
University of Florida

The 10 Stooges:
The Intimate Life of a Colony…

Dr. A. Arroyo
EEL 5666

IMDL

Jose Garcia-Feliu

Table of Contents

Abstract

Introduction

Executive Summary

Integrated System

Mobile Platform

Actuation

Sensors

Sensor Experiments

Behaviors

Experimental Layout and Results

Problems

Conclusion

Documentation

Appendices

Figure 1: Location of bumper switches
Figure 2: Location of IR
Figure 3: Location for sonar and tower
Figure 4: Emitter Sonar Circuit
Figure 5: Detector Sonar Circuit
Figure 6: Picture of Robots during presentation.
Figure 7: Picture of TJs
Figure 8a: Picture of Servos
Figure 8b: Picture of IR
Figure 9: Collimated IR sensor
Figure 10: IR sensor hardware
Figure 11: Top Robot view

Program Code: TJPRO.C

Motortjp.c

Serial.c

Servotjp.c

Abstract

The objective of our design is to make a colony of robots that
will simulate many behaviors. We intend to show how multiple robots
can accomplish tasks that single robots cannot. Some behaviors that we
will show are swarm, robot communication, industrial optimization,
self-adaptation, basic learning, etc.

Introduction

We will go through all of the steps required to design, assemble,

program and activate these robots. We decided to make ten robots to

demonstrate the versatility and variety of behaviors that each can

accomplish. Each robot will be able to communicate with each other and

decide to follow the desired behavior or to ignore it, if something

else has higher priority. We chose to design and program these robots

the same, so that a multitude of robots could be built, if desired, and

added to the field without any further modifications. The advantage is

a more flexible assembly of the robots. However, the disadvantage that

this format brings is that because they have the same behaviors, very

complex combinations can be achieved. Below, we will describe all the

systems and behaviors encountered and expected from these robots. We

will also write a program, which will be used for the 1 queen, 9

workers, 1 soldier, and 1 probe. We will make the program very

flexible and adaptable to each robot. This also facilitates the

writing of functions since most robots will share them. Furthermore,

we will explain the relations between their behaviors and how the

combination of sensors affects this complex set of actions.

Executive Summary

This project was very successful. We accomplished the goals of

making robots that would have multiple behaviors and also to show them.

At the beginning of the presentation, we also configured the robots to

perform following and swarm behavior only if told to do so. During

start up, the robot calibrates and performs self-diagnostics; it is

during this stage that we push the bumpers to tell it to go to follow

mode. The leader is also chosen in this manner and so are the

followers. We lined them up and after the leader was ready, the line

of ten robots moved on. While the leader performed collision

avoidance, the group followed. After some time, the group stopped and

a signal propagated across the group to let them know to get ready for

swarming. The robots wandered until they saw signs of another. Each

is designed to communicate or perform collision avoidance at the sight

of another robot. If communication were chosen, the robots would try

to align so that the IR data communication would begin. We had a bit

of a problem getting the robots to line up correctly. This resulted

from the robots using a combination of IR and bumpers to find the

other. Because the IR saturates at close range, the alignment was

almost left up to the bumpers being pushed. This made it very hard to

communicate. During the process, the robots would take readings from

their environment and check their battery status. Based on these and

any communicated behaviors, the robot will choose its mood. The

possible moods are happy, angry, frightened, and sleepy. Because so

many behaviors and choices were left to the robot to make, the actions

of any robots could not be predicted. This type of random programming

is very useful in creating life-like communities of robots. One of our

best findings were the designed functions to deal with multi-robot

projects. Of course, these techniques can be applied to any single-

robot program. Our first function lets the robot know which one of

four different types of robots it is. The second initial function

performs a self-diagnostic of any sensors it may have. The third

function performs a calibration of lower and upper limits of the

sensors found. The other aspect of this latter function tells the

robot to continually calibrate the robot’s sensors for as long as it is

running. This result in a robot that adapts and better learns about

its sensors the more it runs. Here is where experience pays off. The

last aspect of our project deals with having an input to the swarm. We

used a queen robot to input desired behaviors to the group.

Unfortunately, the robot has the last word whether to change to the new

behavior or to ignore it and continue using its original one. We see

this handy specially when the batteries are low and the robot is told

to become happy, where battery usage is greatly consumed. In this

case, the robot will actually decide that the suggested behavior does

not provide the robot and advantage and therefore it is ignore. The

last aspect of this project involves the basic design of a basic

operating system, which could be adapted to any robot to perform basic

self-diagnostic and self-calibration to learn more about the robot it

is in and to use such sensors for the proper mobility of the robot.

Integrated System

Once all of the hardware is tested and put in the correct place,

we will use the program to control the behaviors of the robots. The

board is in charge of managing, 1 sonar for the queen, 1 sonar detector

for the workers and soldiers, 1 sonar beacon for the beacon, 4 contact

sensors, 4 IR sets for detection and communication, a status LED

segment display, a battery-checker circuit, and a buzzer. Each

behavior will be programmed separately until it works properly. Since

many behaviors are incorporated, we will resolve any problem they may

have with other sensors and their possible new behavior. Refining the

behavior interaction can be done as the robots achieve a working

format. The behavior interaction can be seen by the following flow-

chart in Figure 6, in the appendix section at the end of the report.

Here we see how all behaviors are related to each other and when does a

particular behavior is allowed and when it is not. This combination of

behaviors and reactions will permit each robot to perform the

objectives described in the introduction. One of the most difficult

and challenging problems will be with the sonar. Because of its long-

range capabilities, incorporating the sonar to the design will increase

the chances of, not only error, but also of flexibility requirements.

Because each robot will have 14 sensors and 2 motors, coordinating all

of them will be a real challenge. For this reason, we chose the TJ Pro

board as our desired processor board. This board offers plenty of

flexibility, and possesses many of the needed connections and pins as

part of its layout. Being the purpose of this project for the robots

to interact with each other, it is a requirement that the robots be

agile enough but also well equipped with many sensors. The TJ body

offers a simple structure with many levels for different sensors.

Proper integration of all components, including correct behaviors, is

vital to our success in this project.

Mobile Platform

The body of our robot is the familiar Talrik Junior or TJ for

short. A picture of the TJ can be seen in Figure 7 in the appendix

section. The TJ body offers the strength of a hard and simple frame,

and a horizontal circular cap, which will later help to support the

carrying base of the soldier robot. But most important of all, it

offers savings on weight. We intend the robots to be agile and fast.

The structure has enough space for two servos, which will drive the

robot using 3-inch wheels. It also has a surrounding flexible bumper

used to detect physical contact with the field’s wall, obstacles or the

other robots. Inside the TJ structure, we can also see the processor

board, which operates all of the sensors and gives the robot its

commands and behaviors. Because all of the robot’s wiring and devices

are hidden on the inside, we were able to spray paint the frames and

make the robots presentable. Also, because the purpose of the game is

for spectators to constantly watch them, the more uniform and smooth

looking appearance makes them, the friendlier and pleasing to the eye.

We cut out the layout of the TJ the first day in lab. Each sheet of

wood has enough pieces for two TJs, so we got 5. We used an upside

down sander to smooth out the corners and sides of the newly cut parts.

We also used super glue to hold the pieces together. After a minute of

drying, we applied more glue to the joints to strengthen them. Once the

body was glued, we took the robots outside and sprayed them. We applied

5 coats of primer, 2 coats of chrome and 2 coats of a sealant. We also

learned that the metallic spray can easily be damaged with

fingerprints, so the coat of sealant is very important to preserve this

look. One tip to remember when spray painting is flip the can upside

down and spray until no paint comes out. This prevents the clogging of

the can. Figure 7 in the Appendix shows the final robot fleet.

Actuation

The robots use two servos for mobility. They also used a round

piece of plastic to minimize the weight and to serve as the third point

of support. A picture of the servos can be found in Figure 8a, under

the appendix section. The board, using a fairly simple program, will

control these devices. The program will tell the servos what speed to

rotate by sending it a number. We will use the command “motorp(a, b);”

where ‘a’ is the number for the left or right servo (0 or 1). In turn,

‘b’ will be the relative speed of the motor. We hacked these servos to

make them work as motors by physically breaking off the connection

between the final gear and the position potentiometer. Each servo

includes a controller that tells the current position and the desired

one. The farther the degree difference the faster it will rotate.

Therefore, the variable ‘b’ used previously is used to tell the servo

how fast to go. Just like the TJ body, these servos are also

lightweight and very efficient. The servo motion will help the robot

in the multi-behavior pattern by turning the entire robot in the needed

direction. Mounted onto the servos are two big 3-inch wheels. These

will help the robot have a smooth ride and provide enough underside

space for unexpected obstacles. Because of its lightweight

characteristic, each robot will be able to smoothly drive over objects

without too much trouble. Another resulting aspect of the servos is

that they are not exactly calibrated to zero as their stopping motion.

Therefore, we had to make a calibration system so different clones of

the robot can use the same program without the need of further changes.

We approached this problem by first finding out the exact value for

which each robot would be at zero. To our surprise, all six servos had

about the same value. We then proceeded to make global variables at

the beginning of the program where these values could be entered. By

adding these values to the desired values, we accomplished to send the

servo controller boards the correct values. Most important of all,

these variables can be changed in case the robot re-calibrates or if

another robot having different values is used.

Sensors

The robot will be loaded with a number of sensors to help it move

smoothly around the field. A sample IR detector is shown in Figure 8b

in the appendix section. Along with these sensors, each unit will have

touch sensors (bumper), in case the robot makes contact or an

unexpected obstacle is present. This is necessary because the robots

turn and move at great speed. A sonar emitter and detector is also

used to approximate distance from the queen and to approximate the

location within a specified area. Another sensor we have added is the

battery-checker circuit. It consists of a voltage divider connected

from the battery to one of the analogs. All of the robots have this

circuit connected across PE1. To aid the spectators’ view the status of

the game, each robot contains a 7-LED status segment connected to an 8-

bit flip-flop chip. The robots will also be equipped with a buzzer,

which will aid announce stages to the audience. The same piece will

also indicate when one of the robots is low on power.

The sensors used by our robots will enable them to view the

world around it in a general but limited way. The sensors will give

information with respect to objects in the proximity and moving objects

in front of it. Because integrating so many sensors in one robot might

overwhelm the processor, we had to rely on better programming and logic

to device a program that will read sensors and using data only when it

needs it. In this paper, we will see how we adapted each sensor to the

robot and how we incorporated them together.

Bumper Sensors

The bumper sensor is a series of switches positioned around

a movable bumper frame around the head of the robot. We can see their

location in Figure 1. When the robot bumps into an object, the switch

closes and the processor can then inspect the analog-to-digital

converter PE0. The TJPRO board is setup so that four switches can be

individually connected. When PE0 is checked, each switch is

differentiated in steps. In our robots, we only used all four

switches, one in the rear and three connected in the front. Because

these switches are positioned on the top section of the TJ, objects

smaller or taller than that height will not make contact and therefore

will not be discovered. This is one of the assumptions that obstacles

and other robots in the field will be about the same height. Knowing

this, the bumper sensors are used as a last resort in avoiding

obstacles in the near proximity. Overall, the bumper will not be used

for the main purpose of the game, but becomes important, since during

communication, the bumper might give feedback about the other robot and

its possible location.

Infrared Sensors

Figure 10: IR sensor hardware

We are using five infrared sensor and emitter pairs on each

robot. The location of the IR sensors is drawn in Figure 2. The IR

emitters are connected to pre-wired connections of 40KHz signals.

These can individually be controlled by writing to the memory-mapped

output (0x7000), and sending a value 0xff, where ff can be replaced by

the actual combination of sensors desired to be turned on. We have

three IR placed in front of the robot below each of the front bumper

switches. We also have another positioned in the rear. Each connected

to PE2, PE5, PE7 and PE3, respectively. Every detected value has a

range from approximately 80 to 130. The A-to-D converters give a

digital value to the processor about how far an object would be from

the robot. At the beginning of the main program, we call a subroutine

called calib_IR(). This routine makes the robot spin slowly and take

measurements of the lowest value of the IR. This helps set the lower

bound for each IR set. This self-calibration step is needed since each

sensor does not necessarily possess the same characteristics as others

might. Another important function in our program is the self-

diagnostic routine. This particular part of the program aids in

detecting sensors, which are not working, or not working correctly

before the robot even begins moving. Again, very important to aid the

debugging process and to handle multiple robots.

Sonar Sensors

The final sensor used by the robots is the sonar. Their

location can be seen in Figure 3. The sonar is a simple device that

transmits ultrasonic waves. When the waves encounter an object, they

bounce back and are detected. The sensor can then determine how long

it took the wave to travel. Emitting these waves without moving the

robot is essential to the accuracy of the sonar. To help avoid false

detection, we will give the robot a certain degree of error. The

signal processed by the robot will be a number from 0 to 255, just like

the IR. But because we added a low pass filter to the output signal,

we got a value from 1 to 60. The advantage of this extra step is to

convert the value, so that the higher the value of the reading, the

closer the sonar waves. The sonar emitter will be connected to the

40KHz pre-wired outputs in the TJPRO board in the queen robot. The

emitter will always be turned on and used by the other robots as a way

to locate their distance from the queen and to reach certain sectors of

the field. The detector will detect depending on the particular

behavior. If the behavior demands a high degree of accuracy for

position, the robot will use the detector more frequently. The

detector will be connected to PE4. The code will constantly check this

location for possible readings.

Battery-Status Sensor

Our robots are also equipped with a battery-checker circuit.

This will greatly help us in determining robots with low power. When

handling 10 mobile robots, 1 stationary robot and 1 probe, each

demanding 6 AA batteries, for a grand total of 72 batteries, this

circuit can only be but an angel in the nightmare of debugging. We

have added behaviors to drive robots away from the queen and to call

out the supervisors (us) for help regarding their low battery

condition, before they start to malfunction. Another future addition

to this project could include self-recharging robots. One even further

addition is while a robot recharges, another robot takes over the task,

where the previous left off.

Sensor Experiments

Bumper Experiment

To test the correct working order of the bumper sensors, we wrote

a simple program which would call the subroutine bumper(). Table 1

shows the results obtained from this experiment. This routine would

check the bumpers for any sign of contact. If any of the switches were

detected to be close, then the robot would move in reverse and rotate

in the opposite direction. This code checks for any of the bumpers to

be closed. If any of them has contact, the routine would play out its

instructions. Otherwise, it would do nothing. The bumpers are

located at a height of 3.25 inches from the ground. If we assume the

ground to be flat, then any contact between robots or with objects

within the playing field should, at worst case, touch at that height.

Analog
Value

Front
Center

Front
Left

Front
Right

Rear
Center

0 X
43 X
79 X
21 X
126 X X
59 X X
101 X X
110 X X X
139 X X
150 X X
132 X X
162 X X X X

Table 1: Bumper results

Infrared Experiments

The infrared sensors were tested similarly. To protect the

sensitive IR, we enclosed them underneath the upper body. This would

ensure that any bumps would not directly affect the sensors, or the

calibration. We wrote a simple program routine for obstacle avoidance.

This code is shown in Appendix B. This code shows how as each sensor

senses an obstacle, the motors move the robot around it. Below, we show

Table 2 of the IR sensors and what the robot does when an obstacle is

directly in front. The IR sensors were located slightly below the

bumper switches at a height of 3 inches. Anything much higher than 3

inches would not, otherwise, be detected by the sensors. The forward

and rear looking IR reacted at a distance of 10 inches. This

relatively small distance was intentionally chosen to maximize the

space within the playing field, as well as, to give the robots a really

closed feel when detecting each other.

Figure 9: Collimated IR sensor

Distance
(inches)

Front Center Front Left Front Right Rear Center

0 127 127 127 127
2 117 126 126 126
4 95 109 119 102
6 91 101 108 100
8 89 93 101 98
10 87 89 93 91
12 87 88 91 90
14 87 87 88 87
16 87 87 87 87
18 87 86 86 86
20 86 86 86 86

 Table 2: IR sensor table

Sonar experiment

The sonar was used to measure distance. We performed a

series of simple tests. The results are shown in Table 3. We put the

robot in front of the queen robot shooting at intervals and programmed

it to sense sonar measurements. At the end of the measurements, the

robot either would light up the segments from 1 to 6 if there was sonar

detected. The first would be lit if the robot detected a signal with a

value from 10 to 19, the second if the value was from 20 to 29, etc.

The results from the sonar test showed that the sonar would work at a

distance of over 3 feet, which was more than enough to give each robot

enough capability. Because the sonar is a wave, the calibration

routine did not need to adjust the sonar. We positioned the detectors

on top of the robot on a tower aiming forward. This will give the

robot the maximum range of detection, while easily accomplishing the

behavior of approaching the queen. The circuit design for the sonar

emitter is shown in Figure 4 in the Appendix and the circuit for the

detector in Figure 5.

SENSOR EMITTER DISTANCE(ft) RESULT(# LEDs)

Sonar off any 0

Sonar on 0.5 6

Sonar on 1.0 5

Sonar on 1.5 4

Sonar on 2.0 3

Sonar on 2.5 2

Sonar on 3.0 1

Sonar on 3.5 0

Sonar on 4.0 0

Sonar on 4.5 0

 Table 3: Sonar sensor table

We can also see in Figure 4, the layout of the schematics used

for the sonar emitter.

In Figure 5, we also show the circuit layout of the sonar

detector.

Behaviors

The robots will have quite a few behaviors, which we hope to

combine to make more complex behaviors. We have divided these

behaviors into two major groups: individual and group behaviors.

Individual Behaviors

Single robots can do individual behaviors, while group behaviors

can only be accomplished by two or more robots. The first individual

behavior performed by all robots is self-identification. Because all

of the robots use the same program, they will need to know which

functions and variables to use for their specific purposes. An

individual behavior is to avoid physical contact. It accomplishes this

by using the four bumper switches. Another basic behavior for the

robots will be collision avoidance. The three IR sets located in front

of the robot will aid in this task. A very important behavior occurs at

the beginning of the game. The self-diagnostics routine makes sure

that all components of the robot work properly, before the robot starts

its task. In conjunction, the robots rotate at a slow speed and

calibrate their IR. This is accomplished by taking readings of the

environment and comparing the lowest possible value to a predetermined

variable. If the value is lower, then that variable is updated with

the new value. In essence, this calibration helps determine the

changes in infrared ranges. Another is to navigate from or to a

specified sector. This is accomplished by measuring the strength of

the wave sent by the sonar from the queen. Another resulting behavior

is that when the queen calls out for any of the robots to attend to

her, the robots can directly go to her by following the strength and

direction of the sonar. At the same time, if an object is found in the

way, like another robot, the program can make the robot go around it

and afterwards relocate the queen signal. Another important behavior is

the constant look out for low power. If low batteries are detected,

the robot will then locate the queen, and go as far as possible from

her and inform the supervisors (us) of the battery condition. Another

important aspect of the individual behaviors is to communicate data

between them. While communication is part of the group behaviors,

assimilating the data and performing the desired task is part of the

individual behaviors. While performing these behaviors is dependent on

the robot, another aspect of our program to give behaviors certain

priority, so that the robot can “choose” to ignore the behavior based

on, not only priority, but also power level. This means that if the

robot’s batteries are low, the robot will ignore the tasks that use

most power. Along with self-identification, mentioned above, the

robots will also be able to identify their own kind. This will show

that they are aware of certain sensors and understand their

surroundings. Below we show a summary of the behaviors in Table 4.

Group Behaviors

Group behaviors are those that are accomplished by multiple

robots. A basic behavior is to follow the leader. This is

accomplished by following the rear emitter from the robot ahead. The

leader will, instead, follow a remote control device. Another

important behavior is the ability to communicate data between robots.

Through this behavior, other behaviors can be accomplished. One being,

the recruiting of other robots to perform the same behavior.

Communication between the robots and the queen is similar. Swarm and

dissipate can also be done through this method. By informing all of

the robots to do the same behavior, swarming and dissipating is

possible. Using the probe, the soldier robot can mark positions and

objects. A future addition to our project would be for the worker

robots to find their exact location by using the sonar signals from the

probe and the queen. Then passing this information to other robots or

even the queen. The queen could even map the boundaries of her

kingdom. Another behavior we plan on demonstrating is the sleep

routine, where the robots will sleep until the queen advises them on

waking up. This could be used as a battery saving option that each

robot can implement on its own if no activity is detected for some

time. One added bonus we plan on achieving is to place three robots

inside the field in different locations. Each one of these robots will

represent a machine. Then we will add the rest of the robots along.

When one of the three machine robots call a robot for assistance, the

wandering robots will approach that machine robot and pick up an

imaginary cargo. They will then look for the next machine and drop off

the imaginary cargo with it. This cycle will repeat itself. As robots

detect their battery to be low, they will abandon their task, hopefully

for another robot to take over. Below we show a summary of the

behaviors in Table 4.

Individual Behaviors Preferred Sensor

1. Avoid Physical Contact (Bumpers)

2. Collision Avoidance (IR)

3. Navigate to sector (Sonar)

4. Find and go to Queen (Sonar)

5. Self-Calibration (of IR)

6. Self-diagnostic (Sonar, IR, Bumpers)

7. Monitor and alert of Battery (Battery-Checker Circuit)

8. Follow behavior (Flexible program)

9. Chooses to ignore behaviors (Flexible program)

10. Self-identification (Flexible program)

11. Identify own kind (Flexible program)

12. Decision of priority of behaviors (Flexible program)

Group Behaviors Preferred Sensor

1. Communicate between robots (through IR)

2. Recruit others for same behavior (through IR)

3. Swarm (Flexible program)

4. Dissipate (Flexible program)

5. Follow the leader (through IR)

6. Communicates to queen with protocol (through IR)

7. Mark object or position with probe (through probe)

8. Sleep until queen advises to wake up(Sonar)

9. Simulate Flexible conveyor belt between different “machines”

(Flexible program)

Table 4: Behaviors at a glance

Experimental Layout and Results

We will be testing the MTJPRO11 boards using simple programs to

test the servos. A simple board test will also be used to check the

correct working condition of all of its elements. We need to perform

these tests to assure the working order of the robots, since these

boards were assembled in the lab. The next test will check for correct

direction of the servo rotation to assure correct response from each

servo. The memory test will check for correct space handling from the

32K bytes of RAM in the boards. Along with the servo test, we need to

check if the new 3-inch wheels will fit and not interfere with any

other component from inside the TJ.

Problems

Below is a table describing the problems we had while completing

this project. These are found in Table 5.

- 12 Robots, 66 AA batteries: Recharge as many as you can, use the

fast chargers and unfortunately, buy more batteries.

- Robots lining up for communication: Because the robots use both

bumpers and IR to detect and line up, the robots had a hard time

correctly aligning because at close range, the IR saturates quickly.

So when having ten of them the odds get better and many by chance

communicated correctly.

Conclusion

The robot construction was a definite success. We built these

robots using a modular approach. Each part of its total 7 sections was

built identically. This helped us to later test them by simply

interchanging them with robots loaded with a testing program. We

design the program using the same approach. The software has many

modules or subroutines. Each one can easily be tested individually.

This format helped us later in the programming by providing an easy to

understand and compose a sequence of behaviors. We met our original

goal: to study group behavior of multi-robot communities. We also

designed a platform that can be copied exactly and replicated infinite

times and expected to perform the same way. We also accomplished other

goals of building modular hardware identically enough that it can be

exchanged between robots. Also to use software to help solve conflicts

in differentiating IR from robots or from different sources. And last,

to develop a modular software flexible enough that it can adapt to any

of the robots. Also, a self-diagnostic program (which detects if any

of the components are not working), add different types of robots (to

see the behavior change in having different robots).

Documentation

The following is a list of our sources for information,
specifications, and design:

Fred Martin, The 6.270 Robot Builder’s Guide, MIT Media Lab,
Cambridge, MA, 1992.

Intelligent Machines Design Laboratory Web page:
http://www.mil.ufl.edu/
http://www.mil.ufl.edu/imdl

Mekatronix home page:
http://www.mekatronix.com/

Appendices

Figure 6: Picture of Robots during presentation.

Figure 7: Picture of TJs

Figure 8a: picture of servo

Figure 8b: picture of infrared

Figure 11: Top robot view

