
JAWS
The Autonomous Ball Collecting Robot

BY

Kurnia Wonoatmojo

EEL 5666 Intelligent Machine Design Laboratory

Summer 1998

Prof. A. A Arroyo

Prof. M. Schwartz

2

Table of Contents

ABSTRACT

EXECUTIVE SUMMARY

INTRODUCTION

INTEGRATED SYSTEM

MOBILE PLATFORM

SENSORS

BEHAVIORS

CONCLUSION

DOCUMENTATION

CODE

3

ABSTRACT

Originally, I designed this robot to collect golf or tennis balls. However, later I
found out that two of my classmates are making the same robot. So, I changed my design
a little bit by making it collects a particular color of balls and avoiding balls of other
colors. In other words, I want to make this robot imitate a living creature (an animal).
An animal would eat its favorite food and maybe avoids other things, JAWS perform the
same behavior based on the color of the balls.

EXECUTIVE SUMMARY

For my robot’s body, I decided to build it on a square platform. It uses three

wheels: two wheels will be driven by motor and one is just an ordinary castor wheel. It

will have a scoop made of plastic in front and a collection bin on top of the body. It will

also have two arms to raise the scoop; one of the arms will be powered by a servo. To

detect the ball, I will use a color sensor that I design myself with the help of my TA,

Scott Jantz, out of regular CDS cells with a color filter in front. JAWS will also have IR

sensors, bump sensors, and limit sensors for the arm. For the main processor, I am using

one 68HC11 board with the ME11 expansion.

INTRODUCTION

JAWS will be a ball collecting robot which will detect the color of the balls. It

has four distinct behaviors. One is obstacle avoidance, which is done by using two IR

emitters and sensors placed on top of the scoop. The second behavior is bump detection.

This behavior is achieved by placing four roller switches at the corner of the robot’s

body. Third is ball collecting, it will detect one particular color of ball and scoop it up to

its collection bin. Forth is ball avoidance, it will avoid a particular color of ball or balls.

This robot will explore the possibility of color detection, which I believe has not

been done by many students before. Everything else that I put or design for this robot is

pretty much has been done before. JAWS’ bumper design is also my original design; it

detects collision from the front and side. The only drawback is that it does not detect

collision in the middle of the robot’s body or if the robot is hit in an angle

4

INTEGRATED SYSTEM

The system that I have on my robot are one 68HC11 processor, two IR sensors,

four roller switches as bumper, one roller switch as limit switch, and four CDS color

sensors. All the sensors, except the limit switch, in the software domain are controlled by

one sensor module which will take the value of each of the sensors and put it in the

appropriate parameter.

I design the IR sensors and the CDS color sensors to perform self-calibration the

first time the robot runs. JAWS will spin around in circle and taking data as to be

compared later.

After all sensors value has been read, an arbitrator is called to perform the

appropriate task according to the reading of each parameter. If the arbitrator is executed

really fast, it will give a sense of multitasking, even though it is really not a multitasking

environment. All the arbitrator does is call the corresponding function and pass out the

right parameter. This functions are the one that actually control the motors or servos;

therefore maneuvering the robot. The flowchart diagram of the control is included on the

next page.

The system block diagram:

5

FLOWCHART DIAGRAM

6

MOBILE PLATFORM

The platform for JAWS is a regular 8x11 inch birch plywood. I borrow the

bottom design of TJ (Talrik Junior) for my motor and wheel compartment. I figure the

design is simple and also separable from the main body. The ability to separate the wheel

compartment with the body is useful for debugging. For the third wheel, I use a regular

castor wheel. These three wheels form a triangle and are very stable. The first problem

that I encounter with this design is when I changed movement from moving forward to

backward, the castor wheel is trapped in a sideways position. Therefore it is inhibiting

the robot’s mobility. I found an easy way to debug this by using a rubber band and make

the castor wheel stiff enough to not let it slip when moving backward but also allow it to

turn.

My scoop is actually the bottom of a regular plastic garbage can. I tried to make

the thickness of the scoop as thin as possible by using the garbage can to avoid pushing

the ball around. However, the first time I tried to scoop up some balls, the scoop is still

pushing the balls around. I found a way to trap the ball by adding a teeth or gripper in

front of the scoop. With this new design, I can scoop up the balls successfully.

To raise the scoop, I design two arms in shape of the letter S. I use a servo to

raise the scoop up or down. The arms have to be long enough to raise the scoop over the

68HC11 board that I place in front of the robot. I found that the 45-ounce servo is more

than sufficient to raise my scoop.

7

ACTUATION

I use two fully hacked servos to move the wheels. Fully hacked meaning taking

out the potentiometer and the logic circuit of the servo, leaving only the motor. These 45

ounce motors area cheap and strong enough to move my robot. To control these motors,

I use the motor driver from the ME11 expansion board. ME11 has two motor drivers and

two servo controllers. To drive the motors, all the ME11 does is toggle the +5 V pin.

Unlike servos, which have three control lines, motors only need the power and ground

wires.

The servo that I use for my arm is the same as the one I hack for my motor. I

hacked the potentiometer so that it does not know the position it is at now. The reason

for this hack is because I want to be able push the scoop as close as possible to the

ground. I found that if the scoop is not level with ground, it has problem to scoop up the

balls. To help me know if I have grounded the scoop, I add a limit switch at the arm. To

know how far to raise it, I use a delay routine and perform several experiment to know

how long the delay should be.

To control the motors and servo, I use a programming language called IC

(Interactive C). The command to control the motor is: motor (0 or 1, speed). It has a

speed range from –100.0 to 100.0 with the negative sign meaning going backward. For

the servo, IC has a library routine called servo.icb and servo.c, which has to be

downloaded from the library directory in IC. The control command are servo_on(),

servo_deg(), and servo_off(). Servo_on() turns the servo on, servo_deg() moves the

servo to the appropriate degree, and servo_off() turns off the servo.

The biggest problem in my project comes from the actuation. I did not find out

until late in my design progress that the servo and motor command in IC uses the same

pin (TOC 1). The motor command requires that TOC 1 is set to 0, while the servo

command change the value of TOC 1. Running the servo and motor at the same time

messes up both the servo and motor. I lost control of the servo’s direction and the

motor’s speed and direction.

8

SENSORS

I have four types of sensors mounted on JAWS. They are IR sensors, color

sensors, bump sensors, and limit switch. With the IR, I can detect obstacle in front of my

robot. The color sensors are used to detect if I have a ball in front of my robot and the

color of the ball. The bump sensors are used for collision detection. Finally, the limit

switch is used for my scoop movement.

IR Sensors

Many people have done something with IR sensors, so I will be brief with my

report on IR sensors. I conduct some experiment with my sensors and come up with the

following data:

Distance (feet) IR left (fed to port E 0) IR right (fed to port E 1)

Very far 88 86

2 89 87

1 1/2 91 89

1 92 90

1/2 96 94

0.1 113 113

Table 1

The reading is mostly linear from 2 foot to 1 foot, but becomes non-linear

between 1 foot to 1 inch. To implement some sort of Fuzzy Logic, I divide the area in

front of my servo to three ranges: close, medium, and far. If the reading falls in the far

region, my robot will go straight. If it falls within the medium region, it will turn

left/right depending on where the obstacle is. If it falls inside the close region, my robot

will back off.

Bump sensor

I use four roller switches connected as the figure 1 (on the next page). With this

type of hack, I was able to save the analog port input since it only uses one pin. To detect

9

where the collision occurs, I connect each roller switch to a different resistor value.

Whenever one is close, the reading from the Port E will be different because of the

voltage divider circuit. My TA, Scott Jantz, shows this circuit to me.

Fig. 1

I design the bumper to have the shape of the letter L. I glued the short end along

the roller and stick the long end to the front/end of my robot. This bumper design will

detect collision from the front/back and side. Below I include a picture of my bumper

design.

The reading from port E is given on the next page:

10

Front left Front right Rear left Rear right Port E reading

√ 128

√ 196

√ √ 111

√ 233

√ 240

√ √ 219-220

√ = Activated

Table 2.

My algorithm for the bump detection is keep checking if one of the above

readings is detected on Port E7. If one of the readings is detected, a mode is selected and

a particular motor speed is pass on to the arbitrator. If it is not detected, then the robot

moves on to the next function.

Color sensors

Each of my CDS sensors is set up as figure 2a and 2b below. In front of them, I

put a color filter, which is basically a stack of color transparent sheets.

Figure 2a Figure 2b

I come up with the 1 MΩ and 680 KΩ resistors by experiment. I check the

resistance range of the CDS cells. I found that the minimum range for the blue CDS cell

is 700 KΩ and for the red CDS cell is 200 KΩ . The maximum range for the blue CDS

11

cell is > than 20 MΩ and for the red CDS cell is 1.8-2 MΩ . My experimental result from

my CDS cells are included below. They are the readings from the analog port.

Original reading of each CDS cells.

red blue red Blue

63-72 40-45 170-186 216-218

 LEFT RIGHT

Table 3a

Color reading from the red CDS cells

Color of balls Left (from Port E2) Right (from Port E4)

White + 2 + 4

Red + 7-10 + 20-22

Yellow + 8-11 + 22-27

Black + >20 + >20

Blue + 5-12 +18-24

 Green + 8-12 + 24-31

Table 3b

Color reading from the blue CDS cells

Color of balls Left(Port E3) Right(Port E5)

White - 8-15 - 15-25

Red + 1 + 4-7

Yellow + 1-3 + 6-9

Black + > 10 + > 10

Blue +1-5 + 4-9

Green + 4-6 + 2-5

Table 3c

+ = Reading from analog port increases

+ = Reading from analog port can increase or decrease

- = Reading from analog port decreases

12

From the table above, I could not get a good differentiation between colors. Their

values fall to the same or similar range. I can only distinguish them to three separate

groups: white, black, and others (red, yellow, blue, and green). I tried changing the

resistor, but that just shift the numbers up or down. The other problem that I encounter is

that the increase or decrease of each color is not the same everyday. This is caused by

the sensitivity of the CDS cells. They are so sensitive that a slight change in lighting will

change my whole data. Prof. Schwartz suggested putting a light bulb that will shine on

the balls to get a more consistent reading. I incorporated that suggestion to my design

and am able to get a more consistent increase or decrease each time. The data that fills

up the three tables is the one that I get about 75% of the time.

 After many algorithm tests, I found that my color sensor can detect white color

the best. Originally, I tried to get the reading from both color sensor and subtract them.

This is the value that I hope will distinguish the colors. However, this value is still to

close to one another. The second is trying to see if the reading falls to one particular

range. This algorithm does not work because each reading from a different day is

different, so the range for any color is different each day. The third algorithm that I

found to be the most successful is checking if I get a drop from my blue CDS sensors and

a steady reading from my red CDS sensors (I defined + 3 as steady). This algorithm will

detect white ball most of the time. My success rate is probably 75% and is the highest of

all my other algorithms. To help my ball detection, I incorporated the two IR sensors to

my algorithm. The IR sensors cannot detect the color but they can detect when I have a

ball in front of the robot. They will give me an increase reading of 2-3.

Limit Switch

For my limit switch, I am using another roller switch that I glued to the side of my

arm. I measure the distance so that the switch closes when the scoop is level with

ground. This switch is connected to my analog port (pin E6). It makes a straight

connection from power to ground; so that when it closes, the reading will be 255. My

connection diagram is drawn on the next page.

13

This is my only sensor that is not read by my sensor_module. It is read by my

act_arm function when it tries to return the arm to be level to ground. The algorithm

simple since it just keep lowering the arm until a value of 255 is detected from pin E6.

BEHAVIORS

As stated before, JAWS has four distinct behaviors. They are obstacle

avoidance, collision detection, ball collecting, and ball avoidance. There are five major

functions that keep running all the time. First is the sensor_module. This function has

the task to read all the analog port and put the data in the appropriate variable. Then I

have the obstacle_avoidance, collision_detection, and ball_detect functions that will run

right after the sensor_module. These functions will pass on parameters to the arbitrator

and change the mode of operation. Finally, I have my arbitrator, which will carry out all

the necessary command to react to the mode and parameters from my function module.

To make sure that I am not running two or more behaviors at the same time, I

design my arbitrator to use priority in deciding which behavior to perform. The behavior

that has the highest priority is collision_detection. When a collision is detected, my robot

will execute the collision_detection algorithm no matter what the other sensor might read.

Second is my obstacle_avoidance. Third is my ball detection.

My biggest problem in implementing the behavior is timing. Since IC does not

have multitasking and does not have interrupts, each sensor is read consecutively. This

means that my robot will not be able to react to its surroundings right away. There is a

14

delay to read all the sensors and for the arbitrator to make a decision. Although the delay

is not that bad, but it still make the robot less responsive to its environment.

EXPERIMENTAL RESULTS

Overall, my robot performs just as expected. I am still having problem to run

both servo and motor at the same time. My obstacle_avoidance and collision_detection

works perfectly. My ball detection and avoidance is not that great. I am still missing

some balls or detecting a ball when there is nothing. Later I found out that putting a

diode allows me have the motor and diode running at the same time. My TA, Scott Jantz,

pointed it out to me. However, a new problem arises, I can only run them both together

one time. The second time I run them together, sometimes my motor turns on or changes

speed when it is not supposed to. The same goes to the servo, sometimes it raises/lowers

the scoop faster sometimes slower. Sometimes, my servo raises the scoop but never

lowers it down.

My body and scoop perform quite well. The body is strong enough to hold

everything together without losing balance or dragging anything. My scoop is strong

enough to lift a golf ball and scoop it to my collection bin. My bumper design is also

detecting collision from the front and side as expected. The only problem is that it is not

strong enough and has fallen off many times. This is because I only use hot glue to glue

it to the roller switches.

15

CONCLUSION

I have built an autonomous mobile robot that I proposed to build earlier in the

semester. I realized that it is not perfect and still need a lot of improvement, especially

the color sensor. I can not totally eliminate the motor-servo problem. I can only run

them once together. After that I have to reset the board and do everything over again to

avoid the motor-servo unwanted interaction.

For future works, I would try a different sensor for my color sensor besides CDS

cells. CDS cells are great to detect light or shadow, but not colors. They are too

sensitive to light and very unstable.

One personal note is try to stay away from super glue. I use super glue to hold

my robot’s body together. Super glue is very strong and it holds my robots body well,

but I am having huge problem when I have to take things apart. I have to fix my servo

gear one time, but I super glued it to my robot already. It is hard and painful to separate

it from my robot. I would recommend using screws or nuts to hold things together.

DOCUMENTATION

Servo.icb
Servo.c
Librw_11.c

CODE

/*Variables*/

/*for collision detection*/
int coll = 0;

/*for obstacle avoidance*/
int l_middle = 95;
int l_far ;
int r_middle = 94;
int r_far ;
int up_close = 98;
int time =0;

/*for color sensor*/

16

int left_CDS;
int right_CDS;

/*for IR*/
int left_eye;
int right_eye;
int left_far;
int right_far;
int my;

/*for arm*/
 float up = 120.0;
 float down = 85.0;
 float hold = 91.5;
 int limit = 0;
 int pos = 0;
 int done = 0;

int prev_left;
int prev_right;
int new_left;
int new_right;
int left =0;
int right=1;
int mode;

int loop;
int pid;

void main()
{
 init_sensor();
 start_process(sensor_module());
 start_process(behavior_arbitrate());
}

void init_sensor()
{
 init_IR();
 init_CDS();
}

void init_IR()
{
 poke(0x7000,0xff);
 wait(50);
 l_far = analog(0);
 r_far = analog(1);
}

void init_CDS()
{
 loop = 200;
 prev_left = analog(3);
 prev_right = analog(5);
 while (loop > 0)

17

 {
 new_left = analog(3);
 new_right = analog(5);
 prev_left = (prev_left + new_left) / 2;
 prev_right = (prev_right + new_right) / 2;
 loop = loop-1;
 }
 motor(left,-100.0);
 motor(right,100.0);
 wait(100);
 motor(left,0.0);
 motor(right,0.0);
}

void sensor_module()
{
 while(1)
 {
 left_eye = analog(0);
 right_eye = analog(1);
 left_CDS = analog(3);
 right_CDS = analog(5);
 coll = analog(7);
 wait(100);
 }
}

void behavior_arbitrate()
{
 while(1)
 {
 l_middle = 95;
 r_middle = 94;
 up_close = 100;
 left =0;
 right=1;
 up = 120.0;
 down = 85.0;
 hold = 91.5;
 mode = 0;
 if (time ==0)
 {
 ball_detect();
 time = 1000;
 }
 obstacle_avoidance();
 collision_detection();
 if (mode == 4)
 {
 motor(left, bump_left_speed);
 motor(right, bump_right_speed);
 wait(1000);
 }
 if ((mode == 0) || (mode == 3))
 { /* no other sensor is detecting anything run the lowest priority
behaviour
 or obstacle is very close avoid*/

18

 motor(left, IR_left_speed);
 motor(right, IR_right_speed);
 }
 time = time -1;
 }
}

void ball_detect()
{
 motor(0,0.0);
 motor(1,0.0);
 sleep(2.0);
 init_CDS();
 my = 5000;
 while (my > 0)
 {
 if (((prev_left - left_CDS) > 4) || ((prev_right - right_CDS) > 9)
)

 pick_ball();

 if (((left_CDS - prev_left) > 2) || ((right_CDS - prev_right) > 2)
)
 run_away();
 my = my -1;
 }
}

float IR_left_speed, IR_right_speed;
int turn = 0;
void obstacle_avoidance()
{

 if ((left_eye < (l_far+4)) && (right_eye < (r_far+4)))
 { IR_left_speed = 100.0; IR_right_speed = 100.0; mode=0;}
/*no obstacle go straight*/
 else
 {
 if((left_eye > up_close) && (right_eye > up_close))

 { /* obstacle
back off*/
 mode = 3;
 if (turn == 0)

 {IR_left_speed = -100.0; IR_right_speed = -50.0; turn = 1;}
 else
 {IR_left_speed = -50.0; IR_right_speed = -100.0; turn
=0;}
 }
 if ((left_eye > l_middle) && (right_eye < r_middle))
 {IR_left_speed = 80.0; IR_right_speed = -40.0;}
 if ((left_eye < l_middle) && (right_eye > r_middle))
 {IR_left_speed = -40.0; IR_right_speed = 80.0;}

 }
}

19

float bump_left_speed = 0.0;
float bump_right_speed = 0.0;

void collision_detection()
{
 if (coll < 254) /*no collision is
detected*/
 {
 if ((coll < 130) && (coll > 126)) /*collision in
left/front side*/
 { bump_left_speed = -20.0; bump_right_speed = -100.0; mode =
4;}
 if ((coll < 198) && (coll > 194)) /*collision in
right/front side*/
 { bump_left_speed = -100.0; bump_right_speed = -20.0; mode =
4;}
 if ((coll < 113) && (coll > 109)) /*collision
straight in front*/

 { bump_left_speed = -100.0; bump_right_speed = -100.0; mode =
4;}
 if ((coll < 236) && (coll > 230)) /*collision in
left/rear side*/
 { bump_left_speed = 100.0; bump_right_speed = 60.0; mode = 4;}
 if ((coll < 242) && (coll > 238)) /*collision in
right/back side*/
 { bump_left_speed = 60.0; bump_right_speed = 100.0; mode = 4;}
 if ((coll < 221) && (coll > 218)) /*collision in
the rear*/

 { bump_left_speed = 100.0; bump_right_speed = 100.0; mode = 4;}
 }
 else mode =0;
}

void pick_ball()
{
 motor(left, 100.0);
 motor(right, 100.0);
 wait(1000);
 act_arm();
 wait(2000);
 init_CDS();
 wait(100);
}

void act_arm()
{
 servo_on();
 up = 120.0;
 servo_deg(up);
 wait(600);
 limit=0;
 motor(0,0.0);
 motor(1,0.0);
 servo_deg(hold);

20

 my = 4000;
 while (my > 0)
 { my = my-1;}
 down = 85.0;
 servo_deg(down);
 sleep(0.3);
 while (limit < 253)
 {limit = analog(6);}
 servo_off();
 poke(0x1016,0x00);
 poke(0x1017,0x00);
}

void run_away()
{
 motor(left, 100.0);
 motor(right, -100.0);
 my = 4000;
 while (my > 0)
 {
 my = my -1;
 }
 motor(left, 0.0);
 motor(right, 0.0);
}

