215 (for
full strength detection). A simple circuit to strip the DC component can be made
by using a diode, 47ohm resistor and a 220 microfarad capacitor in series. The
sine wave is fed through the diode and the resulting DC signal is produced at the
resistor and capacitor junction.

G. Behaviors

A successful robot has at least four behaviors, and my robot is no exception. Its
first behavior is object avoidance; this is a common behavior among almost all our
robots. The next behaviors are all associated with collecting and depositing golf
and tennis balls. These behaviors are: 2) detect a golf ball or tennis ball, 3) collect
the ball, 4) find the sonar beacon, 5) travel to the beacon and 6) deposit the ball.

Several interesting lessons were learned in implementing the seemingly simple ball
collection behavior. The code for this is simply: stop, open the bay, drive forward
and close the bay. This code does not work. Anytime the gate is open and the
robot begins to drive forward the gate automatically closes, and after this process
the robot occasionally loses motor control. This occurs because the twoservo.icb,
twoservo.c and motor driver routines all use the TOC1 register. I wish the thank
Kelly Krempin (and his robotics partner Charles Feddeman) for providing me with
a solution to this problem. This solution has two parts. First, the ground to the
servo must come from the regulated power supply on the board and not from the
battery pack like I had previously wired the circuit. Second, after using the servo
the TOC1 registers must be cleared with the poke(0x1016,0xff); and
poke(0x1017,0xff); commands. This will restore motor control to the robot while
regulating the ground will prevent the arm from coming shut while the robot is
moving. The only part of the problem that has yet to be correct is that while the
robot is moving with the servo out of the zero degrees position the motors will
only operate at one hundred percent power.

14

H. Conclusion

The conclusion to my project, hopefully, will be a successful demonstration on July
31, 1998. Many of my design goals and behaviors have been successfully
implemented. If I had more time to work on the project I would spend time
development more robust software code. I would like to rework obstacle
avoidance into all parts of the program, and I would like to develop an improved
sonar array for receiving the signal from the transmitter beacon.

I. References

Doty, Keith L., TalrikII Assembly Manual, MekatronixTM, Gainesville, FL, 1997.

Martin, Fred G., The 6.270 Robot Builder's Guide, Cambridge, Massachusetts,
1992.

MEKATRONIXTM, Assembly Manual MekatronixTM ME11 Expansion Board for
the MC68HC11 EVBU, MEKATRONIXTM, Gainesville, FL, 1997.

15

Appendix A: Source Code

/* Brian R. Harris */
/* EEL5666 */
/* Intelligent Machine Design Lab */
/* Robot: Shaggy

/* Final Code Development Module */
/* Created: 6/3/98 */
/* Last Modified: 7/30/98 */

/*
SHAGGY is an autonomous robot that is build to collect
golf balls and tennis balls and then to deposit them
in a central location

*/

/* This program must have the twoservo.icb and twoservo.c libraries
 loaded to run the servo commands
*/

/*
In this program the robot travels randomly avoiding objects until

 it detects a ball. Then the robot collects the ball. Next,
 the robot will use sonar to find the home beacon and travel
 to it.

 Note: Many of the sleep(); statements in this program are
 for demonstation and debugging purposes. They are used to
 illustrate where in the code the program is currently
 executing.
*/

/*
 This program suffers from an abnormality in the IC software.

The motor drivers and the servo program produce unexepcted results
when they operate simultaneously. I've been told this is
because they both use OC1. It is possible to correct part
of this problem in software, and I will try to do just that.

*/

/*
This code includes no obstacle avoidance while the robot is
travelling to the sonar beacon. The deposit ball routine is
not implemented. Also, the code is not continuously looped, and
I think I will leave the robot performing only one cycle for
demo purposes. Making the change in the program for continuous
operation is trivial.

*/

/* HARDWARE INSTALLATION NOTES */
/* servo_deg2() = pin 31; */

/* GLOBAL VARIABLES AND CONSTANTS */

/* CONSTANTS */
int left_motor = 0;
int rt_motor = 1;
int beacon_thres1 = 135;
int BEACON_FOUND = 205;

/* INPUT PINS */
int left_ir_pin = 0;
int rt_ir_pin = 1;
int tennis_ir_pin = 2;

16

int golf_ir_pin = 3;
int sonar_pin = 7;

/* VARIABLES */
int left_ir_val;
int rt_ir_val;
int tennis_ir_val;
int golf_ir_val;
int sonar_val;

int acquired_beacon;
int peakvalue;
int i;
int beaconinrange;
int atbeacon;
int initial;
int tennistemp;
int temp;
int ball_collected = 0;
int ball_found = 0;
int obj_to_avoid = 0;

void main(void)
{

/* Initialize the robot */
robo_init();

/* Start the robot moving forward */
forward();

/* A continuous loop for random motion until a
 ball is detected

*/
while(ball_collected == 0)
{

/* This function will read the object avoidance IR sensors
 and set the flag obj_to_avoid = 1 if it finds an object
 the robot needs to avoid.

*/
read_sensors();

/* If a ball is found then collect the ball. */
if(ball_found > 0)
{

collect();
ball_collected = 1;

}

/* Otherwise just do obstacle avoidance. */
if (obj_to_avoid > 0)
{

object_avoid();
obj_to_avoid = 0;

}
}

 /* Obstacle avoidance stops here! */

 /*
servo_off();
sleep(2.0);

 */

 /* Find the beacon's direction */
beacon_dir();

17

 /* Goto the beacon */
sleep(3.0);
gotobeacon();

}

void open(void)
{

/* raise the gate */
servo_on();
sleep(0.3);
servo_deg2(90.0);
sleep(0.3);

/* servo_off(); */

 /* Clear the OC1 register. This is an attempted
 software fix of IC's problems when operating
 the servos and the motors together.
 */
/* poke(0x1016,0x00);
 poke(0x1017,0x00);
*/

return;
}

void close(void)
{
 /* Close the gate. */

 servo_on();
 sleep(0.3);

servo_deg2(0.0);
 sleep(0.3);

servo_off();

 /* Clear the OC1 register. This is an attempted
 software fix to IC's problems when operating
 the servos and the motors
 */
 poke(0x1016,0x00);
 poke(0x1017,0x00);

return;
}

void collect(void)
{
 /* Stop the motors if they are not already stopped. */

mstop();
sleep(3.0);

 /* Raise the gate. */
open();
sleep(3.0);

 /* Get the ball in the bay by moving forware for one
 second. At this point IC does not have speed control
 of the motors. The robot should go forward at full
 speed. This is a bug in the IC libraries.
 */

sforward();
 sleep(0.5);

mstop();

 /* The ball is in the gate. Now close the gate. */
sleep(1.0);

18

close();
 sleep(1.0);

}

void robo_init(void)
{
 /* Start IR LEDs */

poke(0x7000,0xff);

 /* Turn off the ball detection IR sensors. */
 poke(0x6000,0x00);

 /* Close the gate (because it might be open). */
 close();

return;
}

void sforward(void)
{
 /* Original intention: start the robot moving slowly.
 Current: Full speed ahead.
 */
 motor(left_motor,30.0);
 motor(rt_motor,30.0);

return;
}

void mstop(void)
{
 /* Stop the robot. */

motor(left_motor,0.0);
motor(rt_motor,0.0);

return;
}

void forward(void)
{
 /* Start the robot moving slowly at first to prevent the
 wheels from slipping because of the weight of the
 collection bay on the front of the robot.
 */
 motor(left_motor,40.0);
 motor(rt_motor,30.0);

sleep(1.0);

 /* Now, let the robot move at its maximum speed. */
 motor(left_motor,80.0);
 motor(rt_motor,70.0);

return;
}

void turn_left(void)
{
 /* Stop the motors. */

motor(left_motor,0.0);
motor(rt_motor,0.0);
sleep(0.2);

 /* Turn for 1/2 second. */
motor(left_motor,-35.0);
motor(rt_motor,35.0);
sleep(.5);

19

 /* Stop the motors. */
motor(left_motor,0.0);
motor(rt_motor,0.0);
sleep(0.2);

return;
}

void turn_right(void)
{
 /* Stop the motors. */

motor(left_motor,0.0);
motor(rt_motor,0.0);
sleep(0.2);

 /* Turn for 1/2 second. */
motor(left_motor,35.0);
motor(rt_motor,-35.0);
sleep(.5);

 /* Stop the motors. */
motor(left_motor,0.0);
motor(rt_motor,0.0);
sleep(0.2);

return;
}

void object_avoid(void)
{

 /* Look for a left object. If the object is found
 then turn right.
 */

if(left_ir_val > 105)
{

turn_right();
sleep(.2);
forward();

} /* end if */

 /* Else look for right object. If the object is
 found then turn right.
 */

else if (rt_ir_val > 105)
{

turn_left();
sleep(.2);
forward();

} /* end else if */

return;
}

void m_stop(void)
{
 /* This is another routine to stop the motors. */

 /* Stop the motors. */
motor(left_motor,0.0);
motor(rt_motor,0.0);
sleep(1.0);

return;
}

20

void rstop(void)
{
 /* This function stops the robot's motors when it is rotating.
 The robot will move slightly back to the right to account
 for imprecise stopping because of the weight and momentum
 of the robot when it rotates.
 */

 /* Give the motors a slight reverse. */
 motor(left_motor,10.0);
 motor(rt_motor,-10.0);
 sleep(0.5);

 /* Now, stop the motors rotating. */
motor(left_motor,0.0);
motor(rt_motor,0.0);
sleep(0.5);

}

void rotateleft(void)
{
 /* Start the robot turning to the left. */

motor(left_motor,-55.0);
motor(rt_motor,55.0);

return;
}

void slow_rotateleft(void)
{
 /* Start the robot turning to the left. */

motor(left_motor,-35.0);
motor(rt_motor,35.0);

return;
}

void findmax(void)
{
 /* Find the maximum sonar value in the robot's 360 degree
 rotation range. The sonar reads analog values between
 approximately 115 and 210.

*/

i = 0;
peakvalue = 0;

 /* Rotate the robot. */
rotateleft();

 /* While the robot is rotating take sonar readings and compare
 them against the peak value.

 The robot will spin for approximately
 160 x 0.025 seconds
 */

while(i < 160)
{

 /* Take sonar readings. */
readsonar();

if(sonar_val > peakvalue)
{

peakvalue = sonar_val;
}

21

sleep(.025);
i = i + 1;

}

 /* Stop the robot from rotating. This function should
 probably be rstop(); instead of m_stop();
 */

m_stop();
sleep(3.0);

 /* If the sonar has a value approximately 10 points greater
 than its minimum input value a sonar beacon has been
 found. Set the flag beaconinrange.
 */

if(peakvalue > 125)
{

beaconinrange = 1;
}

}

void begin(void)
{

/* The robot is already pointing at the beacon
 and this function allows the robot to initially
 travel toward the beacon for a period of time

*/

 /* If the robot has found the beacon then stop execution. */
if (peakvalue > (BEACON_FOUND - 1))
{

return;
}

 /* If the robot is not close enough to the beacon then start
 moving toward the beacon.
 */

forward();

 /* The robot will move toward the beacon for two seconds
 regardless of what the sonar value reads during this
 time.
 */

if (peakvalue < 160)
{

sleep(2.0);
}
else if (peakvalue < 180)
{

sleep(2.0);
}
else
{

/* don't sleep at all */
}

}

void readsonar()
{
 /* This program read the sonar receiver and returns a
 single value for a reading. It, however, takes multiple
 readings and averages them to prevent anomolous readings
 from influencing the robot.
 */

 /* Initialize the variable. */
sonar_val = 0;

22

 /* Sum the inputs. */
sonar_val = analog(sonar_pin);
sonar_val = sonar_val + analog(sonar_pin);
sonar_val = sonar_val + analog(sonar_pin);
sonar_val = sonar_val + analog(sonar_pin);

 /* Take the average. */
sonar_val = sonar_val/4;

return;
}

void gotobeacon(void)
{
 /* Initialize variables */

atbeacon = 0;
readsonar();
peakvalue = sonar_val;

 /* Now work with the sensor input. */
while((atbeacon == 0) && (beaconinrange == 1))
{

/* The beacon is found! */
if (sonar_val > (BEACON_FOUND-1))
{

m_stop();
atbeacon = 1;

}
else
{

/* Else the beacon is not found */

/* Travel toward beacon for a little bit */
begin();

/* sonar_val = analog(sonar_pin); */
readsonar();

if (sonar_val > peakvalue)
{

peakvalue = sonar_val;
}

/* Travel until the robot loses a strong sonar signal */
while((((sonar_val + 20) > peakvalue) ||

 ((sonar_val > 160) && (sonar_val < BEACON_FOUND
))) &&

 (atbeacon == 0))
{

/* Constantly take new sonar readings */
/* sonar_val = analog(sonar_pin); */
readsonar();
if (sonar_val > peakvalue)
{

peakvalue = sonar_val;
}

/* The robot has found the beacon */
if(sonar_val >= BEACON_FOUND)
{

atbeacon = 1;
m_stop();

}
}

23

if(atbeacon == 0)
{

/* Or the robot has lost the signal */

/* Stop */
m_stop();

/* Reacquire the beacon */
beacon_dir();

/* Set new initial setttings */
/* peakvalue = analog(sonar_pin); */
readsonar();
peakvalue = sonar_val;
atbeacon = 0;

} /* end if */

/* From this point the function begins the while loop
again */

} /* end else */
} /* end while */

} /* end gotobeacon() */

void beacon_dir(void)
{

/* stop the robot's motors */
m_stop();

/* initialize variables */
acquired_beacon = 0;
beaconinrange = 0;

findmax();

/* find the direction of the beacon */
if(beaconinrange == 1)
{

sonar_val = analog(sonar_pin);

/* Look for the beacon by rotating the robot */

/* start robot rotating */
slow_rotateleft();

while(acquired_beacon == 0)
{

/* take a sonar sensor reading */
/* sonar_val = analog(sonar_pin); */
readsonar();

/* look for transmitter beacon */
if((sonar_val + 3) > peakvalue)
{

rstop();
acquired_beacon = 1;

} /* end if */
} /* end while */

} /* end if */
else
{

/* do something else because the beacon hasn't been found */
}

} /* end of beacon_dir */

void read_sensors(void)
{

24

left_ir_val = analog(left_ir_pin);
rt_ir_val = analog(rt_ir_pin);
tennis_ir_val = analog(tennis_ir_pin);
golf_ir_val = analog(golf_ir_pin);

if(((left_ir_val > 105) || (rt_ir_val > 105)))
{

obj_to_avoid = 1;
}

if(golf_ir_val < 120)
{

ball_found = 1;
 m_stop();

 for(temp = 0; temp < 5; temp = temp + 1)
 {
 tennistemp = analog(tennis_ir_pin);

 if(tennistemp < tennis_ir_val)
 {
 tennis_ir_val = tennistemp;
 }

 sleep(0.05);
 }

 /* A ball has been found. Now differentiate between
 a golf ball and a tennis ball.
 */

 /* If the tennis ball IR is also tripped then a tennis
 ball has been found and light up both LEDs. The
 LEDs are connected on a MMIO at $6000. Data lines
 0 and 1 control the LEDs.
 */
 if(tennis_ir_val < 120)
 {
 poke(0x6000,0x03);
 }

 /* Else, the tennis ball sensor has not been tripped
 and only one LED is lit to signify a golf ball.
 */
 else
 {
 poke(0x6000,0x01);
 }

}

return;
}

