
Enrique Bastante
Polyphemus

University of Florida
Department of Electrical and Computer Engineering

EEL 5666
Intelligent Machines Design Laboratory

2

Table of Contents

Abstract 3

Executive Summary 4

Introduction 5

Integrated Systems 6

Mobile Platform 7

Actuation 8

Sensors 8

Behaviors 14

Experimental Layout And Results 16

Conclusion 20

Documentation 21

Appendix A - Vendors 22

Appendix B - Code 23

3

Abstract

Polyphemus is an autonomous mobile robot featuring
collision avoidance, collision detection, sound monitoring,
line following, motion detection, and motion flow. To
accomplish these behaviors, Polyphemus uses a total of 34
sensors including 30 CdS cells, two IR detectors, one
microphone, and one bump switch.

4

Executive Summary

Polyphemus is controlled by a Motorola 68HC11

microcontroller along with an EBVU board and an ME11

daughter card. The ME11 is used to provide two motor

drivers, two selection lines, and a 40 kHz signal.

Polyphemus features 34 sensors. Two IR detectors mounted on

the front of the robot are used along with two IR LEDs

(driven at 40 kHz by the ME11) to accomplish collision

avoidance.

A bump sensor is used to detect collision in case the IR

system fails. The sensor is also mounted on the front of

the robot.

A microphone is used to scan the environment for noise

levels. If a loud noise is detected, the robot freezes for

a couple of second (‘scared behavior).

An array of 30 CdS cells is used for motion detection,

motion flow and line following. The array is built on a PC

board and its mounted on the front.

The analog port had to be expanded using 4051 multiplexers

to accommodate all the sensors.

5

Introduction

The name of my robot is Polyphemus. The idea for the robot

came to me when I run into an article by Kevin Ross on a

Low Resolution Vision System. The idea is to mount this

system on a mobile platform, so that the robot can obtain

information from its environment using a visual system.

To this date, visual sensing is accomplished with the use

of very expensive equipment like digital cameras and

powerful microprocessors, and very elaborate software.

Unfortunately, both the hardware and software needed for

these systems are way beyond my abilities, my budget, and

the scope of this course. For this reason, I thought it

would be interesting to experiment with a low resolution

vision system as the one described in the article, and find

out how much visual processing can be done with this very

simple setting.

When I first started this project I wanted my robot to use

the vision system to do line following and basic shape

recognition. Unfortunately, it became obvious with time

that shape recognition was beyond the capabilities of this

sensor. I did discover that the sensor could be used as a

motion detection device, so I decided to implement this as

part of my behaviors. Other goals were to use a microphone

6

to do noise level detection, and of course collision

avoidance and collision detection.

Integrated System

A Motorola 68HC11 EBVU board coupled with an ME11 daughter

board was used to control Polyphemus. Two IR sensors were

mounted on top of the robot’s body facing straight ahead.

The sensors detect 40kHz modulated IR signals, which are

produced by connecting two LEDs to the ME11 board. The LEDs

are also mounted at the front of the robot. The IR sensors

and emitters are used to measure distances between the

robot and obstacles in its path. The measurements of the

sensors are used to avoid obstacles, steering the platform

in a different direction if there is an obstacle in its

immediate path. A bump sensor was also mounted on the robot

for emergency situations. If the IR sensors fail to detect

an obstacle, the bump sensor detects the collision. After

the collision, the robot backs up, turn on its own axis,

and resume its forward motion.

A microphone system was mounted on the robot and connected

to the analog port. It is used to track the sound level in

the environment. If at any given time the sound level

exceeds a specified threshold, the robot stops and freezes

7

as if scared. After a small delay, the robot resumes doing

what it was previously doing.

For the vision system, cadmium-sulfide (CdS) cells were

used. The array of CdS cells was placed on a small board,

which was mounted at the front of the robot. The array

consists of 30 cells in five by six array. The cells are

read using the analog port, which was expanded to

accommodate all the sensors.

Mobile Platform

The components of Polyphemus were mounted on the body of an

old plastic toy car. The top of the body was discarded and

only the bottom used. The body is about 11.5 inches long

and about 4.5 inches wide. The wheels were taken out and

replaced with standard Talrik wheels driven by two motors.

The wheels were attached in the back, one on each side,

using epoxy glue and hot glue. A caster wheel was used for

stability. It was attached in the front using screws.

Holes were drilled for the screws of the EBVU/ME11 board.

Holes were also drilled for the IR detectors and the array

of cells, which were placed at the front of the body.

8

Actuation

The robot uses two motors to drive two wheels. The motors

used are actually two hacked servos. The servos used were

purchased from Scott Jantz. They are manufactured by Hitec

and the model is HS-422 Deluxe. They have an output torque

of 3.1kg-cm at 4.8V, and weight 45.5 g.

The motors are connected to the ME11 the two motor drivers

on the ME11 board (J4 and J5). The ME11 uses Port A, Port

D, and a 754410 to drive the motors.

The motors are along with wheels to move the robot around

its environment.

Sensors

Polyphemus sensor system consists of infrared emitters and

detectors, a bump switch, a microphone, and an array of

cadmium-sulfide photocells (CdS). There is two infrared

emitter and two detectors. They are used for collision

avoidance. The bump switch is used for situations when the

collision avoidance system fails to detect an obstacle and

a collision takes place. The microphone will implement a

fear behavior. If a loud noise is detected, the robot will

stop all other activity and remain still for a period of

time.

9

IR System

The IR system consists of two emitters and two detectors.

For the emitters, LEDs purchased from Scott Jantz were

used. The detectors, which were also purchased from Scott,

are made by Sharp, model GP1U58Y.

The LEDs are mounted on the front of the robot, facing

forward, using snap-in panel mount LED holders purchased at

Radio Shack. Dark gray foam is used to seal the back of the

LEDs so that they do not interfere with the detector’s

readings. The LEDs output a 40 kHz frequency modulated

infrared signal. This signal is driven by the ME11 board’s

digital outputs.

The Sharp IR detectors are mounted directly under the LEDs

using tape to keep them secure. The Sharp detectors are

sensitive to 40 kHz frequency modulated IR signals and are

originally designed to produce a digital output signal.

Since an analog output signal is needed for distance

measurements, the detectors had to be hacked. The hack was

accomplished following the directions in the web site’s

handouts.

The IR detectors are connected to PE1 and PE3.

10

CdS cells array

The array of CdS cells is used as a low-resolution vision

system, and it is based on an article written by Kevin

Ross. The array consists of 30 CdS cells, which were

obtained at the IMDL lab, and was built on a component PC

board bought at Radio Shack. The cells are arranged in a

five by six array with about one fourth of an inch in

between them. A representation of the array can be seen in

Figure 1.

Figure 1

CdS are used to detect light intensity. Their internal

resistance varies according to the intensity of the light

in the environment. A higher level of light reduces the

resistance in the cells, so it is an inverse light-

resistance relation. To obtain a voltage proportionate to

11

the level of light, the cells must be connected to a 5V and

to a resistor, which is connected to ground. The node

between the cell and the resistor is then connected to the

A/D converter. This configuration acts as a voltage

divider, with the CdS cells behaving as a variable

resistor. A diagram of a single CdS cell can be seen in

Figure 2.

Figure 2

Since the 68HC11 has only eight A/D lines, and the array

has 20 cells, some extra circuitry is needed. The A/D lines

were multiplexed using four 74HC4051 multiplexers. The

multiplexers provided 32 lines, more than enough for the

array, and they only used four A/D lines (PE7, PE6, PE5,

and PE4). For the select lines of the multiplexers, extra

output lines were needed. Two extra output ports were

created using 74HC574 flip-flops. The flip-flops were wired

12

to port C of the microcontroller and two select lines (Y0

and Y2) from the ME11 were used for selection. The design

schematic can be seen in Figure 3.

Figure 3

13

The cells I used had a resistance value of about 100 ohms

when placed directly in front of light source and around 60

k-ohms when they were in almost complete darkness. The

average value in a room with artificial light was 8 k-ohms.

I chose to use resistors of 10 k-ohms value in the array

circuit so that the average value would be around 2.5

volts, leaving plenty of room to swing in both directions.

Microphone

The microphone is be used to detect noise levels and

trigger a scared behavior when a loud noise is detected.

The microphone used is a PC Board microphone from Radio

Shack will be used. The microphone needs an amplifier to

produce a signal the microcontroller can use. The amplifier

used is an LM386 and was bought at Electronics Plus. The

capacitors and resistor were found in the IMDL lab. The

circuit used is the one found in “Mobile Robots” (pg 143),

and was built on a Dual Purpose PC Board bought at Radio

Shack. The output line is connected to PE2.

Bump Switch

The bump switch sensor is located at the front of the

robot. It was obtained at the IMDL lab. A plastic bumper is

attached to the switch to cover more area. When the bump

hits an obstacle, the switch sends a signal to the A/D port

14

(PE4). The robot reacts to this signal by backing up and

going in a different direction.

Behaviors

Polyphemus has a total of five behaviors:

Collision Avoidance

Polyphemus tries to avoid objects by steering away from.

When the readings from its IR detectors exceed a particular

threshold (around 8 inches), the robot steers in a

different direction to avoid the object.

Collision Detection

If collision avoidance fails and a collision does occur,

Polyphemus goes into collision detection mode. The bump

sensor signal goes from 0 to 255, alerting the robot that a

collision has occurred. The robot then backs up and goes in

a different direction.

Scared Behavior

The robot continuously scans the environment for the noise

level. If it hears a loud noise (above the threshold) the

robot gets scared, therefore it freezes. After a 2 second

delay, the robot reassumes doing its previous task.

Motion Detection

15

For this behavior, the array of cells is divided into two

sectors of 15 cells each: the right and the left sectors.

If motion is detected in the right sector, the robot spins

to the right. If motion is detected in the left sector, the

robot spins in that direction.

Line Following

The robot follows a path marked by a black line on a white

surface. This is possible because the color black does not

reflect light as well as the color white. To follow a line,

averaged readings from two cells in the center columns, a

cell in the leftmost column, and a cell in the rightmost

column are taken. The robot is then programmed to keep the

lower value (the dark color) in the center of the array by

steering in the correct direction.

Motion Flow

Polyphemus uses motion flow to determine if it is moving.

To do this, the robot takes snap shots of the ground every

500 milliseconds using the array of CdS cells. It compares

snap shots to determine if there is any difference between

them. If the change is significant, the robot determines

that it has moved. If there is little or no change, the

robot tries again. If five consecutive snap shots are the

same, the robot determines that there has been no motion;

therefore, it must be stuck. In this case, the robot backs

16

up and goes in a different direction. Motion flow makes the

robot makes it more difficult for the robot to get stuck,

because even if the bumper fails, the robot can determine

if it has gotten stuck.

Experimental Layouts and Results

IR System

The IR system was tested using an ICC11 routine I wrote. It

continuously reads the IR detectors and prints them to the

screen.

For the experiment, the robot was put on the ground and the

motors were turned off so it would remain static. A hard

cover book was used as an obstacle, and a measuring tape

was used to measure the distance from the book to the IR

detectors. The values of the detectors were recorded every

half an inch beginning at 24 inches, all the way up to 0.5

inches.

This experiment was used to determine the threshold for

collision avoidance. After examining the data, a threshold

of 100 was picked.

Figure 4 shows the data from the left IR detector. Figure 5

shows the data from the right IR detector. Figure 6 shows

both in the same graph.

17

Figure 4 - IR Left

0
20
40
60
80

100
120
140

0.
5 3

5.
5 8

10
.5 13

15
.5 18

20
.5 23

Distance (inches)

A
n

al
o

g
 P

o
rt

 V
al

u
e

IR Left

Figure 6 - Left and Right

0
20
40
60
80

100
120
140

0.
5

3.
5

6.
5

9.
5

12
.5

15
.5

18
.5

21
.5

Distance (inches)

A
n

al
o

g
 P

o
rt

 V
al

u
e

IR Left

IR Right

Fi gur e 5 - I R Ri ght

0

50

100

150

0.
5 4

7.
5 11

14
.5 18

21
.5

Di st ance (i nches)

A
n

al
o

g
 P

o
rt

 V
al

u
e

I R Ri ght

18

CdS cells array

For this experiment, all 30 cells were read with both a

white surface and a white surface. This experiment was done

to observe the difference in readings between black and

white. It can be see how the shadow of the board affects

the array readings. Table 1 shows the readings with a white

surface, and Table 2 the readings with a black surface.

Figure 7 shows the data in a graph.

87 68 89 86 99 105

87 79 83 80 79 94

90 71 84 63 90 81

70 65 65 67 72 80

56 60 71 53 74 115

Table 1

19

42 26 36 34 41 44

38 32 31 31 31 41

37 29 31 24 39 34

28 25 25 26 28 31

23 21 27 19 31 57

Table 2

Microphone

For this experiment, I took 20 readings from the analog

port, and twice during the readings a short-loud whistle

was introduced next to the microphone.

Figure 7 - CdS Cells Array

0
20
40
60
80

100
120
140

1 4 7 10 13 16 19 22 25 28

Reading

A
n

al
o

g
 P

o
rt

 V
al

u
e

Black

White

20

The purpose of this experiment was to determine a threshold

value for the scared behavior. Figure 8 shows the data in a

graph. Note that when the loud whistle is introduced, the

value jumps and then drops dramatically due to saturation.

After careful examination the threshold was picked to be

200.

Conclusion

Polyphemus proved to be a great learning experience.

Considering this is my first experience building a robot, I

am happy with what I accomplished.

The collision avoidance, collision detection, and

microphone sensors were solid worked well. Unfortunately, I

Figure 8 - Microphone Value

0

50

100

150

200

250

1 4 7 10 13 16 19

Reading

A
n

al
o

g
 P

o
rt

 V
al

u
e

Mic. Value

21

encountered many problems with the array of CdS cells. The

main problem I had was lightning. The board the array was

built on was casting a shadow on the surface to be read.

Many different lighting solution were tried, but all

failed. The array did prove to be successful doing motion

detection.

If I were to start over, I would focus on motion detection

instead of shape recognition or any vision attempt. I would

also make the array smaller, and maybe use a lens.

Documentation

This project would have not been possible without:

- Low Resolution Vision System. Kevin Ross. Seattle

Robotics Society Website.

- Mekatronics manuals

- Mobile Robots. Jones, Seiger, Flynn. A.K. Peters

Publishing. Natick, Massachusetts, 1999

- Mekatronics manuals

- Scott Jantz

- My classmates

22

Appendix A

Vendor Information

Electronics Plus
LM386 amplifier

Lowes
Caster Wheel

Mekatronics
316 NW 17th Street Suite A
Gainesville, FL 32603
Hitec HS-422 Deluxe Servos
LEDs
Sharp GP1U58Y
Wheels
Motor Driver 754410

Radio Shack
PC Component Board
PC Dual Purpose Board
PC Board Microphone

23

Appendix B

Code

/**

 * Title avoid.c
*
 * Programmer Enrique Bastante

*
 * Date July 24, 1999
*
 * Version 1 Collision Avoidance and Scared Behavior

 *
 * *
 * *

*************/

/**************************** Includes
**********************************/
#include <tjpbase.h>
#include <stdio.h>
#include <vectors.h>
#include <analog.h>
/************************ End of includes
*******************************/

void main(void)
/****************************** Main
***********************************/
{
 int ir0, ir1, micro, bump, rspeed, lspeed;

 init_motorme();
 init_clocktjp();
 init_analog();

while(1)
{

 IRE_ON;

 micro=analog(2);
 ir0=analog(3);

24

 ir1=analog(1);
 bump=analog(0);

 if (micro > 200)
 {
 rspeed = 0;
 lspeed = 0;
 motorme(RIGHT_MOTOR, rspeed);
 motorme(LEFT_MOTOR, lspeed);
 wait(2500);
 }

 if (bump > 200)
 {
 rspeed = 0;
 lspeed = 0;
 motorme(RIGHT_MOTOR, rspeed);
 motorme(LEFT_MOTOR, lspeed);

 rspeed = -100;
 lspeed = -100;
 motorme(RIGHT_MOTOR, rspeed);
 motorme(LEFT_MOTOR, lspeed);
 wait(1500);

 rspeed = -100;
 lspeed = 0;
 motorme(RIGHT_MOTOR, rspeed);
 motorme(LEFT_MOTOR, lspeed);
 wait(1000);

 rspeed = 0;
 lspeed = 0;
 motorme(RIGHT_MOTOR, rspeed);
 motorme(LEFT_MOTOR, lspeed);

 }

 if (ir0 > 100)
 lspeed = -50;
 else
 lspeed = 100;
 if (ir1 > 100)
 rspeed = -50;
 else
 rspeed = 100;

25

 motorme(RIGHT_MOTOR, rspeed);
 motorme(LEFT_MOTOR, lspeed);

 wait(50);
}

}
/**************************** End of Main
******************************/

/**

 * Title Motion.c
*
 * Programmer Enrique Bastante

*
 * Date July 24, 1999
*
 * Version 1 Motion Detection

*
 * *
 * *

*************/

/**************************** Includes
**********************************/
#include <tjpbase.h>
#include <stdio.h>
#include <vectors.h>
#include <analog.h>
/************************ End of includes
*******************************/

#define CDS_01 *(unsigned char *)(0x4000) = 0x00
#define CDS_02 *(unsigned char *)(0x4000) = 0x01
#define CDS_03 *(unsigned char *)(0x4000) = 0x02
#define CDS_04 *(unsigned char *)(0x4000) = 0x03

26

#define CDS_05 *(unsigned char *)(0x4000) = 0x04
#define CDS_06 *(unsigned char *)(0x4000) = 0x05
#define CDS_07 *(unsigned char *)(0x4000) = 0x06
#define CDS_08 *(unsigned char *)(0x4000) = 0x07
#define CDS_09 *(unsigned char *)(0x4000) = 0x00
#define CDS_10 *(unsigned char *)(0x4000) = 0x08
#define CDS_11 *(unsigned char *)(0x4000) = 0x10
#define CDS_12 *(unsigned char *)(0x4000) = 0x18
#define CDS_13 *(unsigned char *)(0x4000) = 0x20
#define CDS_14 *(unsigned char *)(0x4000) = 0x28
#define CDS_15 *(unsigned char *)(0x4000) = 0x30
#define CDS_16 *(unsigned char *)(0x4000) = 0x38
#define CDS_17 *(unsigned char *)(0x5000) = 0x00
#define CDS_18 *(unsigned char *)(0x5000) = 0x01
#define CDS_19 *(unsigned char *)(0x5000) = 0x02
#define CDS_20 *(unsigned char *)(0x5000) = 0x03
#define CDS_21 *(unsigned char *)(0x5000) = 0x04
#define CDS_22 *(unsigned char *)(0x5000) = 0x05
#define CDS_23 *(unsigned char *)(0x5000) = 0x06
#define CDS_24 *(unsigned char *)(0x5000) = 0x07
#define CDS_25 *(unsigned char *)(0x5000) = 0x00
#define CDS_26 *(unsigned char *)(0x5000) = 0x08
#define CDS_27 *(unsigned char *)(0x5000) = 0x10
#define CDS_28 *(unsigned char *)(0x5000) = 0x18
#define CDS_29 *(unsigned char *)(0x5000) = 0x20
#define CDS_30 *(unsigned char *)(0x5000) = 0x28

void main(void)
/****************************** Main
***********************************/
{
 int i, left, right, cds[30], cds2[30], diff[30],
delta[30];
/* VT100 clear screen */
 char c1, clear[]= "\x1b\x5B\x32\x4A\x04";

/* VT100 position cursor at (x,y) = (3,12) command is
"\x1b[3;12H"*/
 char place[]= "\x1b[1;1H"; /*Home*/

 init_motorme();
 init_serial();
 init_clocktjp();
 init_analog();

27

while(1)
{

 for(i=0; i<30; i++)
 delta[i]=0;

 CDS_01;
 cds[0]=analog(4);

 CDS_02;
 cds[1]=analog(4);

 CDS_03;
 cds[2]=analog(4);

 CDS_04;
 cds[3]=analog(4);

 CDS_05;
 cds[4]=analog(4);

 CDS_06;
 cds[5]=analog(4);

 CDS_07;
 cds[6]=analog(4);

 CDS_08;
 cds[7]=analog(4);

 CDS_09;
 cds[8]=analog(5);

 CDS_10;
 cds[9]=analog(5);

 CDS_11;
 cds[10]=analog(5);

 CDS_12;
 cds[11]=analog(5);

 CDS_13;
 cds[12]=analog(5);

28

 CDS_14;
 cds[13]=analog(5);

 CDS_15;
 cds[14]=analog(5);

 CDS_16;
 cds[15]=analog(5);

 CDS_17;
 cds[16]=analog(6);

 CDS_18;
 cds[17]=analog(6);

 CDS_19;
 cds[18]=analog(6);

 CDS_20;
 cds[19]=analog(6);

 CDS_21;
 cds[20]=analog(6);

 CDS_22;
 cds[21]=analog(6);

 CDS_23;
 cds[22]=analog(6);

 CDS_24;
 cds[23]=analog(6);

 CDS_25;
 cds[24]=analog(7);

 CDS_26;
 cds[25]=analog(7);

 CDS_27;
 cds[26]=analog(7);

 CDS_28;
 cds[27]=analog(7);

29

 CDS_29;
 cds[28]=analog(7);

 CDS_30;
 cds[29]=analog(7);

 for(i=0; i<5; i++)
 {

 CDS_01;
 cds2[0]=analog(4);

 CDS_02;
 cds2[1]=analog(4);

 CDS_03;
 cds2[2]=analog(4);

 CDS_04;
 cds2[3]=analog(4);

 CDS_05;
 cds2[4]=analog(4);

 CDS_06;
 cds2[5]=analog(4);

 CDS_07;
 cds2[6]=analog(4);

 CDS_08;
 cds2[7]=analog(4);

 CDS_09;
 cds2[8]=analog(5);

 CDS_10;
 cds2[9]=analog(5);

 CDS_11;
 cds2[10]=analog(5);

 CDS_12;

30

 cds2[11]=analog(5);

 CDS_13;
 cds2[12]=analog(5);

 CDS_14;
 cds2[13]=analog(5);

 CDS_15;
 cds2[14]=analog(5);

 CDS_16;
 cds2[15]=analog(5);

 CDS_17;
 cds2[16]=analog(6);

 CDS_18;
 cds2[17]=analog(6);

 CDS_19;
 cds2[18]=analog(6);

 CDS_20;
 cds2[19]=analog(6);

 CDS_21;
 cds2[20]=analog(6);

 CDS_22;
 cds2[21]=analog(6);

 CDS_23;
 cds2[22]=analog(6);

 CDS_24;
 cds2[23]=analog(6);

 CDS_25;
 cds2[24]=analog(7);

 CDS_26;
 cds2[25]=analog(7);

 CDS_27;

31

 cds2[26]=analog(7);

 CDS_28;
 cds2[27]=analog(7);

 CDS_29;
 cds2[28]=analog(7);

 CDS_30;
 cds2[29]=analog(7);

 for(i=0; i<30; i++)
 diff[i] = cds[i] - cds2[i];

 for(i=0; i<30; i++)
 delta[i] = delta[i] + diff[i];

 wait(100);
 }

 printf("%s", clear);
 printf("%s", place);

 printf("\tTitle\tcelltest3.c\n"
 "\tProgrammer\tEnrique M. Bastante\n"
 "\tDate\t\tJuly 26, 1999\n"
 "\tVersion\t\t1\n\n");

 for(i=0; i<30; i++)
 if(delta[i] < 0)
 delta[i] = -delta[i];

 right=0;
 left=0;

 for(i=0; i<30; i++)
 {
 if(i!=0 && (i%3)==0)
 i = i+3;
 if(delta[i] > 2)
 left++;

32

 }

 for(i=0; i<30; i++)
 {
 if((i%3)==0)
 i = i+3;
 if(delta[i] > 2)
 right++;
 }

 printf(" Right is: %d \n", right);

 printf(" Left: %d \n", left);

 if(right - 1> left)
 {
 printf(" Turn right");
 motorme(RIGHT_MOTOR, 100);
 motorme(LEFT_MOTOR, -100);
 wait(1800);
 motorme(RIGHT_MOTOR, 0);
 motorme(LEFT_MOTOR, 0);
 }

 else if((left - 1) > right)
 {
 printf(" Turn left");
 motorme(RIGHT_MOTOR, -100);
 motorme(LEFT_MOTOR, 100);
 wait(1800);
 motorme(RIGHT_MOTOR, 0);
 motorme(LEFT_MOTOR, 0);
 }
 wait(300);

}

}
/**************************** End of Main
******************************/

33

/**

 * Title Line.c
*
 * Programmer Enrique Bastante

*
 * Date July 24, 1999
*
 * Version 1 Line Following

*
 * *
 * *

*************/

/**************************** Includes
**********************************/
#include <tjpbase.h>
#include <stdio.h>
#include <vectors.h>
#include <analog.h>
/************************ End of includes
*******************************/

#define CDS_01 *(unsigned char *)(0x4000) = 0x00
#define CDS_02 *(unsigned char *)(0x4000) = 0x01
#define CDS_03 *(unsigned char *)(0x4000) = 0x02
#define CDS_04 *(unsigned char *)(0x4000) = 0x03
#define CDS_05 *(unsigned char *)(0x4000) = 0x04
#define CDS_06 *(unsigned char *)(0x4000) = 0x05

void main(void)
/****************************** Main
***********************************/
{
 int i, cdsr, cdsm1, cdsm2, cdsl, cdsm;

 init_motorme();
 init_serial();
 init_clocktjp();
 init_analog();

34

while(1)
{

 CDS_01;
 cdsl=analog(4);

 CDS_03;
 cdsm1=analog(4);

 CDS_04;
 cdsm2=analog(4);

 CDS_06;
 cdsr=analog(4);

 cdsm = (cdsm1 + cdsm2)/2;

 if((cdsr) < (cdsm) && (cdsr) < (cdsl))
 {
 motorme(RIGHT_MOTOR, 20);
 motorme(LEFT_MOTOR, 10);
 }

 else if(cdsl < (cdsr) && cdsl < (cdsm))
 {
 motorme(RIGHT_MOTOR, 10);
 motorme(LEFT_MOTOR, 20);
 }

 else
 {
 motorme(RIGHT_MOTOR, 20);
 motorme(LEFT_MOTOR, 20);
 }

}

35

}
/**************************** End of Main
******************************/

/**

 * Title motion.c
*
 * Programmer Enrique Bastante

*
 * Date July 24, 1999
*
 * Version 1 *
 * Motion Flow *
 * *

*************/

/**************************** Includes
**********************************/
#include <tjpbase.h>
#include <stdio.h>
#include <vectors.h>
#include <analog.h>
/************************ End of includes
*******************************/

#define CDS_01 *(unsigned char *)(0x4000) = 0x00
#define CDS_02 *(unsigned char *)(0x4000) = 0x01
#define CDS_03 *(unsigned char *)(0x4000) = 0x02
#define CDS_04 *(unsigned char *)(0x4000) = 0x03
#define CDS_05 *(unsigned char *)(0x4000) = 0x04
#define CDS_06 *(unsigned char *)(0x4000) = 0x05
#define CDS_07 *(unsigned char *)(0x4000) = 0x06
#define CDS_08 *(unsigned char *)(0x4000) = 0x07
#define CDS_09 *(unsigned char *)(0x4000) = 0x00
#define CDS_10 *(unsigned char *)(0x4000) = 0x08
#define CDS_11 *(unsigned char *)(0x4000) = 0x10
#define CDS_12 *(unsigned char *)(0x4000) = 0x18

36

#define CDS_13 *(unsigned char *)(0x4000) = 0x20
#define CDS_14 *(unsigned char *)(0x4000) = 0x28
#define CDS_15 *(unsigned char *)(0x4000) = 0x30
#define CDS_16 *(unsigned char *)(0x4000) = 0x38
#define CDS_17 *(unsigned char *)(0x5000) = 0x00
#define CDS_18 *(unsigned char *)(0x5000) = 0x01
#define CDS_19 *(unsigned char *)(0x5000) = 0x02
#define CDS_20 *(unsigned char *)(0x5000) = 0x03
#define CDS_21 *(unsigned char *)(0x5000) = 0x04
#define CDS_22 *(unsigned char *)(0x5000) = 0x05
#define CDS_23 *(unsigned char *)(0x5000) = 0x06
#define CDS_24 *(unsigned char *)(0x5000) = 0x07
#define CDS_25 *(unsigned char *)(0x5000) = 0x00
#define CDS_26 *(unsigned char *)(0x5000) = 0x08
#define CDS_27 *(unsigned char *)(0x5000) = 0x10
#define CDS_28 *(unsigned char *)(0x5000) = 0x18
#define CDS_29 *(unsigned char *)(0x5000) = 0x20
#define CDS_30 *(unsigned char *)(0x5000) = 0x28

void main(void)
/****************************** Main
***********************************/
{
 int i, count, cds[30], cds2[30], diff, delta[30], rspeed,
lspeed;
/* VT100 clear screen */
 char c1, clear[]= "\x1b\x5B\x32\x4A\x04";

/* VT100 position cursor at (x,y) = (3,12) command is
"\x1b[3;12H"*/
 char place[]= "\x1b[1;1H"; /*Home*/

 init_motorme();
 init_serial();
 init_clocktjp();
 init_analog();

 count = 0;

 printf("%s", clear);
 printf("%s", place);

 printf("\tTitle\tMotion.c\n"
 "\tProgrammer\tEnrique M. Bastante\n"
 "\tDate\t\tJuly 26, 1999\n"

37

 "\tVersion\t\t1\n\n");

while(1)
{

 for(i=0; i<30; i++)
 delta[i]=0;

 CDS_01;
 cds[0]=analog(4);

 CDS_02;
 cds[1]=analog(4);

 CDS_03;
 cds[2]=analog(4);

 CDS_04;
 cds[3]=analog(4);

 CDS_05;
 cds[4]=analog(4);

 CDS_06;
 cds[5]=analog(4);

 CDS_07;
 cds[6]=analog(4);

 CDS_08;
 cds[7]=analog(4);

 CDS_09;
 cds[8]=analog(5);

 CDS_10;
 cds[9]=analog(5);

 CDS_11;
 cds[10]=analog(5);

 CDS_12;
 cds[11]=analog(5);

 CDS_13;

38

 cds[12]=analog(5);

 CDS_14;
 cds[13]=analog(5);

 CDS_15;
 cds[14]=analog(5);

 CDS_16;
 cds[15]=analog(5);

 CDS_17;
 cds[16]=analog(6);

 CDS_18;
 cds[17]=analog(6);

 CDS_19;
 cds[18]=analog(6);

 CDS_20;
 cds[19]=analog(6);

 CDS_21;
 cds[20]=analog(6);

 CDS_22;
 cds[21]=analog(6);

 CDS_23;
 cds[22]=analog(6);

 CDS_24;
 cds[23]=analog(6);

 CDS_25;
 cds[24]=analog(7);

 CDS_26;
 cds[25]=analog(7);

 CDS_27;
 cds[26]=analog(7);

 CDS_28;

39

 cds[27]=analog(7);

 CDS_29;
 cds[28]=analog(7);

 CDS_30;
 cds[29]=analog(7);

 wait(500);

 CDS_01;
 cds2[0]=analog(4);

 CDS_02;
 cds2[1]=analog(4);

 CDS_03;
 cds2[2]=analog(4);

 CDS_04;
 cds2[3]=analog(4);

 CDS_05;
 cds2[4]=analog(4);

 CDS_06;
 cds2[5]=analog(4);

 CDS_07;
 cds2[6]=analog(4);

 CDS_08;
 cds2[7]=analog(4);

 CDS_09;
 cds2[8]=analog(5);

 CDS_10;
 cds2[9]=analog(5);

 CDS_11;
 cds2[10]=analog(5);

 CDS_12;
 cds2[11]=analog(5);

40

 CDS_13;
 cds2[12]=analog(5);

 CDS_14;
 cds2[13]=analog(5);

 CDS_15;
 cds2[14]=analog(5);

 CDS_16;
 cds2[15]=analog(5);

 CDS_17;
 cds2[16]=analog(6);

 CDS_18;
 cds2[17]=analog(6);

 CDS_19;
 cds2[18]=analog(6);

 CDS_20;
 cds2[19]=analog(6);

 CDS_21;
 cds2[20]=analog(6);

 CDS_22;
 cds2[21]=analog(6);

 CDS_23;
 cds2[22]=analog(6);

 CDS_24;
 cds2[23]=analog(6);

 CDS_25;
 cds2[24]=analog(7);

 CDS_26;
 cds2[25]=analog(7);

 CDS_27;
 cds2[26]=analog(7);

41

 CDS_28;
 cds2[27]=analog(7);

 CDS_29;
 cds2[28]=analog(7);

 CDS_30;
 cds2[29]=analog(7);

 for(i=0; i<30; i++)
 delta[i] = cds[i] - cds2[i];

 for(i=0; i<30; i++)
 if(delta[i] < 0)
 delta[i] = -delta[i];

 diff = 0;

 for(i=0; i<30; i++)
 if(delta[i] > 1)
 diff = diff + 1;
 printf(" Diff is: %d \n", diff);

 if(diff < 5)
 count = count + 1;
 else
 count = 0;

 if(count > 3)
 {
 printf(" Stopped\n\n");

 rspeed = 0;
 lspeed = 0;
 motorme(RIGHT_MOTOR, rspeed);
 motorme(LEFT_MOTOR, lspeed);

 rspeed = -100;
 lspeed = -100;
 motorme(RIGHT_MOTOR, rspeed);
 motorme(LEFT_MOTOR, lspeed);
 wait(1500);

 rspeed = -100;
 lspeed = 0;
 motorme(RIGHT_MOTOR, rspeed);

42

 motorme(LEFT_MOTOR, lspeed);
 wait(1000);

 rspeed = 0;
 lspeed = 0;
 motorme(RIGHT_MOTOR, rspeed);
 motorme(LEFT_MOTOR, lspeed);

 }

 else
 { lspeed = 100;
 rspeed = 100;

 motorme(RIGHT_MOTOR, rspeed);
 motorme(LEFT_MOTOR, lspeed);
 }
}
}
/**************************** End of Main
******************************/

