
ARGO: Automated Transport

John Ferrara
Intelligent Machine Design Laboratory

EEL 5666
3 August 1998

2

Table of Contents

Page Contents

3 … .. Abstract
4 … .. Executive Summary
5 … .. Introduction

… … .. Integrated Systems
6 … .. Integrated Systems

… … .. Mobile Platform
7 … .. Mobile Platform
8 … .. Mobil Platform

… … .. Actuation
9 … .. Actuation
10 … .. Actuation
11 … .. Actuation

… … .. Sensors
12 … .. Sensors

...… .. Sensors
13 … .. Sensors

… … . Behaviors
14 … .. Behaviors
15 … .. Behaviors
16 … .. Behaviors
17 … .. Results
18 … .. Results
19 … .. Results
20 … .. Results
21 … .. Conclusions
22 … .. Conclusions
23 … .. Code Listing
…
47 … .. Code Listing

3

Abstract

The following is a discussion of ARGO, and an automated chauffeur. Accomplishment
of this task involved the use of infrared sensors and emitters, light/voltage converters, and
bump sensors. The robot uses a multitasking environment in which to run several
processes simultaneously. These processes are overseen by a command arbiter that
determines the current behavior. The most developed behaviors that ARGO possesses
are hi differential obstacle avoidance, and lane following. Both use “fuzzy” logic to
accomplish smooth driving.

4

Executive Summary

ARGO was developed to be an autonomous chauffeur of the future. The robot is

constructed from a modified RC-car: bumpers, and a sensor hood have been added. The

robot uses the Motorola 68HC11 microprocessor to multitask 14 separate processes, as

well as the entire interrupt system— taken advantage of through the assembly language.

These processes constitute the behavioral patterns of the robot. Some of which are lane

following, obstacle avoidance, and light finding.

These algorithms were designed using a fuzzy logic system that ensures smooth turning

and smooth transitions between different speeds. The obstacle avoidance has been

refined to allow the robot to avoid obstacles at a relatively high rate of speed.

To accomplish these tasks, the robot uses five infrared emitter/detector pairs, two bump

sensors, and two light/voltage converters, a high current(100+amps) motor, and a steering

servo. When used in conjunction the robot displays very good obstacle avoidance

behavior, and decent lane following behavior.

ARGO uses a self-designed h-bridge motor driver that allows the car to operate at nearly

a continuous range of speeds between stop and full speed. In addition, ARGO, has a

software rest that enables the user all the benefits of the BUFFALO operating system plus

the added benefits of special bootstrap mode.

5

Introduction

The world is becoming increasingly congested. An increasing number of people are

taking to the highways to travel, resulting in a higher fatality rate due to automotive

relative accidents. What the world needs is something safer, something that can react

almost immediately to changing roadway conditions. Herein lies ARGO: the automated

chauffeur.

Based upon the Motorola 68HC11 EVBU board, complimented with the ME11 board,

ARGO uses an assembly written program to multitask his way around obstacles, and to

stay between lane markers. His superior digital motor driver and fuzzy logic steering

enables him to act and react just like an automobile.

Herein lies the story of ARGO.

Integrated Systems

The foundation upon which ARGO derives his behavior is a multitasking system.

Allotment of a small time slice to each of the processes running on the microprocessor

yields the appearance that each process is running independent of the rest. This

infrastructure allows for the easy addition of multiple behaviors, and for the seamless

interaction among all of the processes. This interaction is facilitated by the addition of a

command arbiter: an overseeing process that reviews each processes’ recommendation to

change the physical state of the robot— its direction and speed— and effectively

prioritizes each of the processes. This hierarchy of competition to change ARGO’s

motion dictates the external behavior.

6

Before ARGO may effectively interact in his environment, all of his systems must be

calibrated. The calibration begins after, and every time, the “soft” boot is initiated. Once

calibrated the multitasking system is initialized with all of the process present on ARGO.

This system will continually cycle through the two motor control processes, the two servo

control processes, the sensor reading, reset control (software reset), lane following,

obstacle avoidance, human following (human requires an ir-emitter), light following, and

horn control. Once this occurs the command arbiter invokes, according to the

environment, different processes to produce varying behaviors.

A schematic of this hierarchy of processes is shown in Figure 1.

Figure 1

Mobile Platform

The platform upon which ARGO is based is a childhood RC-car. Since my proposal

required a sturdy construction and I, lacking mechanical skills and time in which to

CPU

Read
Sensor

Motor
Control

Servo
Control

Motor
Control
Arbiter

Command Arbiter

Lane
Following

Obstacle
Avoid

Human
Follow

Light
Follow

Horn
 Control

Reset Control

7

complete all objectives in addition to the carpentry, resolved to use this car as a

foundation for ARGO’s construction. Although much of the platform would remain

unchanged, room was required in which to mount the sensors, the microprocessor, the

batteries, and any other switches and accessories (horn) required by my design.

 After removing all transmitters used for remote control, I proceeded to construct a

wooden sensor “hood.” Upon this hood I secured the Motorola 68HC11 EVBU board,

two battery packs, switches used to control reset and power, horn, and infrared

transmitters and receivers. In addition, the platform lacked any real front bumper. Since,

I would require a bumper to mount most of my sensors— IR, light, and bump— I decided

to construct a sturdy bumper from PVC pipe, securing it to my car with screws and a

piece of 2-by-4. Into this pipe I was easily able to mount three IR-receivers, emitters,

bump sensors, and lane following sensors.

See Figure 2 for a diagram of the overall platform design.

Original RC-car
Platform

Sensor Hood

PVC-pipe bumper

8

Figure 2

The front bumper construction provided a much needed “hub” upon which I was able to

mount most of the sensors necessary for lane following and object avoidance. After

numerous testing, the bumper proved to be as strong as it was useful, able to weather a

plethora of high-speed crashes.

Due to the age of the RC-platform— approximately 10 years— and overuse, the

suspension had become extremely flexible. The robot would sit .25-inches above the

ground, producing many problems with the ir-system— reflection from the floor— and

practically eliminating the possibility of mounting light sensors on the bumper. Thus, I

locked the bumper in statum, by filling the shock’s oil-chamber with hot glue. This

worked quite well, providing me with more than 2-inches of clearance from the ground.

Once I performed these modifications to the platform, I was able to develop, nearly

unfettered, most of the electrical systems needed to control all of ARGO’s behaviors.

Actuation

Bringing all of ARGO’s behaviors to fruition would require the use of two actuators: a

steering servo, and a motor to control the speed. Control of the servo proved to be

extremely easy, nearly problem-free. The motor, however, became one of the greatest

hurdles to overcome.

9

Steering Servo

To steer the robot I used a standard servomechanism. The position of this servo depends

upon the pulse width applied to the input. A period of 20ms and a pulse width varying

from 1ms to 2ms move the servo full left and full right, respectively. Any degree of

movement may be achieved by varying the pulse-width between these two boundaries.

I connected the servo directly to the microprocessor via the output compare port. Writing

code to pulse-width modulate this output compare pin— see appendix for assembly

listing---I was able to accurately describe the motion of the servo in any position

necessary.

Motor Control

The task of implementing obstacle avoidance and lane following on ARGO would

require extremely precise control of the motor speed on the robot. The analog speed

controller used by the RC-car provided only 3 speeds (fast, faster, and 50 mph). Thus, a

complete redesign of that circuit was necessary, to enable me to have digital control of

the motor was necessary.

To achieve this goal, I used a high-power MOSFET h-bridge construction. In addition,

since this circuit would require two output compares and two digital outputs to control

direction, I designed additional control circuitry enabling me to use one output compare

and one direction signal. I coupled this control logic to the gates of the MOSFETs using

opto-isolators. A complete diagram of this circuit is shown in the appendix.

10

Accurate control of the motor proved to be one of the most difficult tasks I overcame.

That I could not accurately rate the stall current of the motor— the stall current far

exceeded any measuring tools at my disposal, I was forced to redesign many motor

control circuits that, in retrospect, would have worked had I implemented it with the

appropriate MOSFETs. After realizing that the stall current of the high-speed motor I was

working with exceeded 100-Amps, I was able to design a circuit that accurately

controlled the speed of the motor over a nearly continuous range between full-on and

completely-off.

Lessons (Funny?)

One of the numerous lessons I learned while designing this circuit, is that the gate voltage

must be equal to or greater than the source voltage. Failure to heed this characteristic

yields fiery results— burns evidence this property. My original design had biased the gate

with only 5V, while biasing the source at 7.2V. Once I established that this would not

work, I redesigned the circuit to use an opto-isolator between the control logic and the

gate. This would step-up the logic level of 5V to the battery voltage of 7.2V.

Although this seems relatively simple, I was forced to use the opto-isolator in two

configurations: one for the n-type, and p-type transistors. I pulled the gate voltage from

the emitter of the BJT when biasing the N-type MOSFETs so that I could get 0.00V to

turn them fully off. Otherwise, a logic level— from the inverter— of .02 would translate,

11

through the opto-isolator, to about .6V. This produced a short to ground, burning up the

transistor.

Conversely, to correctly bias the P-type MOSFETs, I needed to pull the gate voltage from

the collector— inverting the signal to the diode of the OI-- to get a voltage equal to

exactly the battery voltage to turn them completely off. Otherwise, buy the same logic, a

short to ground would be produced.

Sensors

To bring ARGO to life he must have the ability to interact with his environment; that is,

he needs to have some way of “feeling” his environment. A robot must be able to read

certain data— such as temperature, lighting, imminent obstacles, and color— and interpret

this data, allowing the robot to make intelligent decisions based on this data. ARGO will

be no different, and herein I will endeavor to characterize all of ARGO’s current sensor

developments, as well as explain any future work in this area.

ARGO uses five infrared transmitters and detectors; mounted on his front bumper and

sensor hood, they allow him to detect and to avoid obstacles, and follow an ir-beacon. In

addition, I developed a sensor that will allow ARGO to detect yellow lane markers on the

road’s surface.

IR-Sensors

The infrared sensor package includes the following: infrared emitters, emitting infrared

light modulated at 40kHz; a SHARP infrared detector, detecting reflected infrared light.

12

To detect an object the light emitted from the ir-emitters is reflected by a nearby object

and detected by the SHARP detectors

Light Sensors

Since ARGO is designed to be a self-driving robot, he must have the capability to detect

lane markers and upon detection, follow these lanes. To accomplish this task I received

free samples of a Texas Instruments light-to-voltage converter, theTSL250. Before

modifying this device, I thoroughly tested the sensor. The results are summarized under

Experimental Results.

Realizing that this sensor would not be sufficient for my purpose: lane detection, i.e.

black color detection, I sought to implement the sensor in a mechanism that would mimic

the eye; that is, focus light that is approximately 6-inches from the robot. To do this, I

fitted a 35mm camera lens to a piece of 40mm PVC pipe, placing the TSL250 just

beyond the focal length of the lens. This would produce a blurred image of anything

toward which the lens was directed: a drawing of the design— which I have dubbed the

ARGO EYE--is as follows:

The “ARGO EYE”

PVC pipe

35mm lens

TSL250

13

After constructing this device, I again tested it in the same manner as before; the data

tables and graphs (see experimental results) depict these results. Upon comparison of the

two characteristics, I realized that the “eye” produced a response that was dependent

upon where the lens was focused. Although the voltage level changed depending upon

the color focused upon, changes in the ambient lighting had a dramatic effect on the

voltage level, even from one side of the car to the other. Thus, I was forced to eliminate

the effect of the ambient light through the implementation of lights strategically

positioned beside each of the lane sensors. This produces a response that could be used

by my program, since the voltage level now remained relatively constant throughout the

room.

Bump Sensors

ARGO uses two bump sensors mounted on the front bumper, interconnected with a thin

piece of metal to allow bump sensor triggering from a “hit” between the two sensors. I

input these two sensors through an OR-gate to port D input. I did this so that a bump on

either of the two sensors would alert the microprocessor that an object had passed

through the ir-detection grid.

The circuit used to implement this is trivial: simply a bump sensor connected to power,

ground, and port D through a pull-up resistor.

Behaviors

Obstacle Avoidance

Under normal conditions obstacle avoidance would be nearly trivial; however, at the high

speeds at which ARGO can travel, obstacle avoidance becomes a daunting task. To

14

accomplish this task, I implemented a type of differential object avoidance in conjunction

with “fuzzy” logic code.

The differential object avoidance code looks for a change in the level of any of the ir-

receivers. When a substantial change is detected the program calculates the difference

between the values at the left and right receivers and uses this value to search through a

table of predefined ir-differences. When an entry in the table is greater than or equal to

that passed into the subroutine, a match is found. The location in this table is used as an

index into another table of servo control pulse-widths. The pulse-width is found, and the

servo is turned correspondingly. Since the table contains five left and five right turn

directions, I have created fuzzy logic with 10-levels.

In addition to turning the servo, the obstacle avoidance code also checks to be sure that

the robot has not come too close to an object. If this does occur, however, the program

will reverse the motor, putting the car into reverse, and backing away from the object.

Then with a slower initial speed, the robot is able to negotiate the object.

Lane-Following

The lane following, due to the primitive nature of the sensor being used, is also slightly

rudimentary. Since the sensor cannot see the lane until the car is directly on top of the

lane marker, a full turn away from the lane is required to avoid passing over the lane.

Thus, the code follows: whenever a lane is detected, the car turns full away from it.

While this is rather simple, it works well at slow speeds.

To improve this code I would require another light/voltage converter placed in the middle

of the car to sense if the lane had been passed over. In this manner I could greatly speed

15

up the car without risk out straying far from the lanes. However, time restriction proved

too great to permit the ordering of another sensor.

Light Following

Having installed light sensors to detect the lanes, and having seen their extreme

sensitivity to light, making the robot move toward a light source was a simple task. All

that this process does, when invoked by the command arbiter, is compare the two

voltages levels at each of the lane sensors, and head toward the higher of the two.

Although simple, it accomplishes the task.

Human Following

After I had refined my obstacle avoidance code, and increased the current output to the ir-

emitters, I had left two obsolete ir-detectors. I decided rather than take them off, I could

use them to implement another behavior: following an ir-beacon held be a human. The

code compares the two ir-receiver voltages, and turns the car toward the higher sensor

reading. This direction would be toward the person holding the beacon.

Horn Honking

Since I am striving to model reality with my robot in every way that I can, implementing

a horn seemed like the obvious decision. This process checks the ir-values to see if they

pass beyond a certain threshold. If they do, the program sounds the horn: two short

beeps.

Smooth Motor Control

After having written the fuzzy logic for the servo mechanism, reproducing it with some

slight modifications was not extremely difficult. The program, one of those being

multitasked, looks for the largest ir-value— it uses a modular subroutine to do this— and

16

uses this to search through a table of predefined ir-levels. After finding the matching

proximity, the program then uses the entry in this table to index into a table of motor

speeds. The motor speed is retrieved and changed by the motor control process. This

fuzzy logic system has 5-levels.

17

Experimental Layout and Results

IR-Testing

The voltage dependency on distance, as indicated by table T.A1, varies linearly.

Through software ingenuity and by boosting the output current to the ir-LEDs, I was able

to use these sensors for obstacle avoidance, even at relatively high speeds.

IR Characteristic Table

Distance(m) Voltage Analog
Output

0.5 1.64 84
0.45 1.75 89
0.4 1.84 94

0.35 1.93 98
0.3 2.06 105

0.25 2.18 111
0.2 2.27 116

0.15 2.35 120
0.1 2.43 124

0.05 2.49 127

IR Voltage Characteristic

0
0.5

1
1.5

2
2.5

3

0.5 0.4
5 0.4 0.3

5 0.3 0.2
5 0.2 0.1

5 0.1 0.0
5

Distance(m)

V
ol

ta
ge

Voltage

18

Lane-Sensor

My first test of the TSL250 involved the use of a single candle in a dark room. I then

varied the distance of the light source from the sensor linearly and noted the output

voltage of the TSL250.

These results are summarized in the following table and graph.

Distance(m) Voltage
1 0.78

0.95 0.83
0.9 1

0.85 1.09
0.8 1.15

0.75 1.25
0.7 1.31

0.65 1.4
0.6 1.5

0.55 1.68
0.5 1.76

0.45 2.05
0.4 2.2

0.35 2.55
0.3 3.25

0.25 3.75
0.2 4

TSL250 Characterisitic

0
1
2
3
4
5

1
0.8

5 0.7 0.5
5 0.4 0.2

5 0.1

Distance(m)

V
ol

ta
ge

Series1

19

The first tests of the ARGO “Eye” yield the following results, as summarized in the
following table and plot.

Distance(m) Voltage
1 0.51

0.95 0.55
0.9 0.6

0.85 0.6
0.8 0.63

0.75 0.7
0.7 0.71

0.65 0.75
0.6 0.8

0.55 0.85
0.5 0.91

0.45 1.1
0.4 1.25

0.35 1.5
0.3 1.7

0.25 2.1
0.2 2.45

0.15 2.72
0.1 3.75

0.05 4

In this initial data sampling, the lens was tilted forward so that it focused approximately

.5 meters in front of the “eye.” Thus, the response of the eye way negligible until the

flame had reached that point. After this realization, I conducted another test to

"ARGO EYE" Characterisitic

0
1
2
3
4
5

1
0.8

5 0.7 0.5
5 0.4 0.2

5 0.1

Distance(m)

V
ol

ta
ge

Series1

20

corroborate this claim. This time I focused the “eye” on the flame at each distance, and

noted the output voltage.

Distance(m) Voltage
1 1.55

0.95 2.5
0.9 3.85

0.85 4

The “eye” could be made to focus on a light source approximately one meter in front of

the car.

Now, that I had tested the light response of the lane-sensor, I needed to determine if the

sensor would be able to detect changes in the color, evidencing a lane marker. The

following test was made to determine if the “eye” could distinguish color under ambient

light.

Color Distance(m) Voltage
Blue 0.2 1.53
Blue 0.4 1.6
Blue 0.5 1.7
Blue 0.8 1.65

Color
Distance(m) Voltage

White 0.2 3.1
White 0.4 2.8
White 0.5 2.75
White 0.8 2.72

21

Conclusions

Through the construction of ARGO I have learned many things, some of which I would

like to forget— the burns from the transistors. Someone once said, ”Patience is a virtue.”

After having completed this project— missing a little shy of my initial goals, I have to

agree. Through the many hours spent debugging the motor driver, to the many hours

looking for that missing pound sign in my assembly code, I have learned its significance.

In addition, I have learned the fundamental difference between theory and reality: two

worlds juxtaposed, yet not. It takes a lot of work to bring the two together, but once you

have done that, everything seems a lot more clear.

Philosophy leads to science, and so too does this paper. When I began the semester I

intended to make a robot that would follow a yellow lanes and avoid obstacles at the

same time. I have a robot that follows black lanes, but cannot, due to the lack of another

light/voltage sensor, make it avoid obstacles at the same time. I intended to have the

motor control circuit finished by the end of the third week. I finished that circuit at the

end of the eighth week, without an analog current meter.

These limitations only served to make me try harder to attain my goals. These goals I

have met, and future goals have become even loftier. I intend to further my work on this

robot, implementing a camera for its vision and a compass assist in destination finding.

Building on a larger scale will enable me to use metal detection— my original, although

impractical, lane following design— to follow lanes. This will eliminate the highly

problematic ambient lighting differences, differences that only worsen when the robot is

brought outside, where it will eventually be able to function. I have numerous ideas

22

about that which I wish to do with this robot. All that I need right now, however, is a

break.

23

Appendix

Code Listing

*Author: John Ferrara
*Title: Demo1.asm

ADCTL EQU $1030
ADR1 EQU $1031
ADR2 EQU $1032
ADR3 EQU $1033
ADR4 EQU $1034
TCNT EQU $100E ; TCNT High byte
TFLG2 EQU $1025 ; Contains RTIF flag
TMSK2 EQU $1024 ; RTII enable flag
PACTL EQU $1026 ; RTI Timer control
BAUD EQU $102B ; BAUD rate control register to set the BAUD rate
SCCR1 EQU $102C ; Serial Communication Control Register-1
SCCR2 EQU $102D ; Serial Communication Control Register-2
SCSR EQU $102E ; Serial Communication Status Register
SCDR EQU $102F ; Serial Communication Data Register
TOC2 EQU $1018
TOC3 EQU $101A
PORTA EQU $1000
PORTD EQU $1008
DDRD EQU $1000
TCTL1 EQU $1020
TMSK1 EQU $1022
TFLG1 EQU $1023
OPTION EQU $1039
BASE EQU $1000
BIT76 EQU %11000000
BIT54 EQU %00110000
BIT7 EQU %10000000
BIT6 EQU %01000000
BIT5 EQU %00100000
BIT4 EQU %00010000
BIT3 EQU %00001000
BIT1 EQU %00000010
BIT2 EQU %00000100
INV5 EQU %11011111

EOS EQU $04 ; User-defined End Of String (EOS) character
CR EQU $0D ; Carriage Return Character
LF EQU $0A ; Line Feed Character
ESC EQU $1B ; Escape Charracter
*
**
* Initialize Interrupt Jump Vectors
**
*
*RTI-INTERRUPT: USED FOR MULTITASKING

 ORG $00EB
 JMP RTI_ISR

24

*OC2-INTERRUPT: USED FOR SERVO CONTROL

ORG $00DC
JMP OC2_ISR

*OC3-INTERRUPT: USED FOR MOTOR SPEED CONTROL

 ORG $00D9
 JMP OC3_ISR

*IRQ-INTERRUPT: USED FOR THE "SOFT" RESET OF THE EVBU

 ORG $00EE
 JMP IRQ_ISR

*
**
* Define Strings and Reserve Variable memory space for system use
* such as CPT, DSPT, CurPID, etc.
**
 ORG $8000

*MULTITASKING
VARIABLES***
CPT RMB 2

RMB 2
RMB 2
RMB 2
RMB 2
RMB 2
RMB 2
RMB 2

 RMB 2
 RMB 2

DSPT
 FDB $80FF

 FDB $81FF
 FDB $82FF
 FDB $83FF
 FDB $84FF
 FDB $85FF
 FDB $86FF
 FDB $87FF
 FDB $88FF
 FDB $89FF

MaxProc FCB $09
CurrPID RMB 1
temp FCB $00
TEMP2 RMB 2
STACK RMB 2

25

*MOTOR-CONTROL
VARIABLES***

OC3Period FDB 10000 ;20ms period for the servo control pulses
OC3HIGH RMB 2
OC3LOW RMB 2

OC3_CHANGE RMB 2
SPEED_BOOST FDB 6000
DIRECTION RMB 1
DIR_PREV RMB 1

*SERVO AND OBSTACLE AVOIDANCE
VARIABLES***

OC2Period FDB 40000 ;20ms period for the servo control pulses
OC2HIGH RMB 2
OC2LOW RMB 2
OC2_CHANGE RMB 2

IR_TABLE
RF_IR RMB 1
LF_IR RMB 1
MF_IR RMB 1
TRF_IR RMB 1
TLF_IR RMB 1

CURR_MAX RMB 1
MAX_IR RMB 1

RF_INIT_IR RMB 1
LF_INIT_IR RMB 1
MF_INIT_IR RMB 1
TRF_INIT_IR RMB 1
TLF_INIT_IR RMB 1

RF_OLD RMB 1
LF_OLD RMB 1

*FUZZY LOGIC TABLES***

T_INDEX RMB 1
TURN_FOUND RMB 2

DIFF_IR FCB 4
 FCB 7
 FCB 13
 FCB 20

TURN_SMOOTH FDB 200
 FDB 300
 FDB 500
 FDB 600

DIFF_SPEED FCB 85
FCB 95

26

FCB 105
FCB 115

SMOOTH_SPEED
FDB 4500
FDB 3500
FDB 2700
FDB 2000

*cOMMAND ARBITRATOR VARIABLES***

EXEC_HORN RMB 1
EXEC_AVOID RMB 1
EXEC_LANE RMB 1

*LANE FOLLOWING SENSORS***

RIGHT_LIGHT RMB 1
LEFT_LIGHT RMB 1
LEFT_INIT_L RMB 1
RIGHT_INIT_L RMB 1

RIGHT RMB 1
LEFT RMB 1
RL_OLD RMB 1
LL_OLD RMB 1

*RESET VARIABLES:"SOFT" REBOOT***
STARTUP RMB 1

**
**

 ORG $9000
SOFT_RESET
 LDS #$41 ;Initialize Stack Pointer

LDAA #0
STAA STARTUP

 JSR INIT_MULTITASK
 TYS
 JSR InitRTI

 JSR INIT_DIRECTION
 JSR INIT_OC

 CLI

BRA WAIT_START

STOP_RESET
LDS #$41

WAIT_START
LDAA STARTUP
CMPA #1

27

BNE WAIT_START

Main LDS #$0041 ;Initialize Stack Pointer
SEI

 JSR INIT_ANALOG
JSR INIT_PORTS

 JSR INIT_IR
JSR INIT_SPEED

 JSR INIT_DIRECTION
 JSR INIT_LIGHTS
 JSR INIT_MULTITASK

 TYS ;initialize stack pointer

 LDX #CONTROL_RESTART
 JSR Spawn

 LDX #READ_SENSORS
 JSR Spawn

 LDX #ARBITRATE_MOTOR
 JSR Spawn

 LDX #CONTROL_MOTOR
 JSR Spawn

 LDX #CONTROL_SERVO
 JSR Spawn

 LDX #AVOID_OBSTACLES
 JSR Spawn

LDX #HEINOUS_NOISE
JSR Spawn

 LDX #FOLLOW_LANE
 JSR Spawn

 CLI

Command_Arbit
 LDAA #0
 STAA EXEC_AVOID
 STAA EXEC_HORN

 LDAA #1
 STAA EXEC_LANE
 LDD #2000
 STD OC3_CHANGE

 JSR Delay

R_1
 LDAA RIGHT_LIGHT

28

 ANDA #$80
 BNE R_1

 LDAA LEFT_LIGHT
 ANDA #$80
 BNE R_1

 LDAA #1
 STAA EXEC_AVOID
 STAA EXEC_HORN
 LDAA #0
 STAA EXEC_LANE

 LDD #2200
 STD OC3_CHANGE

 JSR Delay

R_2
 LDAA RIGHT_LIGHT
 ANDA #$80
 BNE R_2

 LDAA LEFT_LIGHT
 ANDA #$80
 BNE R_2

 LDAA #0
 STAA EXEC_AVOID
 STAA EXEC_HORN

 LDAA #1
 STAA EXEC_LANE

E_DEMO
 LDAA RIGHT_LIGHT
 ANDA #$80
 BNE E_DEMO

 LDAA LEFT_LIGHT
 ANDA #$80
 BNE E_DEMO

 SWI

**
**
*MULTITASKING PROCESSES***************************************
**

**
*SUBROUTINE: CONTROL_RESTART
*PURPOSE: CONTROLS THE SOFTWARE RESTART OF THE PROCESSOR

CONTROL_RESTART

LDAA STARTUP

29

CMPA #1
BEQ END_RESTART

 JSR INIT_MULTITASK
 JMP STOP_RESET

END_RESTART
BRA CONTROL_RESTART

**
*SUBROUTINE: READ_SENSORS
*PURPOSE: READS THE ANALOG PORTS CONTAINING IR_SENSORS

READ_SENSORS
LDAA #$30 ;FIRST, READ THE FIRST FOUR ANALOG PORTS(ALL IR)
STAA ADCTL

WAIT_SENS
LDAA ADCTL ;WAIT FOR 4-CONVERSIONS TO COMPLETE
ANDA #BIT7
BEQ WAIT_SENS

 LDAA #$30 ;CLEAR THE CONVERSIONS FLAG
STAA ADCTL

 LDAA RF_IR
 STAA RF_OLD

 LDAA ADR1 ;GET THE SENSOR READINGS AND PUT INTO GLOBAL
STAA RF_IR ;VARIABLES

 LDAA LF_IR
 STAA LF_OLD

 LDAA ADR2
STAA LF_IR

 LDAA ADR3
 STAA MF_IR

LDAA ADR4
STAA TRF_IR

LDAA #$34
STAA ADCTL

*NOW, GET THE NEXT FOUR ANALOG PORT READINGS

WAIT_SENS2
LDAA ADCTL ;WAIT FOR 4-CONVERSIONS TO COMPLETE
ANDA #BIT7
BEQ WAIT_SENS2

 LDAA #$34 ;CLEAR THE CONVERSIONS FLAG
STAA ADCTL

30

 LDAA ADR1 ;GET THE SENSOR READINGS AND PUT INTO GLOBAL
STAA TLF_IR ;VARIABLES

 LDAA ADR2
LDAB RIGHT_LIGHT
STAB RL_OLD
STAA RIGHT_LIGHT

 LDAA ADR3
LDAB LEFT_LIGHT
STAB LL_OLD

 STAA LEFT_LIGHT

JMP READ_SENSORS

**
*SUBROUTINE: FOLLOW_LANE
*PURPOSE: FOLLOWS THE YELLOW LANE

FOLLOW_LANE
 LDAA EXEC_LANE
 CMPA #1
 BNE FOLLOW_LANE

 LDAA RIGHT_LIGHT
 SUBA LEFT_LIGHT
 CMPA #7
 BGT LEFT_LANE

 LDAA LEFT_LIGHT
 SUBA RIGHT_LIGHT
 CMPA #7
 BGT RIGHT_LANE

 BRA BETWEEN_LANES

RIGHT_LANE
 LDD #3600
 STD OC2_CHANGE
 JMP FOLLOW_LANE

LEFT_LANE
 LDD #2400
 STD OC2_CHANGE
 JMP FOLLOW_LANE

BETWEEN_LANES
 LDD #3000
 STD OC2_CHANGE
 JMP FOLLOW_LANE

**
*SUBROUTINE: FOLLOW_HUMAN
*PURPOSE: FOLLOWS A HUMAN WITH AN IR EMITTER

31

FOLLOW_HUMAN
 LDAA TRF_IR
 CMPA TLF_IR
 BGT HUMAN_RIGHT

HUMAN_LEFT
 LDD #3400
 STD OC2_CHANGE
 BRA FOLLOW_HUMAN

HUMAN_RIGHT
 LDD #2600
 STD OC2_CHANGE
 BRA FOLLOW_HUMAN

**
*SUBROUTINE: FIND_LIGHT
*PURPOSE: MOVES INTO THE LIGHT, CARROL-ANNE

FIND_LIGHT
 LDAA RIGHT_LIGHT
 LSRA
 LDAB LEFT_LIGHT
 LSRB
 SBA
 BGT LIGHT_RIGHT

LIGHT_LEFT
 LDD #3400
 STD OC2_CHANGE
 BRA END_LIGHT

LIGHT_RIGHT
 LDD #2600
 STD OC2_CHANGE

END_LIGHT
 JMP FIND_LIGHT

**
*SUBROUTINE: AVOID_OBSTACLES
*PURPOSE: AVOIDS ONCOMING CARS

AVOID_OBSTACLES

LDAA EXEC_AVOID
 CMPA #1
 BNE AVOID_OBSTACLES

 LDAA PORTD
 ANDA #BIT3
 BNE GO_REVERSE_LI

LDAA RF_IR
 CMPA #125

32

 BGT GO_REVERSE

 LDAA LF_IR
 CMPA #125
 BGT GO_REVERSE

 LDAA MF_IR
 CMPA #125
 BGT GO_REVERSE

 LDAA #0
 STAA DIRECTION

 LDAA RF_IR
 CMPA RF_OLD
 BGT NEED_TURN

 LDAA LF_IR
 CMPA LF_OLD
 BGT NEED_TURN

 LDAA RF_IR
 CMPA RF_INIT_IR + 5
 BGT NEED_TURN

 LDAA LF_IR
 CMPA LF_INIT_IR + 5
 BGT NEED_TURN

 BRA STRAIGHT

NEED_TURN
 LDD #2500
 STD OC3_CHANGE

 LDAA RF_IR
 CMPA LF_IR
 BGT TURN_LEFT

 LDAA LF_IR
 CMPA RF_IR + 3
 BGT TURN_RIGHT

 JMP AVOID_OBSTACLES

GO_REVERSE
 LDAA #1
 STAA DIRECTION

 LDAA RF_IR
 CMPA LF_IR
 BGT REV_LEFT

REV_RIGHT
 LDD #3300

33

 STD OC3_CHANGE
 BRA END_REVERSE

REV_LEFT
 LDD #2700
 STD OC2_CHANGE

END_REVERSE
 JSR HONK_DELAY
 JMP AVOID_OBSTACLES

STRAIGHT
 LDD #3500
 STD OC3_CHANGE

LDD #3000
STD OC2_CHANGE

 JMP END_AVOID

TURN_LEFT
 LDAA RF_IR
 SUBA LF_IR
 JSR SEARCH_TABLE_IR

 LDD #3000
 SUBD TURN_FOUND

 STD OC2_CHANGE

 BRA END_AVOID

TURN_RIGHT
 LDAA LF_IR
 SUBA RF_IR
 JSR SEARCH_TABLE_IR

 LDD #3000
 ADDD TURN_FOUND

 STD OC2_CHANGE
 BRA END_AVOID

END_AVOID
JMP AVOID_OBSTACLES

**
*SUBROUTINE: HEINOUS_NOISE
*PURPOSE: HONKS THE CAR HORN

HEINOUS_NOISE

 LDAA EXEC_HORN
 CMPA #1
 BNE HEINOUS_NOISE

 LDAA RF_IR

34

 CMPA #100
 BGT HONK

 LDAA LF_IR
 CMPA #100
 BGT HONK

 BRA HEINOUS_NOISE

HONK
 LDAA #$F1
 STAA $7000

 JSR HONK_DELAY

 LDAA #$F0
 STAA $7000

 JSR HONK_DELAY

 LDAA #$F1
 STAA $7000

 JSR HONK_DELAY

 LDAA #$F0
 STAA $7000

 JMP HEINOUS_NOISE

**
*SUBROUTINE: CONTROL_MOTOR
*PURPOSE: aDJUSTS THE SPEED OF THE MOTOR

CONTROL_MOTOR
LDD OC3_CHANGE
STD OC3HIGH

LDD OC3Period
SUBD OC3HIGH
STD OC3LOW

LDAA DIRECTION
CMPA #0
BEQ FORWARD

REVERSE
LDAA PORTD
ORAA #BIT2
STAA PORTD

 BRA END_MOTORCONTROL

FORWARD
LDAA PORTD
ANDA #$FB

35

STAA PORTD

END_MOTORCONTROL
JMP CONTROL_MOTOR

**
*SUBROUTINE: ARBITRATE_MOTOR
*PURPOSE: CONTROLS THE TRANSITION SPEED OF THE MOTOR

ARBITRATE_MOTOR

LDAA EXEC_LANE
CMPA #1
BNE CHANGE_SPEED

LDD #2000
STD OC3_CHANGE
BRA ARBITRATE_MOTOR

CHANGE_SPEED
LDAA DIRECTION
CMPA DIR_PREV
BEQ SAME_DIR

LDD SPEED_BOOST
STD OC3_CHANGE
JSR HONK_DELAY

SAME_DIR
 LDAA DIRECTION

STAA DIR_PREV

LDAA #3
LDY #MAX_IR
LDX #IR_TABLE
JSR FIND_MAX

LDAA MAX_IR
LDX #DIFF_SPEED
LDY #SMOOTH_SPEED

 JSR SEARCH_TABLE_MOT

CMPA #1
BNE SLOWEST_SPEED

STX OC3_CHANGE
BRA END_ARBMOT

SLOWEST_SPEED
LDX #1900
STX OC3_CHANGE

END_ARBMOT
JMP ARBITRATE_MOTOR

**

36

*SUBROUTINE: CONTROL_SERVO
*PURPOSE:ADJUSTS THE POSITION OF THE SERVO

CONTROL_SERVO
LDD OC2_CHANGE
STD OC2HIGH

LDD OC2Period
SUBD OC2HIGH
STD OC2LOW

JMP CONTROL_SERVO

******************************INITIALIZATION CODES*******************************8

**
*SUBROUTINE: INIT_MULTITASK
*PURPOSE: INITIALIZES THE CPT AND STACK POINTERS

INIT_MULTITASK
 LDAB #$00
 LDX #CPT
 LDAA #$0A

Zero LDY #$0 ;this code zeros-out the CPT(table)
STY 0,X
INX

 INX
 INCB

CBA
BNE Zero

LDAA #$00 ;initialize the starting PID
STAA CurrPID

LDX #DSPT
LDY 0,X

LDX #CPT ;setup the initial stack pointer for the first
 STY 0,X ;...process
 INY

 LDAA #BIT6 ;clear the RTI-flag so the next process is not
 STAA TFLG2 ;immediately interruted

RTS

**
*SUBROUTINE: SET_ANALOG
*PURPOSE: CONFIGURES THE A/D SYSTEM FOR LATER USE

INIT_ANALOG
LDAA #$80 ;POWER-UP A/D-SYSTEM

37

STAA OPTION

LDAA #40
WAIT_AN
 DECA ;WAIT FOR CHARGE PUMP TO STABILIZE
 BNE WAIT_AN

RTS

**
*SUBROUTINE: INIT_IR
*PURPOSE: SETS-UP INITIAL IR CONDITIONS (SELF-CALIBRATION)

INIT_IR
LDAA #$30
STAA ADCTL

WAIT_IR LDAA ADCTL ;WAIT FOR 4-CONVERSIONS TO COMPLETE
ANDA #BIT7
BEQ WAIT_IR

 LDAA #$30 ;CLEAR THE CONVERSIONS FLAG
STAA ADCTL

 LDAA ADR1 ;GET THE SENSOR READINGS AND PUT INTO GLOBAL
STAA RF_INIT_IR ;VARIABLES

 LDAA ADR2
STAA LF_INIT_IR

 LDAA ADR3
 STAA MF_INIT_IR

LDAA ADR4
STAA TRF_INIT_IR

LDAA #$34
STAA ADCTL

WAIT_IR2

LDAA ADCTL ;WAIT FOR 4-CONVERSIONS TO COMPLETE
ANDA #BIT7
BEQ WAIT_IR2

 LDAA #$34 ;CLEAR THE CONVERSIONS FLAG
STAA ADCTL

 LDAA ADR1 ;GET THE SENSOR READINGS AND PUT INTO GLOBAL
STAA TLF_INIT_IR ;VARIABLES

RTS

INIT_LIGHTS
LDAA #$34

38

STAA ADCTL

WAIT_LTS

LDAA ADCTL ;WAIT FOR 4-CONVERSIONS TO COMPLETE
ANDA #BIT7

 BEQ WAIT_LTS

 LDAA #$34 ;CLEAR THE CONVERSIONS FLAG
STAA ADCTL

 LDAA ADR2 ;GET THE SENSOR READINGS AND PUT INTO GLOBAL
 STAA RIGHT_INIT_L ;VARIABLES

 LDAA ADR3
 STAA LEFT_INIT_L

RTS

**
*SUBROUTINE: INIT_PORTS
*PURPOSE: INITIALIZES ALL PORTS TO BE EITHER INPUTS OR OUTPUTS

INIT_PORTS
 LDAA #$F7
 STAA DDRD

 LDAA #$F0
 STAA $7000

 LDAA #0
 STAA PORTA

RTS

**
*SUBROUTINE: INIT_SPEED
*PURPOSE: STARTS THE CAR AT AN INITAL SLOW SPEED

INIT_SPEED

 LDD #3200
 STD OC3HIGH
 STD OC3_CHANGE

 LDD OC3Period
 SUBD OC3HIGH
 STD OC3LOW

RTS

**
*SUBROUTINE: INIT_DIRECTION
*PURPOSE: STARTS THE CAR OUT IN FORWARD GOING STRAIGHT

39

INIT_DIRECTION
LDAA PORTD
ANDA #$FB
STAA PORTD

LDAA #0
STAA DIRECTION

 LDAA #1
 STAA DIR_PREV

 LDD #3000 ;START WITH SERVOS STRAIGHT
STD OC2HIGH

 STD OC2_CHANGE

LDD OC2Period
SUBD OC2HIGH
STD OC2LOW

RTS

**
* Subroutine: InitRTI
* Function: This routine enables RTIs and sets the RTI rate to
* 32.77ms.
* Input: None
* Output: Initializes RTI
**
InitRTI LDAA #$88 ;set the interrupt rate to 32.77ms
 STAA PACTL
 LDAA #$40

STAA TMSK2
RTS ;return to the main

**
*SUBROUTINE: INIT_OC
*PURPOSE: INITIALIZES ALL OUTPUT COMPARES

INIT_OC

 LDAA #%10100000 ;CLEAR OC2 AND 0C3 LINES TO ZERO
STAA TCTL1

 LDAA #%01100000 ;ENABLE OC2 AND OC3 INTERRUPT
STAA TMSK1

RTS

*********************************INTERRUPT SERVICE
ROUTINES**************************8

**
*SUBROUTINE: OC2_ISR
*PURPOSE: CONTROLS THE OUTPUT COMPARE 2

40

OC2_ISR
LDAA TFLG1 ;CHECK FOR LEGAL INTERRUPT
ANDA #BIT6
BEQ END_OC2

 LDAA #BIT6 ;CLEAR THE INTERRUPT
 STAA TFLG1

LDAA TCTL1 ;CHECK IF LAST PULSE WAS HIGH OR LOW
ANDA #BIT6
BEQ LASTHIGH_OC2

 LDAA TCTL1 ;SET NEXT PULSE TO BE LOW
 EORA #$40
 STAA TCTL1

 LDD TOC2 ;SET OC2 HIGH TIME
 ADDD OC2HIGH

STD TOC2

 BRA END_OC2

LASTHIGH_OC2
 LDAA TCTL1 ;SET THE NEXT PULSE TO BE HIGH
 EORA #$40

STAA TCTL1

 LDD TOC2
 ADDD OC2LOW

STD TOC2

END_OC2
RTI ;RETURN FROM INTERRUPT

**
*SUBROUTINE: OC3_ISR
*PURPOSE:CONTROLS OUTPUT COMPARE 3

OC3_ISR
LDAA TFLG1 ;CHECK FOR LEGAL INTERRUPT

 ANDA #BIT5
 BEQ END_OC3

 LDAA #BIT5 ;CLEAR THE INTERRUPT
 STAA TFLG1

LDAA TCTL1 ;CHECK IF LAST PULSE WAS HIGH OR LOW
 ANDA #BIT4

BEQ LASTHIGH_OC3

 LDAA TCTL1 ;SET NEXT PULSE TO BE LOW
 EORA #$10
 STAA TCTL1

41

 LDD TOC3 ;SET OC2 HIGH TIME
 ADDD OC3HIGH
 STD TOC3

 BRA END_OC3

LASTHIGH_OC3
 LDAA TCTL1 ;SET THE NEXT PULSE TO BE HIGH
 EORA #$10
 STAA TCTL1

 LDD TOC3
 ADDD OC3LOW
 STD TOC3

END_OC3
RTI ;RETURN FROM INTERRUPT

**
*SUBROUTINE: IRQ_ISR
*PURPOSE:USED FOR THE REBOOT PROCESS

IRQ_ISR
LDAA STARTUP
CMPA #0
BEQ GO_SYSTEMS

OFF_SYSTEMS
LDAA #0
STAA STARTUP

 BRA END_IRQ

GO_SYSTEMS
LDAA #1
STAA STARTUP

END_IRQ
RTI

*
**
* Interrupt Service Routine (ISR): RTI_ISR
* Function: This ISR services the Real-Time Interrupts.
* This ISR should do the followings:
* - Clear RTI flag.
* - Update current SP in CPT[Current PID]
* - Find next PID
* - Update CurPID
* - Load New SP from CPT[Next PID]
**
RTI_ISR

LDX #BASE

42

 LDAA TFLG2
 ANDA #BIT6
 BEQ END_ISR ;check for valid interrupt

 LDX #CPT ;store the current stack pointer to the appropriate
 LDAA CurrPID ;entry in the CPT, as dictated by CurrPID
 ASLA ;to get the offset into the table must mult.
 STAA temp ;CurrPID by 2
 LDAB temp
 ABX
 TSY

DEY
 STY 0,X ;save the current stack pointer of the current process

LDAA CurrPID
 INCA ;...to the appropriate slot in the CPT
* ;check to see if the process is the last one
FndNxt CMPA #$0A ;is so the next process to be run is process[0]

BEQ REFRESH

 LDX #CPT ;determine the next nonzero entry in the CPT
 STAA temp ;...this is the stack pointer we need to use
 ASL temp;for the next process
 LDAB temp
 ABX
 INCA
 LDY 0,X ;I must skip zeroed entried here, since my KILL

BEQ FndNxt ;does not account for them
BRA SET

REFRESH LDX #CPT
 LDY 0,X ;restart the process poll
 LDAA #$0
 STAA CurrPID

INY
TYS

 BRA RT_ISR

SET INY
TYS

 DECA ;transfer the correct processes SP[Proc.] to the SP
 STAA CurrPID

RT_ISR LDAA #BIT6 ;clear the RTI-flag so the next process is not
 STAA TFLG2 ;immediately interruted

END_ISR RTI

**
**
*SUBROUTINES***************************************
**

43

**
*SUBROUTINE: SEARCH_TABLE
*PURPOSE: FINDS THE APPROPRIATE SERVO DIRECTION FOR HIGH-SPEED
*OBSTACLE AVOIDANCE
*INPUT: THE TABLE TO SEARCH IN THE X-REGISTER
* THE TABLE WITH THE CORRESPONDING ENTRY SEARCHED FOR
* IN ACCUMULATOR A IS THE VALUE TO MATCH IN THE TABLES

SEARCH_TABLE_IR
 LDAB #0
 STAB T_INDEX
 LDX #DIFF_IR

ST_LOOP
 LDAB 0,X
 CBA
 BLT FOUND_ENTRY

 INX
 LDAB T_INDEX
 INCB
 STAB T_INDEX
 CMPB #4
 BLT ST_LOOP

 LDD #700
 STD TURN_FOUND
 BRA END_SEARCH

FOUND_ENTRY
 LDAB T_INDEX
 ASLB
 LDX #TURN_SMOOTH
 ABX
 LDD 0,X

END_SEARCH
 STD TURN_FOUND
 RTS

SEARCH_TABLE_MOT

*
**
* Subroutine: Spawn
* Function: generates a new process
* Input: X: starting address of the process
* Output: A: PID of the process just created, or
* $FF if no slots are available
* Destroys: Contents of A register
* Side effects: Creates the initial stack for the process. This
* stack must have the process PID in A, and %01000000
* in CCR.
**
Spawn

44

PSHY ;put these on the stack so they are not destroyed
PSHB
STX TEMP2
LDAA #$00 ;intialize the CPT position=0
LDY #CPT

FndPlc LDX 0,Y ;find the next empty spot in the CPT
 INY ;POINT TO NEXT ENTRY IN THE TABLE
 INY
 INCA

 CMPA #11 ;if A = 9 then the table has been completely
 BEQ FULL ;scanned and there are no zero entries

 CPX #$0
 BNE FndPlc

 DECA

 STAA temp ;store the displacement into the table in temp
 ASL temp ;multiply temp by 2=>index into table(CPT)
 LDAB temp
 LDX #DSPT ;get default stack table
 ABX
 LDY 0,X ;get appropriate default stack pointer
 LDX #CPT ;put into the appropriate CPT slot

ABX
 STY 0,X

 STAA temp

 LDY 0,X ;initialize the stack for the new process
 LDX TEMP2

DEY
STX 0,Y

 DEY
DEY
LDX #$0

 STX 0,Y
 DEY
 DEY
 LDX #$0
 STX 0,Y
 DEY
 LDAA temp
 STAA 0,Y
 DEY
 LDAB #$0
 STAB 0,Y
 DEY
 LDAB #$40
 STAB 0,Y

DEY ;pulled out DEY here

ASL temp
 LDAB temp

45

 LDX #CPT
 ABX
 STY 0,X

PULB ;restore variables used for this subroutine
PULY

 BRA RT_RTS

FULL PULB
 PULY
 LDAA #$FF

RT_RTS RTS ; return from subroutine

**
* Subroutine: Kill
* Function: removes a currently active process
* Input: A: process ID to kill
* Output: A: process ID just killed
* Destroys: None
**
Kill PSHB

 STAA temp
 ASL temp
 LDAB temp

PSHX ;SAVE THESE REGISTERS SOP THEY ARE NOT CHANGED
PSHY

LDY #$0 ;zero-out the corresponding entry of the table
LDX #CPT

 ABX
 STY 0,X

 PULY ;restor the registers used during the subroutine
PULX

 PULB

RTS ;return from subroutine

*
**
*
* Subroutine: Delay
* Input: None
* Output: Provides a delay by simple looping
* Destroys: None
* Note: If you're looking to save memory, this function
* may be rewritten or subsumed by Process since
* Process is the only routine to call it.
**
*
Delay PSHA ;
 PSHB ;

46

 PSHX ; Save registers
 PSHY ;
 LDX #10 ; Load outer loop counter
Outer LDY #10000 ; Load inner loop counter
Inner
 DEY ; Decrement inner counter
 BNE Inner ; Branch if >0 to inner loop
 DEX ; Decrement outer counter
 BNE Outer ; Branch if >0 to outer loop
 PULY ; Restore registers
 PULX ;
 PULB ;
 PULA ;
 RTS ; Return from subroutine

HONK_DELAY
 LDX #20000
H_LOOP
 DEX
 CPX #0
 BNE H_LOOP

 RTS

**
*
* Subroutine: FIND_MAX
* Input: ARRAY INDEX:X-REGISTER; ARRAY SIZE: A ACCUMULATOR;Y:WHERE TO
STORE THE MAX
* Output: FINDS MAXIMUM OF A GIVEN ARRAY; PASSED IN THE X-REGISTER
* Destroys: None
**
*

FIND_MAX
LDAB 0,X
STAB CURR_MAX
DECA

MAX_LOOP
LDAB 0,X
CMPB CURR_MAX
BLT SAME_MAX
STAB CURR_MAX

SAME_MAX
INX
DECA
CMPA #0
BNE MAX_LOOP

LDAB CURR_MAX
STAB 0,Y

RTS

47

