Enrique Bastante
Polyphemus

University of Florida

Departnent of El ectrical and Conputer Engi neering
EEL 5666

Intelligent Machi nes Design Laboratory

Table of Contents

Abstr act

Executive Sunmmary

| nt roducti on

| nt egrat ed Systens

Mobil e Pl atform

Actuation

Sensors

Behavi ors

Experimental Layout And Results
Concl usi on

Docunent ati on

Appendi x A - Vendors

Appendi x B - Code

14

16

20

21

22

23

Abstract

Pol yphermus is an autononous nobil e robot featuring

col lision avoi dance, collision detection, sound nonitoring,
l[ine follow ng, notion detection, and notion flow. To
acconplish these behaviors, Pol yphenmus uses a total of 34
sensors including 30 CdS cells, two IR detectors, one

m cr ophone, and one bunp sw tch.

Executive Summary

Pol yphemus is controlled by a Mdtorola 68HCL1

m crocontroller along with an EBVU board and an M1l
daughter card. The ME1l is used to provide two notor
drivers, two selection |lines, and a 40 kHz signal.

Pol yphemus features 34 sensors. Two IR detectors nounted on
the front of the robot are used along with two IR LEDs
(driven at 40 kHz by the ME11l) to acconplish collision

avoi dance.

A bunp sensor is used to detect collision in case the IR
systemfails. The sensor is also nounted on the front of

t he robot.

A m crophone is used to scan the environnment for noise
levels. If a loud noise is detected, the robot freezes for
a couple of second (‘scared behavior).

An array of 30 CdS cells is used for notion detection,
nmotion flow and line followng. The array is built on a PC
board and its nounted on the front.

The anal og port had to be expanded using 4051 multi pl exers

to accombdate all the sensors.

Introduction

The name of ny robot is Polyphemus. The idea for the robot
canme to ne when | run into an article by Kevin Ross on a
Low Resol ution Vision System The idea is to nount this
systemon a nobile platform so that the robot can obtain
information fromits environnment using a visual system

To this date, visual sensing is acconplished with the use
of very expensive equipnent |ike digital canmeras and
powerful mcroprocessors, and very el aborate software.
Unfortunately, both the hardware and software needed for

t hese systens are way beyond ny abilities, nmy budget, and
the scope of this course. For this reason, | thought it
woul d be interesting to experiment with a | ow resol ution
vi sion systemas the one described in the article, and find
out how nmuch vi sual processing can be done with this very
sinpl e setting.

Wien | first started this project | wanted ny robot to use
the vision systemto do line foll ow ng and basi c shape
recognition. Unfortunately, it becanme obvious with tine

t hat shape recognition was beyond the capabilities of this
sensor. | did discover that the sensor could be used as a
noti on detection device, so | decided to inplenent this as

part of ny behaviors. Other goals were to use a m crophone

to do noise |l evel detection, and of course collision

avoi dance and colli sion detection.

Integrated System

A Mtorola 68HC11 EBVU board coupled with an ME1l daughter
board was used to control Polyphemus. Two IR sensors were
nmount ed on top of the robot’s body facing straight ahead.
The sensors detect 40kHz nodul ated IR signals, which are
produced by connecting two LEDs to the ME1ll board. The LEDs
are also mounted at the front of the robot. The IR sensors
and emtters are used to neasure distances between the
robot and obstacles in its path. The neasurenents of the
sensors are used to avoi d obstacles, steering the platform
in adifferent direction if there is an obstacle in its

i mredi ate path. A bunp sensor was al so nounted on the robot
for energency situations. If the IR sensors fail to detect
an obstacle, the bunp sensor detects the collision. After
the collision, the robot backs up, turn on its own axis,
and resune its forward notion.

A m crophone system was nounted on the robot and connected
to the analog port. It is used to track the sound |evel in
the environnment. If at any given tinme the sound | evel

exceeds a specified threshold, the robot stops and freezes

as if scared. After a small delay, the robot resumes doing
what it was previously doing.

For the vision system cadm umsulfide (CdS) cells were
used. The array of CdS cells was placed on a small board,
whi ch was nmounted at the front of the robot. The array
consists of 30 cells in five by six array. The cells are
read using the anal og port, which was expanded to

accommpdate all the sensors.

Mobile Platform

The conmponents of Pol yphenmus were nounted on the body of an
old plastic toy car. The top of the body was di scarded and
only the bottom used. The body is about 11.5 inches |ong
and about 4.5 inches wi de. The wheels were taken out and
replaced with standard Talrik wheels driven by two notors.
The wheel s were attached in the back, one on each side,
usi ng epoxy glue and hot glue. A caster wheel was used for
stability. It was attached in the front using screws.

Hol es were drilled for the screws of the EBVU ME1l board.
Hol es were also drilled for the IR detectors and the array

of cells, which were placed at the front of the body.

Actuation

The robot uses two notors to drive two wheels. The notors

used are actually two hacked servos. The servos used were

purchased from Scott Jantz. They are manufactured by Hitec
and the nodel is HS-422 Del uxe. They have an output torque
of 3.1kg-cm at 4.8V, and weight 45.5 g.

The notors are connected to the MEL1 the two notor drivers
on the ME1ll board (J4 and J5). The ME1ll uses Port A, Port

D, and a 754410 to drive the notors.

The notors are along with wheels to nove the robot around

its environnent.

Sensors

Polyphemus sensor system consists of infrared emtters and
detectors, a bunp switch, a m crophone, and an array of
cadm um sul fi de photocells (CdS). There is two infrared
emtter and two detectors. They are used for collision
avoi dance. The bunp switch is used for situations when the
collision avoidance systemfails to detect an obstacle and
a collision takes place. The m crophone wll inplenent a
fear behavior. If a loud noise is detected, the robot wll
stop all other activity and remain still for a period of

tine.

IR System

The IR system consists of two emtters and two detectors.
For the emtters, LEDs purchased from Scott Jantz were
used. The detectors, which were al so purchased from Scott,
are made by Sharp, nodel GP1US8Y

The LEDs are nounted on the front of the robot, facing
forward, using snap-in panel nount LED hol ders purchased at
Radi o Shack. Dark gray foamis used to seal the back of the
LEDs so that they do not interfere with the detector’s
readi ngs. The LEDs output a 40 kHz frequency nodul at ed
infrared signal. This signal is driven by the ME1l board’ s
di gital outputs.

The Sharp IR detectors are nounted directly under the LEDs
using tape to keep them secure. The Sharp detectors are
sensitive to 40 kHz frequency nodul ated IR signals and are
originally designed to produce a digital output signal.
Since an anal og output signal is needed for distance
nmeasurenents, the detectors had to be hacked. The hack was
acconplished followng the directions in the web site’s
handout s.

The IR detectors are connected to PE1 and PES3.

CdS cells array

The array of CdS cells is used as a | owresol ution vision
system and it is based on an article witten by Kevin
Ross. The array consists of 30 CdS cells, which were
obtained at the IMDL | ab, and was built on a conponent PC
board bought at Radi o Shack. The cells are arranged in a
five by six array with about one fourth of an inch in
between them A representation of the array can be seen in

Figure 1.

O O O O O
O O O O O
O O O O
O O O O O
O O O O O
OO0 O O O

Figure 1

CdS are used to detect light intensity. Their internal
resi stance varies according to the intensity of the |ight
in the environment. A higher |evel of |ight reduces the
resistance in the cells, so it is an inverse |light-

resi stance relation. To obtain a voltage proportionate to

10

the level of light, the cells nust be connected to a 5V and
to a resistor, which is connected to ground. The node
between the cell and the resistor is then connected to the
A/'D converter. This configuration acts as a voltage
divider, with the CdS cells behaving as a variable
resistor. A diagramof a single CdS cell can be seen in

Figure 2.

<

Cd5 photocell

MD port

0-5v
1k

Figure 2

Since the 68HC11 has only eight A/D lines, and the array
has 20 cells, sone extra circuitry is needed. The A/D |lines
were multipl exed using four 74HC4A051 mul ti pl exers. The

mul ti pl exers provided 32 |ines, nore than enough for the
array, and they only used four A/D lines (PE7, PE6, PE5,
and PE4). For the select lines of the nultiplexers, extra
output lines were needed. Two extra output ports were

created using 74HC574 flip-flops. The flip-flops were wred

11

to port C of the mcrocontroller and two select lines (YO

and Y2) fromthe ME1l were used for selection. The design

schematic can be seen in Figure 3.

T (from MELL)

Télfrom MELL)

514

I
rag 1—oo
rds :—IL I
rag :—DE .
rds 4—D2 0 —
rdg 5D —
rds 5—D% —
T rds 7—D6 L
rag §—o? ——
—
I—su
o0 31 —
oL 3% I
0& - —
02 I 5
02 T —
it L
06 [— -1 5
07 |— P T 4
rdg 9 —Do :_}
rds 1n—ol __>
rds 11— __>
rds 1i—o? a __>
rds 1:—D¢ __>
rds 14—0% __}
rds 15— ___>
rds 16—D7 —
.
30 m <
3l 5] B
3E T
N Tl
1 _:_>
2051 —]
T
T
rds 17—
rds 1s—0OL :_}
rds 19— ___>
rds go—D2 a __>
rds :1—D¢ __}
rds zi—D% __>
z rds @z—DE —
raz i4—D7 Eavp Sensor——
fﬂ Tharp Cam I——>
o fsz ot L E
m]
gi - —I:O Microphome —+—
0k 4051
s __}
06 |— __}.;,
07 |— 5
£ds :5—D0 __>_>
£ds if—d T I
£ds @7 — ¢ S Y
£ds is—D? o 2
£ds 3 D¢
£ds 20 DS
il
Dz HEATEE), £ 0F
30
31
3%
o ER
4051
Figure 3

12

The cells | used had a resistance val ue of about 100 ohns
when placed directly in front of |light source and around 60
k- ohnms when they were in al nost conpl ete darkness. The
average value in a roomwth artificial Iight was 8 k-ohns.
| chose to use resistors of 10 k-ohns value in the array
circuit so that the average val ue would be around 2.5
volts, leaving plenty of roomto swing in both directions.

Microphone

The m crophone is be used to detect noise |evels and
trigger a scared behavior when a | oud noise is detected.
The m crophone used is a PC Board m crophone from Radi o
Shack will be used. The m crophone needs an anplifier to
produce a signal the mcrocontroller can use. The anplifier
used is an LM386 and was bought at Electronics Plus. The
capacitors and resistor were found in the IMDL | ab. The
circuit used is the one found in “Mbile Robots” (pg 143),
and was built on a Dual Purpose PC Board bought at Radio

Shack. The output line is connected to PE2.

Bump Switch

The bunp switch sensor is |ocated at the front of the
robot. It was obtained at the IMDL |ab. A plastic bunper is
attached to the switch to cover nore area. Wien the bunp

hits an obstacle, the switch sends a signal to the A/D port

13

(PE4). The robot reacts to this signal by backing up and

going in a different direction.

Behaviors

Pol yphemus has a total of five behaviors:

Collision Avoidance

Pol yphenmus tries to avoid objects by steering away from
When the readings fromits IR detectors exceed a particul ar
threshol d (around 8 inches), the robot steers in a

different direction to avoid the object.

Collision Detection

If collision avoidance fails and a collision does occur,
Pol yphemus goes into collision detection node. The bunp
sensor signal goes fromO to 255, alerting the robot that a
collision has occurred. The robot then backs up and goes in

a different direction.

Scared Behavior

The robot continuously scans the environnment for the noise
level. If it hears a | oud noise (above the threshold) the
robot gets scared, therefore it freezes. After a 2 second

del ay, the robot reassunes doing its previous task.

Motion Detection

14

For this behavior, the array of cells is divided into two
sectors of 15 cells each: the right and the left sectors.

If notion is detected in the right sector, the robot spins

to the right. If notion is detected in the left sector, the

robot spins in that direction.

Line Following

The robot follows a path marked by a black Iine on a white
surface. This is possible because the col or black does not
reflect light as well as the color white. To follow a |ine,
averaged readings fromtwo cells in the center colums, a
cell in the leftnost columm, and a cell in the rightnost
columm are taken. The robot is then programmed to keep the
| oner value (the dark color) in the center of the array by

steering in the correct direction.

Motion Flow

Pol yphenmus uses notion flow to determne if it is noving.
To do this, the robot takes snap shots of the ground every
500 mlliseconds using the array of CdS cells. It conpares
snap shots to determne if there is any difference between
them If the change is significant, the robot determ nes
that it has noved. If there is little or no change, the
robot tries again. If five consecutive snap shots are the
sanme, the robot determ nes that there has been no notion;

therefore, it nust be stuck. In this case, the robot backs

15

up and goes in a different direction. Mtion flow makes the
robot makes it nore difficult for the robot to get stuck,
because even if the bunper fails, the robot can determ ne

if it has gotten stuck.

Experimental Layouts and Results

IR System

The IR systemwas tested using an I CC11 routine | wote. It
continuously reads the IR detectors and prints themto the
screen.

For the experinent, the robot was put on the ground and the
notors were turned off so it would remain static. A hard
cover book was used as an obstacle, and a neasuring tape
was used to neasure the distance fromthe book to the IR
detectors. The values of the detectors were recorded every
hal f an inch beginning at 24 inches, all the way up to 0.5
i nches.

This experinment was used to determne the threshold for
collision avoi dance. After exam ning the data, a threshold
of 100 was pi cked.

Figure 4 shows the data fromthe left IR detector. Figure 5
shows the data fromthe right IR detector. Figure 6 shows

both in the sane graph.

16

17

CdS cells array

For this experinment, all 30 cells were read with both a
white surface and a white surface. This experinment was done
to observe the difference in readings between bl ack and
white. It can be see how the shadow of the board affects
the array readings. Table 1 shows the readings with a white
surface, and Table 2 the readings with a bl ack surface.

Figure 7 shows the data in a graph.

87 68 89 86 99 105

87 79 83 80 79 94

90 71 84 63 90 81

70 65 65 67 72 80

56 60 71 53 74 115
Table 1

18

42 26 36 34 41 44

38 32 31 31 31 41

37 29 31 24 39 34

28 25 25 26 28 31

23 21 27 19 31 57
Table 2

Microphone

For this experiment, | took 20 readings fromthe anal og
port, and twi ce during the readings a short-loud whistle

was introduced next to the m crophone.

The purpose of this experinent was to determne a threshold
value for the scared behavior. Figure 8 shows the data in a
graph. Note that when the loud whistle is introduced, the
val ue junps and then drops dramatically due to saturation.

After careful exam nation the threshold was picked to be

200.
Figure 8 - Microphone Value

S 250

S 200 /X\ ’\

=

2 igg seee \] \ f’w —e— Mic. Value

g \/ \/

s 50 : :

< OIIIIIIIIIIIIIIIIIII

YX A e
Reading

Conclusion

Pol yphemus proved to be a great |earning experience.
Considering this is ny first experience building a robot, |
am happy with what | acconpli shed.

The col lision avoi dance, collision detection, and

m crophone sensors were solid worked well. Unfortunately, |

20

encountered many problens with the array of CdS cells. The
mai n problem | had was |lightning. The board the array was
built on was casting a shadow on the surface to be read.
Many different lighting solution were tried, but al

failed. The array did prove to be successful doing notion

det ecti on.
If I were to start over, | would focus on noti on detection
i nstead of shape recognition or any vision attenpt. | would

al so make the array smaller, and nmaybe use a | ens.

Documentation

This project would have not been possible w thout:

- Low Resolution Vision System Kevin Ross. Seattle

Robotics Society Wbsite.

- Mekatronics nmanual s

- Mbil e Robots. Jones, Seiger, Flynn. A K Peters
Publ i shing. Natick, Massachusetts, 1999

- Mekatronics nmanual s

- Scott Jantz

- My cl assmates

21

Appendix A

Vendor Information

El ectroni cs Pl us
LMB86 anplifier

Lowes
Cast er \Weel

Mekat roni cs

316 NW 17 Street Suite A
Gainesville, FL 32603

H tec HS-422 Del uxe Servos
LEDs

Sharp GP1U58Y

Wheel s

Mot or Driver 754410

Radi o Shack

PC Conponent Board
PC Dual Purpose Board
PC Board M crophone

22

Appendix B

Code

/**

R R b Sk S b Sk b I b

* Title avoid. c

*

* Programmer Enrique Bastante
*

* Date July 24, 1999
*
* \er sion 1 Col i si on Avoi dance and Scar ed Behavi or
*
* *
* *

R R Sk S b Sk S b S b S b S b b S bk b b S bk R R b S S b b b S b S b b Rk b b S b S b b S

*************/

/**************************** Incl udes

**********************************/

#i ncl ude <tj pbase. h>
#1 ncl ude <stdi o. h>

#1 ncl ude <vectors. h>
#i ncl ude <anal og. h>

/************************ End Of |nCI udes
*******************************/

voi d mai n(voi d)

/****************************** |Vb.|n

***********************************/

{

int ir0Q, irl, mcro, bunp, rspeed, |speed,
init_notorme();

init_clockt)p();

i nit_anal og();

whi | e(1)
{

| RE_ON,
m cr o=anal og(2);

i rO=anal og(3);

23

i rl=anal og(1);
bunmp=anal og(0) ;

if (mcro > 200)

{

}

rspeed = O;
| speed = O;

not or me(Rl GHT_MOTOR, rspeed);

not or me(LEFT_MOTOR, | speed);
wai t (2500) ;

if (bunmp > 200)

{

rspeed = O;
| speed = O;

not or mre(Rl GHT_MOTOR, rspeed);

not or me(LEFT_MOTOR, | speed);

rspeed = -100;
| speed = -100;

not or mre(Rl GHT_MOTOR, rspeed);

not or me(LEFT_MOTOR, | speed);
wai t (1500) ;

rspeed = -100;
| speed = O;

not or mre(Rl GHT_MOTOR, rspeed);

not or me(LEFT_MOTOR, | speed);
wai t (1000) ;

rspeed = O;
| speed = O;

not or me(Rl GHT_MOTOR, rspeed);

not or me(LEFT_MOTOR, | speed);

}
if (ir0 > 100)
| speed = -50;
el se
| speed = 100;
if (irl > 100)
rspeed = -50;
el se
rspeed = 100;

24

not or me(Rl GHT_MOTOR, rspeed);
not or me(LEFT_MOTOR, | speed);

wai t (50);
}

}

/**************************** End Of I\/aln

******************************/

/**

R R I b b S b Sk b b S b

* Title Mbti on. c

*

* Programmer Enrique Bastante
*

* Date July 24, 1999
*
* \er sion 1 Mbti on Detection
*
*
* *

R R b Sk S b Sk S b S b S b S b b S bk b b S bk R R I S i b b b S b S b b b S b b S Rk b b S b

*************/

/**************************** Incl udes

**********************************/

#i ncl ude <tj pbase. h>
#1 ncl ude <stdi o. h>

#1 ncl ude <vectors. h>
#i ncl ude <anal og. h>

/************************ End Of |nCI udes
*******************************/

#define CDS 01 *(unsigned char *)(0x4000) = 0x00
#define CDS 02 *(unsigned char *)(0x4000) = 0x01
#define CDS 03 *(unsigned char *)(0x4000) = 0x02
#define CDS 04 *(unsigned char *)(0x4000) = 0x03

25

#define CDS 05 *(unsigned char *)(0x4000) = 0x04
#define CDS 06 *(unsigned char *)(0x4000) = 0xO05
#define CDS_07 *(unsigned char *)(0x4000) = 0x06
#define CDS 08 *(unsigned char *)(0x4000) = 0x07
#define CDS 09 *(unsigned char *)(0x4000) = 0x00
#define CDS_10 *(unsigned char *)(0x4000) = 0x08
#define CDS_11 *(unsigned char *)(0x4000) = 0x10
#define CDS_12 *(unsigned char *)(0x4000) = 0x18
#define CDS_13 *(unsigned char *)(0x4000) = 0x20
#define CDS_14 *(unsigned char *)(0x4000) = 0x28
#define CDS 15 *(unsigned char *)(0x4000) = 0x30
#define CDS_16 *(unsigned char *)(0x4000) = 0x38
#define CDS 17 *(unsigned char *)(0x5000) = 0x00
#define CDS 18 *(unsigned char *)(0x5000) = 0x01
#define CDS 19 *(unsigned char *)(0x5000) = 0x02
#define CDS 20 *(unsigned char *)(0x5000) = 0x03
#define CDS 21 *(unsigned char *)(0x5000) = 0x04
#define CDS 22 *(unsigned char *)(0x5000) = 0x05
#define CDS 23 *(unsigned char *)(0x5000) = 0x06
#define CDS_24 *(unsigned char *)(0x5000) = 0x07
#define CDS 25 *(unsigned char *)(0x5000) = 0x00
#define CDS 26 *(unsigned char *)(0x5000) = 0x08
#define CDS 27 *(unsigned char *)(0x5000) = 0x10
#define CDS 28 *(unsigned char *)(0x5000) = 0x18
#define CDS 29 *(unsigned char *)(0x5000) = 0x20
#define CDS 30 *(unsigned char *)(0x5000) = 0x28
voi d mai n(voi d)
/****************************** |Vb.ln
***********************************/
{

int i, left, right, cds[30], cds2[30], diff[30],
del ta[30];

/* VT100 cl ear screen */
char c1, clear[]= "\x1b\x5B\ x32\ x4A\ x04";

[* VT100 position cursor at (x,y) = (3,12) conmand is
"\ x1b[3; 12H"*/
char place[]= "\x1b[1; 1H"; [*Home*/

init_notorme();
init_serial();
init_clockt)p();
i nit_anal og();

whi | e(1)

{

for(i=0; i<30; i++)
del ta[i]=0;

CDS_01:
cds[0] =anal og(4) ;

CDS _02;
cds[1] =anal og(4);

CDS _03;
cds[2] =anal og(4);

CDS_04;
cds[3] =anal og(4);

CDS 05:
cds[4] =anal og(4);

CDS_06;
cds[5] =anal og(4) ;

CDS _07;
cds[6] =anal og(4) ;

CDS_08;
cds[7] =anal og(4);
CDS_009;
cds[8] =anal og(5);

CDS _10;
cds[9] =anal og(5);

CDS_11;
cds[10] =anal og(5);

CDS_12;
cds[11] =anal og(5);

CDS_13;
cds[12] =anal og(5);

27

CDS_14;

cds[13] =anal og(5) ;

CDS_15;

cds[14] =anal og(5) ;

CDS_16;

cds[15] =anal og(5);

CDS_17;

cds[16] =anal og(6) ;

CDS_18;

cds[17] =anal og(6) ;

CDS_19;

cds[18] =anal og(6);

CDS_20;

cds[19] =anal og(6);

CDS_21;

cds[20] =anal og(6);

CDS_22;

cds[21] =anal og(6) ;

CDS_23;

cds[22] =anal og(6);

CDS_24;

cds[23] =anal og(6);

CDS_25;

cds[24] =anal og(7) ;

CDS_26;

cds[25] =anal og(7);

CDS_27;

cds[26] =anal og(7);

CDS_28;

cds[27] =anal og(7);

28

CDS _29;
cds[28] =anal og(7);

CDS_30;
cds[29] =anal og(7);

for(i=0; i<5; i++)

{

CDS_01;
cds2[0] =anal og(4);

CDS_02;
cds?2[1] =anal og(4);

CDS _03;
cds2[2] =anal og(4);

CDS_04;
cds2[3] =anal og(4);

CDS_05;
cds2[4] =anal og(4);

CDS_06:
cds2[5] =anal og(4);

CDS _07;
cds2[6] =anal og(4);

CDS_08;
cds2[7] =anal og(4);
CDS 09:
cds2[8] =anal og(5);

CDS _10;
cds2[9] =anal og(5);

CDS_11;

cds2[10] =anal og(5) ;

CDS_12;

29

cds2[11] =anal og(5);

CDS_13;

cds§[12]=analog(5);

CDS _14;

cds2[13] =anal og(5);

CDS_15;

cds2[14] =anal og(5);

CDS_16;

cds2[15] =anal og(5);

CDS 17;

cds2[16] =anal og(6);

CDS_18;

cds§[17]=analog(6);

CDS_19;

cds2[18] =anal og(6);

CDS_20;

cds2[19] =anal og(6);

CDS 21;

cds§[20]=analog(6);

CDS 22;

cds2[21] =anal og(6);

CDS_23;

cds2[22] =anal og(6);

CDS 24;

cds2[23] =anal og(6);

CDS_25;

cds2[24] =anal og(7) ;

CDS_26;

cds§[25]=analog(7);

CDS_27;

30

cds2[26] =anal og(7);

CDS_28;
cds2[27] =anal og(7);

CDS 29;
cds2[28] =anal og(7);

CDS_30;
cds2[29] =anal og(7);

for(i=0; i<30; i++)
diff[i] = cds[i] - cds2[i];

for(i=0; i1<30; i++)

delta[i] = delta[i] + diff[i];

wai t (100);

printf("%", clear);
printf("%", place);

printf("\tTitle\tcelltest3.c\n"

"\t Programmer\t Enri que M Bastante\n"

“\tDate\t\tJuly 26, 1999\ n"
"\tVersion\t\t1l\n\n");

for(i=0; i1<30; i++)
if(deltal[i] < 0)
delta[i] = -deltali];

ri ght =0;
| ef t =0;

for(i=0; i1<30; i++)

{
if(i!'=0 && (i %) ==0)
i =i +3;
if(delta[i] > 2)
| ef t ++;

31

}
for(i=0; i1<30; i++)
i f((i9%)==0)
i =i +3;

if(deltali] > 2)
ri ght ++;

printf(" Right is: % \n", right);
printf(" Left: % \n", left);

if(right - 1> left)

{
printf(" Turn right");
nmot or me(R GHT_MOTOR, 100) ;
nmot or me(LEFT_MOTOR, - 100);
wai t (1800);
nmot or me(Rl GHT_MOTOR, 0);
nmot or me(LEFT_MOTOR, 0);

}

else if((left - 1) > right)

{
printf(" Turn left");
nmot or me(Rl GHT_MOTOR, -100);
nmot or me(LEFT_MOTOR, 100);
wai t (1800);
nmot or me(R GHT_MOTOR, 0);
nmot or me(LEFT_MOTOR, 0);

}

wai t (300);

}

/**************************** End Of I\/aln

******************************/

32

/**

R R b b S b Sk b b I b

* Title Li ne. c

*

* Programmer Enrique Bastante
*

* Date July 24, 1999
*
* Version 1 Li ne Fol | owi ng
*
* *
* *

R R bk S b Sk S b I b S b S b b S b Sk b b bk S R R I S i b b b S b S b b b S b b I R S b b S 4

*************/

/**************************** Incl udes

**********************************/

#i ncl ude <tj pbase. h>
#1 ncl ude <stdi o. h>

#1 ncl ude <vectors. h>
#i ncl ude <anal og. h>

/************************ End Of |nCI udes
*******************************/

#define CDS_01 *(unsigned char *)(0x4000) = 0x00
#define CDS 02 *(unsigned char *)(0x4000) = 0x01
#define CDS 03 *(unsigned char *)(0x4000) = 0x02
#define CDS 04 *(unsigned char *)(0x4000) = 0x03
#define CDS 05 *(unsigned char *)(0x4000) = 0x04
#define CDS 06 *(unsigned char *)(0x4000) = 0xO05

voi d mai n(voi d)

/****************************** |Vb.|n

***********************************/

{
int i, cdsr, cdsml, cdsn?, cdsl, cdsm

init_notorme();
init_serial();
init_clockt)p();
i nit_anal og();

33

whi | e(1)
{

CDS 01;
cdsl =anal og(4);

CDS 03;
cdsml=anal og(4);

CDS_04;
cdsnm=anal og(4);

CDS 06;
cdsr=anal og(4);

cdsm = (cdsml + cdsnR)/ 2;

if((cdsr) < (cdsm) && (cdsr) < (cdsl))
{

not or me(Rl GHT_MOTOR, 20) ;

not or me(LEFT_MOTOR, 10);
}

el se if(cdsl < (cdsr) && cdsl < (cdsm)
{

not or me(Rl GHT_MOTOR, 10);

not or me(LEFT_MOTOR, 20);
}

el se

{
not or me(Rl GHT_MOTOR, 20);
not or me(LEFT_MOTOR, 20);

}

}

/**************************** End Of I\/aln

******************************/

/**

R R b b S b Sk S b I b

* Title nmoti on. ¢

*

* Programmer Enrique Bastante
*

* Date July 24, 1999
*
* \er sion 1 *
* Mbti on Fl ow *
* *

R R R b Sk S b Sk S b S b S b S b b S b Sk b b S bk R b S S b S b S b S b R R bk S b S b b S 4

*************/

/**************************** Incl udes

**********************************/

#i ncl ude <tj pbase. h>
#1 ncl ude <stdi o. h>

#1 ncl ude <vectors. h>
#i ncl ude <anal og. h>

/************************ End Of |nCI udes
*******************************/

#define CDS 01 *(unsigned char *)(0x4000) = 0x00
#define CDS 02 *(unsigned char *)(0x4000) = 0x01
#define CDS 03 *(unsigned char *)(0x4000) = 0x02
#define CDS 04 *(unsigned char *)(0x4000) = 0x03
#define CDS 05 *(unsigned char *)(0x4000) = 0x04
#define CDS 06 *(unsigned char *)(0x4000) = 0xO05
#define CDS 07 *(unsigned char *)(0x4000) = 0x06
#define CDS 08 *(unsigned char *)(0x4000) = 0x07
#define CDS 09 *(unsigned char *)(0x4000) = 0x00
#define CDS 10 *(unsigned char *)(0x4000) = 0x08
#define CDS_11 *(unsigned char *)(0x4000) = 0x10
#define CDS_12 *(unsigned char *)(0x4000) = 0x18

#define CDS_13 *(unsigned char *)(0x4000) = 0x20
#define CDS_14 *(unsigned char *)(0x4000) = 0x28
#define CDS_15 *(unsigned char *)(0x4000) = 0x30
#define CDS_16 *(unsigned char *)(0x4000) = 0x38
#define CDS 17 *(unsigned char *)(0x5000) = 0x00
#define CDS 18 *(unsigned char *)(0x5000) = 0x01
#define CDS 19 *(unsigned char *)(0x5000) = 0x02
#define CDS 20 *(unsigned char *)(0x5000) = 0x03
#define CDS_21 *(unsigned char *)(0x5000) = 0x04
#define CDS 22 *(unsigned char *)(0x5000) = 0x05
#define CDS 23 *(unsigned char *)(0x5000) = 0x06
#define CDS_24 *(unsigned char *)(0x5000) = 0x07
#define CDS 25 *(unsigned char *)(0x5000) = 0x00
#define CDS 26 *(unsigned char *)(0x5000) = 0x08
#define CDS_27 *(unsigned char *)(0x5000) = 0x10
#define CDS 28 *(unsigned char *)(0x5000) = 0x18
#define CDS 29 *(unsigned char *)(0x5000) = 0x20
#define CDS 30 *(unsigned char *)(0x5000) = 0x28

voi d mai n(voi d)

/****************************** |Vb.|n

***********************************/

{

int i, count, cds[30], cds2[30], diff, delta[30], rspeed,
| speed;
[* VT100 cl ear screen */

char c1, clear[]= "\x1b\x5B\ x32\ x4A\ x04";

[* VT100 position cursor at (x,y) = (3,12) conmand is
"\ x1b[3; 12H"*/
char place[]= "\x1b[1; 1H"; [*Home*/

init_notorme();
init_serial();
init_clocktjp();
i nit_anal og();

count = O;

printf("%", clear);
printf("%", place);
printf("\tTitle\tMtion.c\n"

"\t Programmer\t Enri que M Bastante\n"
“\tDate\t\tJuly 26, 1999\n"

"\tVersion\t\t1\n\n");

whi | e(1)

{

for(i=0; i<30; i++)
del ta[i]=0;

CDS 01;
cds[0] =anal og(4) ;

CDS_02;
cds[1] =anal og(4);

CDS 03:
cds[2] =anal og(4);

CDS_04;
cds[3] =anal og(4);

CDS_05;
cds[4] =anal og(4);

CDS_06:
cds[5] =anal og(4);

CDS _07;
cds[6] =anal og(4) ;

CDS_08;
cds[7] =anal og(4);
CDS_09;
cds[8] =anal og(5);

CDS _10;
cds[9] =anal og(5);

CDS 11;
cds[10] =anal og(5);

CDS_12,
cds[11] =anal og(5) ;

CDS_13;

37

cds[12] =anal og(5);

CDS_14;

cds[13] =anal og(5) ;

CDS_15;

cds[14] =anal og(5) ;

CDS_16;

cds[15] =anal og(5);

CDS_17;

cds[16] =anal og(6);

CDS_18;

cds[17] =anal og(6) ;

CDS_19;

cds[18] =anal og(6) ;

CDS_20;

cds[19] =anal og(6);

CDS_21;

cds[20] =anal og(6);

CDS_22;

cds[21] =anal og(6) ;

CDS_23;

cds[22] =anal og(6) ;

CDS_24;

cds[23] =anal og(6);

CDS_25;

cds[24] =anal og(7);

CDS_26;

cds[25] =anal og(7);

CDS_27;

cds[26] =anal og(7);

CDS_28;

38

cds[27] =anal og(7);

CDS _29;
cds[28] =anal og(7);

CDS_30;
cds[29] =anal og(7);
wai t (500) ;

CDS 01;
cds2[0] =anal og(4);

CDS_02;
cds?2[1] =anal og(4);

CDS_03;
cds?2[2] =anal og(4);

CDS_04;
cds2[3] =anal og(4);

CDS_05;
cds2[4] =anal og(4);

CDS_06;
cds2[5] =anal og(4);

CDS _07;
cds2[6] =anal og(4);

CDS 08:
cds2[7] =anal og(4);
CDS _09;
cds2[8] =anal og(5);

CDS _10;
cds2[9] =anal og(5);

CDS_11;

cds2[10] =anal og(5) ;

CDS_12;

cds?2[11] =anal og(5);

39

CDS_13;

cds§[12]=analog(5);

CDS _14;

cds2[13] =anal og(5);

CDS_15;

cds2[14] =anal og(5);

CDS_16;

cds§[15]=analog(5);

CDS 17;

cds2[16] =anal og(6) ;

CDS_18;

cds2[17] =anal og(6);

CDS_19;

cds2[18] =anal og(6) ;

CDS_20;

cds2[19] =anal og(6) ;

CDS 21;

cds§[20]=analog(6);

CDS 22;

cds2[21] =anal og(6);

CDS_23;

cds2[22] =anal og(6);

CDS 24;

cds§[23]=analog(6);

CDS_25;

cds2[24] =anal og(7);

CDS_26;

cds2[25] =anal og(7);

CDS _27;

cds2[26] =anal og(7);

40

CDS _28;
cds2[27] =anal og(7);

CDS 29;
cds?2[28] =anal og(7) ;

CDS _30;
cds?2[29] =anal og(7) ;

for(i=0; i1<30; i++)

delta[i] = cds[i] - cds2[i];

for(i=0; i<30; i++)
if(delta[i] < 0)
delta[i] = -deltali];

diff = 0;

for(i=0; i<30; i++)
if(delta[i] > 1)
diff =diff + 1;
printf(" Diff is: % \n",

if(diff < 5)

count = count + 1;
el se

count = O;

i f(count > 3)

{
printf(" Stopped\n\n");
rspeed = O;
| speed = O;

not or mre(Rl GHT_MOTOR, rspeed);

diff):;

not or me(LEFT_MOTOR, | speed);

rspeed = -100;
| speed = -100;

not or me(Rl GHT_MOTOR, rspeed);

not or me(LEFT_MOTOR, | speed);

wai t (1500) ;
rspeed = -100;
| speed = O;

not or mre(Rl GHT_MOTOR, rspeed);

41

not or me(LEFT_MOTOR, | speed);

wai t (1000);
rspeed = O;
| speed = O;

not or mre(Rl GHT_MOTOR, rspeed);
not or me(LEFT_MOTOR, | speed);

}

el se

{ | speed = 100;
rspeed = 100;

not or mre(Rl GHT_MOTOR, rspeed);
not or me(LEFT_MOTOR, | speed);

}
}

/**************************** End Of I\/aln

******************************/

42

