
The Autonomous Coin
Collecting Robot

By Kelly C. Krempin
EEL 5666

7/31/98

2

TABLE OF CONTENTS

Acknowledgments … … … .. 3

Abstract … … … .. 3

Executive Summary … … … .. 4

Introduction … … … .. 5

Integrated System … … … .. 5

Mobile Platform … … … .. 5

Actuation … … … .. 6

Sensors … … … .. 7

Behaviors … … … .. 12

Conclusion … … … .. 13

Experimental Layout and Results … … … .. 14

Appendix … … … .. 16

3

ACKNOWLEDGMENTS

Charles Fedderwitz, EE and CE student and fellow classmate.

Scott Ettinger, EE graduate student and friend.

Jenny Laine and Scott Jantz, Teaching Assistants for EEL 5666 Lab.

ABSTRACT

The intent of this project was to successfully engineer and construct an autonomous
mobile robot that would exhibit sophisticated machine intelligence behaviors. I chose to
build an autonomous coin collecting robot based on a small microcomputer. The
microcomputer I used enabled me to implement electronic sensors, tasking behaviors,
and manipulation of motors and servos. This project required the integration of various
sub-disciplines in electrical and computer engineering, such as, microcomputer
interfacing and programming, analog to digital electronics, computer aided engineering,
and communications.

4

EXECUTIVE SUMMARY

During the summer months of 1998, I engineered and built an autonomous mobile robot

for EEL 5666, Intelligent Machine Design Laboratory (IMDL). This robot was to exhibit

characteristics that would involve both the fields of electrical and computer engineering.

Various disciplines included microcomputer interfacing and programming, analog to

digital electronics, computer aided engineering, control, and communications. The robot

I designed, named Rockefeller, successfully accomplished its object of being an

autonomous coin collecting robot. The early stages of the project were dedicated to

accomplishing obstacle avoidance behaviors. Obstacle avoidance is an intricate part of

becoming autonomous because it allows the robot to maneuver freely in its environment.

Initially, obstacle avoidance was accomplished through two types of sensors. IR emitter

were used to bounce IR signals off objects in the robots path which were in turn received

by IR detectors. By processing the signals sent from these detectors, code would

determine the appropriate action for the robot to take to perform obstacle avoidance.

Hacked servos were used as motors to control the robot’s wheels which allowed it to

maneuver. These motors were also controlled by obstacle avoidance code. Bumper

sensors were also implemented to aid in collision detection in the event IR detection

failed. The next important stage in development, concerned the coin detection sensor

circuit. A metal detector was hacked to achieve an appropriate signal that could be used

to detect when the metal detector was over a coin. This signal was wired directly to an

analog to digital pin on the microcomputer. Associated code was also integrated to

sample this signal and perform appropriate actions to acknowledge coin detection.

Calibration code was also added to help in debugging purposes and to inform me of what

values the robot had ascertained for the coin and the ground. The next stage was

designing the platform structurally to enable the robot to perform its tasks and behaviors.

I designed the platform in AutoCAD and milled it out of plywood on a T-Tech machine.

This platform also included the complex design of the arm and bucket apparatus. At this

point the robot was completely mechanically integrated and could perform basic obstacle

avoidance and coin calibration and detection. The last few weeks concentrated on

intensive coding to perform coin collection and corner detection and resolution behaviors

until a fully functional autonomous coin collecting robot was realized.

5

INTRODUCTION

The financial gain achieved from coin forging has long been the reward of men and

women armed with metal detectors wandering across wide regions of land. Now,

through the advancment of micro-controller technololgy, the laborous activity of

wandering can be eliminated while still obtaining a financial reward. I designed

Rockefeller, the autonomous coin collecting robot, to search, detect and collect coins that

maybe scattered across a given area. Rockefeller stores the collected coins in its bucket

for later retrieval by its owner. Whether for financial gain or historic appreciation,

Rockefeller will collect coins of any denomonation while its owner attends to other

interests.

INTEGRATED SYSTEM

The processing power of the robot and all memory and system control will be achieved

through the use of Motorola’s 68HC11 EVBU complemented with Mekatronix’s ME11

expansion board. I used the ME11’s 32K of SRAM to store all the software needed to

control the robots movements, calibrations, behaviors and calculations. The Motorola

EVBU board contains the MC68HC11E9 processor. I used the ports of this processor to

control actuators, emitters, detectors and LED’s. The software, which I wrote in IC (see

attached IC code), will intergrate all these signals and systems to produce an autonomous

robot that can avoid obstacles, detect and collect coins and then store them for later

retrieval.

MOBILE PLATFORM

I designed the platform in AutoCAD (see attached AutoCAD drawings). I then milled it

out of plywood on a T-tech machine. I designed the body with two independent front

wheels controlled by hacked servos, two free spinning castors in the rear, a chasis to

enclose the 68HC11 EVBU, ME11 and metal detector circuit boards, a compartment to

retain collected coins, another compartment for the spool and its associated motor,

surface mounted controls for easy access, metal detector and bumper attachment slots and

a rotating arm and bucket for coin collecting. The platform design alows the robot to

traverse freely powered by its independent front wheels which also provides turning

cabablities. Bumpers act as collision detection and IR emitters and detectors aid in

obstacle avoidance. The metal detector is attached to the underside or “belly” of the

6

platform, this allows for adequate coin detection. The rotating arm is attached to the

sides of the robot and can rotate 180°. The arm rotates from a resting position on the coin

retaining compartment to the ground’s surface to capture a detected coin.

AutoCAD allowed me to make exact measurements and be creative in my design,

however, next time I would be wise to account for the offset attributed to the milling bit

in order to avoid hours of wood sanding and adjustments.

ACTUATION

In order to successfully detect and collect coins, I needed to devise an intricate

combination of motors and servos to cover a specific area and then manipulate a detected

coin into the coin retainer. I used two hacked servos (see

http://www.mekatronix.com/index.html for the hack instructions) to act as the motors to

control the speed and direction of the two front wheels. A SN754410 motor driver chip

along with a 74HC04D inverter chip are used to deliver the appropriate current and signal

to achieve the desired speed and direction (see http://www.mekatronix.com/index.html

for the circuit schematic). Port A pins 6 and 5 on the MC68HC11E9 microprocessor

provides a pulse width modulation (PWM) through the output compare (OC) function

that the motor driver chip uses to determine the amount of current to deliver to achieve

the desired speed. Port D pins 5 and 4 provide the signals to the motor driver chip to

determine the intended direction. Another hacked servo along with motor driver circuitry

is used to control the speed and direction of the spool. I use the spool to open and close

the “door” to slide a detected coin into the bucket on the end of the rotating arm. Port A

pin 3 is used with PWM to control the speed and port D pin 3 for direction. I used the

predefined subroutines motor(int x, float y); and stop(); (see attached IC code) to control

the motors which I labled 0 for left, 1 for right and 2 for the spool. Direction and speed

are determined by the floating point values in the range 100.0 to –100.0.

I used an “unhacked” servo for the arm rotation. I used port A pin 7 to provide the PWM

to achieve the desired rotation angle from 0° to 180° and tapped off +9V from my power

supply to deliver enough current to rotate the arm at a satisfactory rate. I used the

predefined subroutines servo(int x); and servo_stop(); to manipulate the servo’s angle of

rotation. I used the arm servo and hacked servos in combination to manipulate a detected

7

coin to a “known” position up against the arm’s bucket which then enabled me to capture

the coin in the bucket with a push and slide manuever (see attached IC code). This

maneuver worked surprisingly well after some initial obstacles were overcome.

One problem I encountered had to do with being unable to manipulate motor speed after

turning on and using the servo. Apparently the IC source code for the servo initializes

port A pin 7 to initialize OC1 for all the pins on port A. This causes all the port A motor

pins to be inaccessible to their corresponding IC code subroutines. To fix the problem I

had to clear the TOC1 counter after each servo maneuver. I wrote the following IC

subroutine to accomplish this task:

void servo_stop()

{

servo_off();

poke(0x1016,0x00);

poke(0x1017,0x00);

}

Another problem I encountered that was hindering my coin collecting maneuver was that

when I tried to use my motors my servo would drop to the 0° angle until I stopped the

motor in use, at which time the servo would return to its intended angle. The problem

lied in the fact that I had created a “ground loop” instead of a “ground star” which was

causing voltage fluctuation on the servo’s power circuitry. By running the ground from

the 68HC11 EVBU board instead, I was able to obtain a constant voltage when running

the motors. This fix could also be attributed to the voltage regulator contained on the

board as well. Although these fixes were very complicated and time consuming to figure

out, the results of everything working in combination correctly made the coin collecting

maneuver quit simple and accurate.

SENSORS

I integrated 3 different and separate sensors (IR, bumper, and metal detection) for my

robot. Each sensor plays an important part in achieving the goal of coin detection,

collection and obstacle avoidance.

IR sensors allow for object detection, which in turn can be used to implement obstacle

avoidance behavior. I mounted two infrared emitters on the top frontal portion of the

8

body. I mounted the two hacked infrared detectors (see

http://www.mekatronix.com/index.html for the hack) on the bottom frontal portion of the

body. I then ran experiments to see what type of response I could obtain from this IR

configuration. The following graph depicts the IR detection values, when converted from

analog to digital (0 to 255 = 0 to 5 V), as the robot approaches a wall.

As the two sensors approach the wall there output voltage, converted to digital, increases

gradually. From an infinite distance to approximately two feet from the wall, the increase

is almost linear, however, the voltage output rises dramatically, almost exponentially, as

the robot approaches the wall from two feet. There is a slight difference in the two

resulting voltages that the left and right IR sensors output within the range of 5 to 2 feet.

The difference is acceptable as output can be expected to vary slightly. This experiment

was conducted against a white wall. The color and texture of an object or wall can have a

direct impact on the values obtained from the IR sensors. Since darker colors, especially

black, absorb light at a higher rate, IR sensor will receive less IR reflection when

presented with a dark object or wall. The sensor will not be as sensitive and the distance

IR Values for Wall Detection

80

90

100

110

120

130

140

0 1 2 3 4 5 6 7

Distance (feet)

D
ig

ita
l

Left IR Detector
Right IR Detector

9

before detection values are obtained will be correspondingly less. If the robots’ expected

environment is to contain walls of a darker color, the IR sensor’s decreased sensitivity

should be accounted for.

The IR sensors are also able to detect free standing objects as well as surrounding walls.

The following graphs depict the outcome of object detection experiments. I oriented a 2

x 6 inch object in three different positions (right, center and left) with respect to the front

of the robot. A diagram of the layout can be seen in Figure 1 in Experimental Layout and

Results. The graphs for the different object orientation positions, center, right and left

follow respectively.

Notice that there is a dramatic increase in voltage output as the object is placed within 1.5

feet of the front of the robot. Then as the object rests right up against the front of the

robot, there is no detection. When the object was positioned on the right side, the IR

sensors provided very different readings.

Center Oriented Object Detection

86

88

90

92

94

96

98

100

102

0 0.5 1 1.5 2 2.5 3

Distance (feet)

D
ig

ita
l

Right IR Detector
Left IR Detector

10

The left IR sensor never really detects any object in its path, however, at a distance of

approximately 1 foot, the right IR sensor begins to dramatically output a reading to a

maximum of 131 at approximately 0.25 feet. A correspondingly opposite result is found

when the object is positioned on the left side. The opposite side IR, in this case, the right

IR, does not detect anything, while the left IR begins dramatic detection at approximately

the 1 foot mark.

Right Oriented Object Detection

86

91

96

101

106

111

116

121

126

131

0 0.5 1 1.5 2 2.5 3

Distance (feet)

D
ig

ita
l V

al
ue

Right IR Detector
Left IR Detector

L e f t O r i e n t e d O b j e c t D e t e c t i o n

86

91

96

101

106

111

116

121

126

131

0 0.5 1 1.5 2 2.5 3

Dis tance (fee t)

D
ig

ita
l V

al
ue

R i g h t I R D e t e c t o r
L e f t I R D e t e c t o r

11

Along with IR sensors, bump sensors provide for object detection and obstacle avoidance

behavior. I implemented 3 bumpers in the front (right, center and left) of the robot.

Figure 2 in Experimental Results and Layout depict the circuit design and corresponding

voltage levels that allow the robot to determine which one or combination of bumpers

have been depressed. This design has the benefit of only having one signal, as opposed

to separate signal indicators for each bumper, that can be connected to an analog to

digital conversion pin.

I also used a metal detector coil to detect coins that maybe lying underneath the robot.

The metal detector was a Radio Shack Ferrous/Non-Ferrous metal detector. I found an

op-amp on the metal detector circuit board that would deliver a satisfactory range of

voltage levels. I wired the pin from this op-amp to the analog to digital conversion pin on

the EVBU board. This provided me with a strong enough signal to reliably detect

underlying coins. The proceeding bar graph was the results of detecting different coin

denominations underneath the metal detector coil. Different levels of output voltage are

detected for each respective coin denomination. These levels can be converted to digital

values and are shown atop each corresponding bar. It would be nice to determine which

denomination of coin was detected by its “identifying” voltage level, however, these

levels were obtained as the coin was placed directly under the center of the coil. The

resulting voltage output signal will vary as the coin is moved to different locations from

C o i n D e t e c t i o n

5 7 = 1 .1 2 V

4 5 = 0 . 8 8 V

5 2 = 1 . 0 2 V

7 4 = 1 .4 5 V

3 2 = 0 . 6 3 V

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

1

C o i n T y p e

D
ig

ita
l

P e n n y N ic k e l D im e Q u a r te r N o th in g

12

the center. Further experimentation must be done if each coin is to receive its own

identifying voltage level.

BEHAVIORS

In order to behave consistently and efficiently as an autonomous coin collecting robot, I

had to program Rockefeller so it would exhibit certain characteristic behaviors.

Rockefeller is programmed to exhibit six distinctly different behaviors, all of which are

included in the attached IC code in the appendix.

Rockefeller is autonomous, which means it can function and accomplish its task without

any outside help, except of course, for battery replacement. In order to be autonomous,

obstacle avoidance behaviors had to be programmed into Rockefeller. Without obstacle

avoidance, Rockefeller would get stuck or destroy itself by hitting obstacles all the time.

Another behavior needed in order to be autonomous, was corner detection and resolution.

Since I programmed Rockefeller to turn away from detected obstacles, an equidistant

spacing of obstacles on each side, such as a corner, would cause Rockefeller to turn from

side to side indefinitely trying to avoid both obstacles. In order to rectify this situation, I

programmed an algorithm to detect the characteristic pattern of left-right obstacle

detection within a specified amount of time. If obstacles are detected on alternating sides

in a short amount of time, Rockefeller will turn 180° and move in the opposite direction

of the assumed corner.

The other three behaviors have to do with coin detection and collection. In order to cover

as much surface area as possible, I use a random algorithm to search for possible coins. I

also calibrate the metal detector to detect a signal in a specific range when the robot is

first turned on. This allows the user to specify a specific coin denomination that they

want collected. I also programmed the robot to feedback to the user what values it has

obtained for the base ground value with no coin and then what value it has calibrated for

each specific coin to be detected and collected. This allowed me to debug any associated

problems and informed me of what values Rockefeller would interpret as being the coin

or coins in question.

All these behaviors, in combination, allowed Rockefeller to achieve its goal of being a

successful autonomous coin collection robot.

13

CONCLUSION

In conclusion, through an integrated system of sensors, behaviors and actuators a reliable

and successful autonomous coin collecting robot named Rockefeller was made to

alleviate the time consuming task of finding lost coins. The basic concept of specifying a

particular object for an autonomous robot to seek out, detect and collect has a wide range

of applications in the real world. I believe the ideas and concepts I have outlined in this

report can be broadly applied to general forms of object manipulation by autonomous

robots.

14

EXPERIMENTAL LAYOUT AND RESULTS

OBJECT ORIENTATION FOR MEASUREMENTS (FIGURE 1)

6 in

 Left 2 in Center Right

 6 in. 6 in.

Area for Frontal Object
 Detection

 IR IR
 LEFT RIGHT

 Robot

15

FRONT BUMPER SENSOR DETECTION CIRCUIT (FIGURE 2)

 R C L Vout Rin A/D VD

 0 0 0 5.02 0 252 4.94
+5V 0 0 1 2.10 32.9 105 2.06

 0 1 0 2.52 46.3 126 2.47
 0 1 1 1.49 19.2 74 1.45
 1 0 0 0.91 10.1 46 0.90
 1 0 1 0.73 7.4 37 0.73
 1 1 0 0.77 8.3 39 0.76

 Rin 1 1 1 0.65 6.6 32 0.63

46 K

 SIGNAL Vout

 to PE4

RIGHT CENTER LEFT

10.11 K 46.3 K 32.9 K

Gnd

16

APPENDIX

IC CODE FOR ROCKEFELLER

/***** ROCK.LIS *****/
a:lib_rw1a.c
a:servo.icb
a:servo.c
a:rock5.c

/***** ROCK5.C *****/

/* ROCK
 Version : 5.0
 Date : 7/26/98
 Programmer: Kelly C. Krempin
*/

int LEFT_IR, RIGHT_IR; /* values used for control */
int init_lir, init_rir; /* initial IR values used for calibration */
int lir, rir; /* realtime IR values used in calibration */
int front_bump, back_bump; /* analog to digital conversions of bumper */
 /* circuits located in front and back */
int detect;
int left_corner_cnt, right_corner_cnt, dcnt, fdcnt, mod_i;
float b_time, e_time;
int i;

int LEFT_MOTOR=1;
int RIGHT_MOTOR=0;
int TURN = 450; /* for a "normal" turn */
int THRESHOLD = 3; /* the higher the # the closer it will get */
int NOTHING, QUARTER;

int rotation;
int ROTATION_PAUSE = 100;
int UNRAVEL_WAIT = 800;
int RAVEL = 500;
int SCOOT_BACK = 300;

/*************** SubRoutines *************/
/**/

/****** Turning IR emitters on and off ******/

void IR_on()
{
poke(0x7000, 0xc0);
}

void IR_off()
{
poke(0x7000, 0x00);

17

}

/****** Motor manipulations for turning ******/

void turn_left()
{
 motor(LEFT_MOTOR, -10.0);
 motor(RIGHT_MOTOR, 30.0);
}

void turn_right()
{
 motor(LEFT_MOTOR, 30.0);
 motor(RIGHT_MOTOR, -10.0);
}

void straight_ahead()
{
 motor(LEFT_MOTOR, 30.0);
 motor(RIGHT_MOTOR, 30.0);
}

void straight_ahead_easy()
{
 motor(LEFT_MOTOR, 30.0);
 motor(RIGHT_MOTOR, 30.0);
}

void go_backwards()
{
 motor(LEFT_MOTOR, -30.0);
 motor(RIGHT_MOTOR, -30.0);
}

void stopp()
{
 motor(LEFT_MOTOR, 0.0);
 motor(RIGHT_MOTOR, 0.0);
}

void servo_stop()
{
servo_off();
poke(0x1016,0x00);
poke(0x1017,0x00);
}

/******** LED's *****/
void long_green()
{
poke(0x7000,0x02);
wait(1000);
poke(0x7000,0x00);
wait(500);
}

18

void long_red()
{
poke(0x7000,0x01);
wait(1000);
poke(0x7000,0x00);
wait(500);
}

void short_green()
{
poke(0x7000,0x02);
wait(300);
poke(0x7000,0x00);
wait(500);
}

void short_red()
{
poke(0x7000,0x01);
wait(300);
poke(0x7000,0x00);
wait(500);
}

void rg_blink()
{
 for(i=0;i<5;i++)
 {
 poke(0x7000,0x03);
 wait(200);
 poke(0x7000,0x00);
 wait(200);
 }
}

/**************/

/****** Delay ******/

void wait(int milli_seconds)
{
 long timer_a;

 timer_a = mseconds() + (long) milli_seconds;
 while (timer_a > mseconds()) {
 defer();
 }
}

void reset_corner_cnt()
{
 while(1)
 {

19

 b_time = seconds();
 e_time = seconds();
 while(e_time < (b_time + 30.0))
 {
 e_time = seconds();
 }
 left_corner_cnt = 0;
 right_corner_cnt = 0;
 }
}

/******* IR calibration *******/

void init_read_IR()
{
 IR_on();
 wait(100);
 init_lir = analog(0);
 init_rir = analog(1);
 IR_off();
}

void init_read_detector()
{
 long_red();
 long_red();
 long_red();
 read_detector();
 wait(100);
 NOTHING = detect;
 short_green();
 short_green();
 for(i=0;i<5;i++)
 {
 read_detector();
 wait(500);
 if(detect > NOTHING)
 {
 NOTHING = detect;
 short_green();
 short_green();
 }
 }
 long_green();
 for(mod_i=(NOTHING/10); mod_i > 0; mod_i--)
 {
 short_red();
 }
 short_green();
 for(mod_i=(NOTHING%10); mod_i > 0; mod_i--)
 {
 short_red();
 }
 long_green();
 read_detector();
 wait(100);

20

 while(detect <= (NOTHING+20))
 {
 read_detector();
 wait(500);
 }
 QUARTER = detect;
 short_green();
 short_green();
 for(dcnt=1 ; dcnt<15 ; dcnt++)
 {
 read_detector();
 wait(100);
 if(detect >= QUARTER)
 {
 QUARTER = detect;
 short_green();
 short_green();
 }
 }
 long_green();
 for(mod_i=(QUARTER/10); mod_i > 0; mod_i--)
 {
 short_red();
 }
 short_green();
 for(mod_i=(QUARTER%10); mod_i > 0; mod_i--)
 {
 short_red();
 }
 long_green();
}

/****** Reading sensors ******/

void read_IR()
{
 IR_on();
 wait(100);
 lir = analog(0);
 rir = analog(1);
 IR_off();
 LEFT_IR = lir - init_lir;
 RIGHT_IR = rir - init_rir;
}

void read_front_bmp()
{
 front_bump = analog(4);
}

void read_back_bmp()
{
 back_bump = analog(5);
}

21

void read_detector()
{
 detect = analog(3);
}

/****** Avoidance ******/

void ir_avoid()
{
 read_IR();
 if (LEFT_IR >= THRESHOLD || RIGHT_IR >= THRESHOLD)
 {
 if(LEFT_IR > RIGHT_IR)
 {
 left_corner_cnt = left_corner_cnt + 1;
 turn_right();
 wait(TURN);
 }
 else if (RIGHT_IR > LEFT_IR)
 {
 right_corner_cnt = right_corner_cnt + 1;
 turn_left();
 wait(TURN);
 }
 else
 {
 go_backwards();
 wait(1000);
 }
 }
 else straight_ahead();
}

void front_avoid()
{
 read_front_bmp();
 if(front_bump <= 136)
 {
 stopp();
 wait(300);
 go_backwards();
 wait(1000);
 if(front_bump >= 95 && front_bump <= 115)
 {
 turn_left();
 wait(TURN);
 }
 else if(front_bump >= 42 && front_bump <= 55)
 {
 turn_right();
 wait(TURN);
 }
 else
 {

22

 turn_left();
 wait(1300);
 }
 }
 else straight_ahead();
}

void rock()
{
long_red();
wait(4000);
servo(4500);
servo_on();
servo(4500);
wait(400);
servo_stop();
init_read_detector();
wait(300);
init_read_IR();
left_corner_cnt = 0;
right_corner_cnt = 0;
while(1)
{
if(left_corner_cnt >= 3 && right_corner_cnt >= 3)
 {
 poke(0x7000,0x01);
 stopp();
 wait(300);
 go_backwards();
 wait(1500);
 turn_left();
 wait(3000);
 poke(0x7000,0x00);
 left_corner_cnt = 0;
 right_corner_cnt =0;
 }
else
 {
 read_detector();
 if((detect <= (QUARTER+10)) && (detect >= (QUARTER-10)))
 {
 stopp();
 rg_blink();
 coin_collect();
 }
 ir_avoid();
 front_avoid();
 }
}
}

void coin_collect()
{
servo(4500);
servo_on();

23

rotation=4500;
servo(rotation);
wait(100);
motor(2,-10.0);
while(rotation>1400)
{
rotation=rotation-50;
servo(rotation);
wait(40);
}
wait(RAVEL);
stop();
servo(1100);
wait(1000);
servo_stop();

motor(0,27.0);
motor(1,27.0);
wait(1100);
motor(0,17.0);
motor(1,17.0);
wait(500);
stop();
wait(800);
motor(0,-10.0);
motor(1,-10.0);
wait(SCOOT_BACK);
stop();

wait(500);
servo(1100);
servo_on();
servo(1310);
wait(500);
motor(2,-10.0);
wait(1400);
stop();
servo(1310);
wait(1000);
servo(1100);
wait(500);
servo_stop();
wait(500);
motor(2,35.0);
wait(700);
servo(1100);
servo_on();
rotation=1100;
while(rotation<2200)
{
rotation=rotation+100;
servo(rotation);
wait(ROTATION_PAUSE);
}
wait(1650);
servo(3500);

24

wait(UNRAVEL_WAIT);
stop();
wait(800);
rotation=3500;
while(rotation<4500)
{
rotation=rotation+100;
servo(rotation);
wait(80);
}
wait(1000);
servo_stop();
}
/**/

/***************** MAIN ***********************/

void main()
{
 start_process(rock());
 start_process(reset_corner_cnt());
}
/**/

