
 2

HANNIBAL

IMDL Summer 1999

by
Marc Poe

 3

Table of Contents

Abstract 3

Executive Summary 4

Mobile Platform
 Body 5
 Leg 6
 Torque Calculations 8
Actuation 11
 Software 13
 Walking Gaits 14
 Tripod Gait 15
 Wave Gait
 Oar Gait
Sensors
 Contact Switches 16
 Planning
 Implementation 17
 Infrared 19

Behaviors 20
Murphy's Law 21

 Conclusion 22

 Appendix A C code 23
 Flow chart
 Single Chip Code
 EVBU Code

 4

Abstract

 This report will document the design and construction of a walking robot with
leg-contact feedback for stability while walking over rough terrain. The robot will also be
able to determine when it can climb over an obstacle and how to maneuver around those
obstacles it can not.

 5

Executive Summary

The Design for Hannibal will borrow from the anatomy of spiders, specifically

keeping in mind the stability inherent in the octagonal arrangement of their legs. It will

also be designed so that the legs rise up over the body when walking. In this way, the

robot will be more capable to lift its entire body over large obstacles.

Unlike its eight-legged cousin, Hannibal is a six-legged robot that can maneuver

through a cluttered room. The Robot will walk around at full height, enabling it to lift it

legs over obstacles without concern for the type of obstacle it is. It will not require a

level surface for walking, but will keep its balance based on feedback from micro-

switches placed on the feet and a tilt switch on the body. If the robot’s leg hits an object,

micro-switch is pressed, while it is extending, the robot will know how to keep the leg in

that position.. An Infrared emitter/detector pair will be placed on each of the front two

legs and will be used to scan for obstacles that it can not maneuver over or around.

 6

Mobile Platform

Body

 The body of Hannibal is constructed entirely of 5-ply model aircraft plywood and

somewhat resembles a crab in that it has an upper and lower “shell” with the legs

arranged around the middle. The two shell halves are separated by 4” supports resembles

R.O.U.S. created by Megan Grimm in the Spring of 1999. The space between these

supports will house the 6 C cell batteries required for the servos and a pack of 6 AA

batteries for processor power supply. The upper body shell will have 1.8”x 1.4” holes

cut around the edges for each of the six shoulder servos as shown in the figure below.

 7

Legs

. To move each leg independently at least two degrees of freedom are required

Knowing this, I have designed Hannibal’s legs to allow them to move independently

using a servo for each degree of freedom. The figure below illustrates the structure of the

leg.

 Each leg is basically a two dimensional pantograph mechanism, where a small

movement at the shorter end translates to a greater motion on the larger end. The

Mechanical advantage of the pantograph mechanism is directly related to the length of

the gray segments in the figure above. A longer connecting segment enables a leg to

have greater freedom of motion. However, this also increases the torque required to lift

the leg. Since the servo strength and the weight of the platform, including the servos,

 8

limit the design we need the shortest foreleg possible to alloy the robot to maneuver over

reasonable obstacles. I have chosen six 130 oz/in Cirrus servos from Tower Hobby

Based on my torque calculations, if the platform was to stand on one leg, it would require

280 oz/in of torque. Since I intend to have no less than three legs on the ground at once,

and three of these servos together have a max torque rating of 390 oz/in. I am well within

the design requirements for leg torque.

I have designed a wooden box to house the leg servos. The upper part of these

'servo boxes' connects directly to the shoulder servos on the upper shell of the body. The

lower section of the servo boxes is connected to the lower shell of the body. Nylon

spacers are placed underneath the servo box, between it and the lower. Machine screws

are inserted through the lower shell, the nylon spacers, and the lower part of the servo

box. Lock washers and hex-head nuts are used to keep the box in place and allow the

legs to swing.

To secure the legs from wobbling, and to guarantee the legs will only move vertically, I

drilled a 3/16th hole through the top of these boxes and milled out oval spaces in the

vertical leg segments as a leg guide. Then I inserted 3 inch pieces of 3/16th brass tubing

through both holes in the boxes and through the guide spaces with about 1/2 inch

extending from the inside holes and out of the leg guides. I crimped the tubing on the

inner side of the servo boxes and used 3/16th quick nuts to secure the leg from sliding

horizontally along the tubing. Below is a diagram of the servo box used in the final

design:

 9

 Nylon spacers are used between the ends of the fore leg and the main outer leg to

allow easy movement rotation within the joints. The screws used to attach the lower

foreleg segment to the servo horns interfered with the range of motion in the initial

design. The interfering screw head reduced the over-all leg clearance to 5.5 inches. An

extra set of nylon washers were used between the inner leg and the two fore-legs to allow

full unrestricted a range of motion close to 180°. With a 9" main leg and two 3.5" fore

legs, the overall range of motion of each leg is now approximately 7 inches. Although

 10

the leg clearance allows Hannibal to clear large obstacles, it also raises the center of

gravity further from the ground, making it less stable

Torque Calculations

For the robot to be statically stable, least three legs must be on the ground at all

times. Each leg servo must therefore be capable of producing enough torque to

counterbalance one third the entire weight at the end of a leg. The lower foreleg segment

is connected directly to the servo. This fore leg is a 3.5 inch torque arm. In static

equilibrium, 1/3rd of the total normal force will push against the end of the leg. Since the

servo is approximately 5 inches from the robot's center of mass, the torque required to

balance this force is Torque= (W_robot/3)* (3.5*cos θ), where θ is as indicated in the

figure below:

 11

Since the weight of the robot is 4.5 lbs. , or 92oz, the maximum torque

required is Torque =92/3 *(3.5*cos θ) = 107.3 oz/in. Since the leg servos can output

130oz/in of torque, they are sufficient to balance the robot against gravity. There are 23

oz/in of extra torque available. With this extra force, one servo can tilt the platform off

balance. If Hannibal is walking over rough terrain and a leg servo is hard-coded with a

PWM value to send it to its maximum position, and it strikes an object closer than the

maximum position, the servo has enough force to make the platform unstable. Therefore,

we must use a closed loop feedback system to sense when a leg has struck an object, and

to stop moving it when this occurs.

 12

Actuation

 Each of Hannibal’s legs is driven by two servos to provide two degrees of

freedom. One 42 oz/in servo provides a sweeping rotation motion from front-to-back and

back-to-front. The other leg servo (130 oz/in) lifts the leg in an up-and-down manner.

Due to the complexity of controlling all 12 of these servos, a separate processor is

required for generating the pulse-width-modulated signals. A 68HC11 single-chip board

from Mekatronix will be used as Hannibal's servo controller since ports B and C are

available on this board. This board also has a power and ground bus surrounding each

port which can either be used with the regulated 5V powering the chip itself, or an

external power supply can be used. This is well suited for driving servos since they

typically require 6 Volts for full torque and they draw so much current that the

microprocessor will reset if both servos and the processor are powered from the same

battery pack. I will use the 68HC11E2 since it has the highest, and readily accessible,

internal memory of any processor in the E-series. A Motorola 68HC11(A1) evaluation

with 32Kbytes of external RAM, two output ports at $2000 and $3000, and an input port

memory mapped at $2000 will be used to incorporate the sensors and generate the signals

required to control the servos. At first I intended to use the MTJPro board produced by

Mekatronix, since it has a everything the EVBU board does plus a built-in 40kHz

generator for modulating the IR LED's and is much smaller than the EVBU. However, I

accidentally shorted power to ground on the first board I built and fried all of the

circuitry. When I built the second one, Mekatronix was out of the low-profile 8MHz

 13

crystals the MTJPro boards were designed for and I had to resort to modifying a regular

sized crystal based on the following diagram:

 Where the capacitors are 22pF. Since I experienced such trouble with the prefabricated

boards, I had to build my own 40kHz generator using a 74HC390 to step down the

processor's 8 MHz clock to 40kHz for the Infrared LED's.

Description of Software for Actuation.

 In early July I received a copy of the library files developed by Ivan Zapata for

the base platform of RoboBug. It included functions specifically designed to control up

to 16 servos using Ports B and C on the single chip board. It also included a program

designed to allow the user to calibrate the minimum, middle, and maximum positions for

particular servo and generates the integer value (between 1000 and 4900) corresponding

to these servo positions. Upon execution of this calibration program, the following table

was produced:

 14

Servo # Middle Up/ Forward Down/ Back Acronym for servo

2 2260 1000 3360 RFL-- right front leg

3 2730 1930 3570 RFS --right front shoulder

4 2430 1200 3870 RML-- right middle leg

5 2430 1730 3570 RMS--right middle shoulder

6 2500 1070 4800 RRL-- right rear leg

7 2400 1700 3610 RRS-- right rear shoulder

8 2200 3870 1000 LFL--left front leg

9 3280 4170 2460 LFS--left front shoulder

10 2200 3940 1000 LML--left middle leg

11 3180 3940 2400 LMS--left middle shoulder

12 2200 4000 1000 LRL--left rear leg

13 3280 4170 2200 LRS--left rear shoulder

Since the code for integrating all the sensors and controlling servo actuation will most

certainly require more than 2K of memory, and the MTJPro is only capable of

controlling 5 servos, some type of inter-processor communication is necessary. The

serial communications interface is the simplest method to implement this since. The

program on the single ship will obtain the necessary signals to control the servos, through

the SCI interface, from the EVBU board. A dummy character will be sent to initialize

communication, then EVBU board transmit the number of the servo to move and the

position to send it to. The single-chip board will, in turn, receive the servo number,

initialize that servo and transmit the proper pulse width. However, since the final pulse

widths can range from 1000-4900, and the largest integer size is 255, the proper pulse

widths must be calculated using a general algorithm. . Since this range of integers also

corresponds to the maximum range of the servos (180°) there is approximately (180°) /

 15

(3900 ∆PWM)= 0.046°/ PWM. If we want the error to be within 2° of the actual value,

the value of the PWM sent must be ± 44 of the desired value. If we simply multiply the

PWM value sent through the serial port by 44 we obtain the desired pwm with a 98%

accuracy. With a 3.5 inch torque arm this corresponds to an overshoot of ds=r*dθ(rad)=

3.5 in *2.02° *(π*/180°)= 0.125inches.

Walking Gaits

 To maneuver across rough terrain, Hannibal must not only be able to vary its leg

position based on terrain. However, this if its walking gait is not stable it can't possibly

maneuver over smooth terrain. The most difficult aspect of walking robots is designing a

dynamically stable gait because the center of gravity shifts throughout the gait. The key

to designing a stable gait is the position of the shoulder servos before and after leg

placement.

Tripod gait

 This gait is by far the fastest insect-like walking gait. For stability reasons the

bug must have three legs on the ground at all times. In the tripod gait, the middle leg on

one side and the front and rear legs on the other side lift and sweep forward, while the

other legs extend and sweep backwards. Of all the different gaits, this one was most

difficult to implement. The robot's weight is easily supported by three legs, but when it

would propel itself with only three legs on the ground, stability was lost and Hannibal

tended to tip forwards.

 16

Metachronal Wave Gait

 This is the most stable of the gaits I experimented with. During a wave gait, the

robot always has at least 5 legs on the ground at all times. The walk starts at the rear leg

on each side. The leg lifts, swings forward, and after it is placed on the ground, the leg in

front of it is swung forward and planted on the ground. The wave moves up each side,

and when it reaches the front leg, the gait switches to the rear leg on the opposite side.

Oar Gait

 This gait, though somewhat slower than the tripod gait, was fastest and most

stable gait I experimented with. Four legs are on the ground at all times to keep it level.

The gait begins as the middle legs lift swing forward, touch ground and swing back.

 Then the left front and right rear legs lift, swing forward and touch down, and swing

back. Next, the right front and left rear legs swing forward, down and back.

Turning

 To turn in place, a walking routine similar to the Oar gait described above is used.

To spin counterclockwise in place, all legs will move similar to the Oar gait routine

except the legs on the right side will lift, swing back, place, and swing forwards. To spin

clockwise in place, all legs will move similar to the Oar gait routine except the legs on

the left will lift, swing back, place, and swing forward.

 17

Sensors

Contact Switches

 To keep Hannibal stable while walking over rough terrain, contact feedback from

the legs is necessary to keep the leg in its current position when it steps on an obstacle.

Otherwise, the robot will attempt to keep pushing against the obstacle, which could

possibly tip it over. Every servo is designed with a specific gear ratio, which determines

how long it takes for the servo to reach a certain position. Knowing this, we can design a

contact feedback sensor that will alter the PWM signal sent by the processor to the servos

and keep the servo in its current position.

 To keep the robot stable, it must be able to sense when one of its legs solid ground.

To accomplish this, I must be able to change the Pulse-width modulated signal being sent

to the servos to keep them at the position when the feet hit the ground.

 The servos I am using for leg extension are 130 oz/in with a 60°/.22s transfer

rate. Since a servo requires a 20ms PWM signal with time high between .7ms and 1.7 ms

and will rotate only 180° in either direction, we need to determine the time elapsed from

the beginning of the leg extension until the foot hits a surface. The angular distance

traveled by the leg is given by the following equation :

distance[d] =angular velocity[w] * time [t].

Since the torque arm is 3 inches long, the vertical distance traveled by the leg with

respect to time is d=[60° /.22sec]*t. Therefore, the ration of the distance traveled to the

 18

total possible distance is [(4*π/3)*t]/π . The required PWM signal to send the servo to one

of its maximum positions way has a time high of 1.7ms and the other has a time high of

.7ms. This signal is equivalent to the ratio of the distance traveled to the total possible

distance. Therefore, the new PWM must have a high time of 1.7ms*[(4*π/3)*t]/π , where

t is the elapsed time elapsed during the leg extension. Simplification produces the

following equation:

New time high (T) =(4/3)* 1.75ms * [1E clock/500ns] * elapsed time (t).

 Some of the servos will require a signal with approximately a .7ms high time.

For these, the following equation will be used :

New time high (T) = [2.1 ms *1E clock/500ns] /(4* elapsed time(t)

 The bump switches will be connected directly to the microprocessor using the

memory mapped digital input port at $2000. The figure below is a diagram of the bump

switches as they were connected to the digital input port:

Implementation.

 The above description for altering the PWM signals being sent to the

servos to control leg position was so difficult to implement that a different approach was

needed. In mid July I was given a set of libraries developed for RoboBug by Ivan

Zapata. These libraries included a routine for controlling up to 16 servos. The function

takes in two variables, a servo number and pulse width, and generates the PWM signal

 19

for that servo continually until it receives a different pulse width. To implement the

touch sensor, I created a loop that polls the foot switch of each leg as it extends towards

the floor incrementing the PWM value sent to the servo controller by 2 each time through

the loop. Each time through the loop the program waits for approximately 1ms for the

switch bouncing to settle. Though this delay means the legs will extend somewhat

slower than if the loop was running wide open, a delay is absolutely necessary for

debouncing the switch. Without it, the loop program will miss the switch feedback

entirely. Whenever the switch closes, the program exits the loop and the servo position is

held. The servo controller function requires that the PWM sent to the servos be within

1000 and 4900. Since this range of integers also corresponds to the maximum range of

the servos (180°) there is approximately (180°) / (3900 ∆PWM)= 0.046°/ PWM. Since

the servo controller automatically multiplies the integer it receives for the PWM signal

by 44, an error of ± 2.02° will always be present. Also, the leg extension loop

increments the signal it sends to the servo controller by 2 each time through the loop.

Thus, when the foot switch is pressed the leg will have a minimum overshoot of 4.04°.

With a 3.5 inch torque arm this corresponds to an overshoot of ds=r*dθ(rad)= 3.5 in

*4.04° *(π*/180°)= 0.25inches. This quarter of an inch error, also ensures that extra

pressure is applied to a leg while it is in contact with the ground and is so slight that it

would not significantly affect the robot's balance.

 20

Infrared

 Two Sharp 40 kHz IR detectors hacked to produce analog signals will output analog ports 1 and

2 used for collision avoidance. One infrared detector and emitter pair will be mounted on each

of the front two legs. As the legs sweep forward, Hannibal will scan for obstacles. Since

we are only concerned with obstacles that we can not climb over, scanning will only take

place while a leg is at its full height. Therefore, if we detect an object close to the leg, we

know that Hannibal can not possibly climb over it.

 However, after it has climbed a step, Hannibal may end up in a crouched position

and will be unable to climb over successive objects unless it can return to its full stance.

To solve this problem, I have placed one hacked Sharp IR detector directly beneath the

center of the robot and two high-power IR LED one in forward and one aft, each

pointing at a ° down from the body. When Hannibal's body is too close to a large

obstacle, it will know to rise up to full stance position--thus enabling it to climb over

successive obstacles. With all of the sensors working properly, we will be able to

maneuver over rough terrain without knowing exactly what kind of terrain it is. To the

robot, stairs would just look like a series of obstacles, and as long as there is enough

space on the ledge of each stair for the robot, Hannibal will be able to climb onto it.

 21

Behaviors

 Hannibal will exhibit general obstacle avoidance, but with special consideration

to its own ability to maneuver across rough terrain. In other words, if it can climb over

an obstacle, it will; otherwise, it will maneuver around the obstacle. It will also vary its

gait based on the number of rough obstacles it has stepped on. The more frequent

Hannibal has to stop a leg short of its maximum extension the gait will become slow then

change. As it moves across smooth terrain to rough terrain, Hannibal will change from

Tripod gait to the Oar gait. If the terrain is very rough, it will slow to a Metachronal

Wave gait.

 22

Murphy's Law

 Nothing could have prepared me for the complexity of this project. Although I

finished the mobile platform within the first 6 weeks, I spent almost two weeks during the

second semester working out bugs in the Mekatronix MTJPRO11 boards I built. The

first time I built one of these boards, it tested correctly. I set it aside until the platform

was finished. Once, I accidentally connected the power and ground to both the single

chip board and the MTJPRO11board backwards. This blew the 5V regulator on the

single chip board, and both the 74HC573 and the 74HC138 chips on the MTJPRO board.

I replaced these components and the single chip was back in working order. I spent a

week developing and testing different gaints using the single chip alone. However, it did

not have enough memory required to integrate the sensors, gaits, and the corresponding

servo actuation. I required the 32K of the TJRO board to incorporate the system.

 At one point I realized that the crystal was not working properly--possibly broken

after dropping it on the ground At this point, Mekatronix ran out of the low profile 8MHz

crystals used on their TJPRO boards. I modified a standard crystal with two 22pF

capacitors, as discussed above, but this still did not fix my problems. At this point I

decided to assemble another one to replace it. I spent three days building and testing the

new board. The new board never worked properly and, as a last ditch attempt and with a

week to go in the second semester, I switched to using an EVBU board since I knew it

worked. With all these hardware problems, I was left with a week to complete all the

necessary software. I was able to incorporate the feet sensors and the robot walked, but I

ran out of time and was not able to implement the IR sensors in software.

 23

CONCLUSION

 Despite the time, money, and Murphy-inspired migraines, I believe that I received

considerably more from this class than I put in. The mechanical design of my robot was

much too complicated for my first robot design. Though I was able to implement most of

my plans for Hannibal, time caught up with me and I was unable to integrate all the

sensors with the proper behaviors. The complexity of the software for controlling all the

different gaits and sensors overwhelmed me. After dealing with faulty electronics for

most of Summer B, I was left with just a week to develop all the software needed for the

different behaviors. Ultimately, my design did not work properly because Hannibal

remains unfinished. The Intelligent Machine Design Lab not only gave me design

experience, it also made me realize the real-world limitations to any project--namely

time, and Murphy's Law.

