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Abstract 

 
 This report will document the design and construction of a walking robot with 
leg-contact feedback for stability while walking over rough terrain. The robot will also be 
able to determine when it can climb over an obstacle and how to maneuver around those 
obstacles it can not. 
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Executive Summary 

 
The Design for Hannibal will borrow from the anatomy of spiders, specifically 

keeping in mind the stability inherent in the octagonal arrangement of their legs.  It will 

also be designed so that the legs rise up over the body when walking.  In this way, the 

robot will be more capable to lift its entire body over large obstacles. 

Unlike its eight-legged cousin, Hannibal is a six-legged robot that can maneuver 

through a cluttered room.  The Robot will walk around at full height, enabling it to lift it 

legs over obstacles without concern  for the type of  obstacle it is.  It will not require a 

level surface for walking, but will keep its balance based on feedback from micro-

switches placed on the feet and a tilt switch on the body.  If the robot’s leg hits an object, 

micro-switch is pressed, while it is extending, the robot will know how to keep the leg in 

that position..  An Infrared emitter/detector pair will be placed on each of the front two 

legs and will be used to scan for obstacles that it can not maneuver over or around.    
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Mobile Platform 

Body 

 The body of Hannibal is constructed entirely of 5-ply model aircraft plywood and 

somewhat resembles a crab in that it has an upper and lower “shell” with the legs 

arranged around the middle.  The two shell halves are separated by 4” supports resembles 

R.O.U.S. created by Megan Grimm in the Spring of 1999.  The space between these 

supports will house the 6 C cell batteries required for the servos and a pack of 6 AA 

batteries for processor power supply.   The upper body shell will have 1.8”x 1.4” holes 

cut around the edges for each of the six shoulder servos as shown in the figure below.  
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Legs 

 

.   To move each leg independently at least two degrees of freedom are required 

Knowing this, I have designed Hannibal’s legs to allow them to move independently 

using a servo for each degree of freedom. The figure below illustrates the structure of the 

leg. 

 Each leg is basically a two dimensional pantograph mechanism, where a small 

movement at the shorter end translates to a greater motion on the larger end.  The 

Mechanical advantage of the pantograph mechanism is directly related to the length of 

the gray segments in the figure above.  A longer connecting segment enables a leg to 

have greater freedom of motion.  However, this also increases the torque required to lift 

the leg.  Since the servo strength and the weight of the platform, including the servos, 
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limit the design we need the shortest foreleg possible to alloy the robot to maneuver over 

reasonable obstacles.  I have chosen six 130 oz/in Cirrus servos from Tower Hobby 

Based on my torque calculations, if the platform was to stand on one leg, it would require 

280 oz/in of torque.  Since I intend to have no less than three legs on the ground at once, 

and three of these servos together have a max torque rating of 390 oz/in. I am well within 

the design requirements for leg torque.   

I have designed a wooden box to house the leg servos.  The upper part of these 

'servo boxes' connects directly to the shoulder servos on the upper shell of the body.  The 

lower section of the servo boxes is connected to the lower shell of the body.  Nylon 

spacers are placed underneath the servo box, between it and the lower.  Machine screws 

are inserted through the lower shell, the nylon spacers, and the lower part of the servo 

box.  Lock washers and hex-head nuts are used to keep the box in place and allow the 

legs to swing.  

To secure the legs from wobbling, and to guarantee the legs will only move vertically, I 

drilled a 3/16th   hole through the top of these boxes and milled out oval spaces in the 

vertical leg segments as a leg guide.  Then I inserted 3 inch pieces of 3/16th brass tubing 

through both holes in  the boxes and through the guide spaces with about 1/2 inch 

extending from the inside holes and out of the leg guides.  I crimped the tubing on the 

inner side of the servo boxes and used 3/16th quick nuts to secure the leg from sliding 

horizontally along the tubing. Below is a diagram of  the servo box used in the final 

design:  
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  Nylon spacers are used between the ends of the fore leg and the main outer leg to 

allow easy movement rotation within the joints.   The screws used to attach the lower 

foreleg segment to the servo horns interfered with the range of motion in the initial 

design.  The interfering screw head reduced the over-all leg clearance to 5.5 inches.  An 

extra set of nylon washers were used between the inner leg and the two fore-legs to allow 

full unrestricted a range of motion close to 180°.  With a 9" main leg and two 3.5" fore 

legs, the overall range of motion of each leg is now approximately  7 inches.  Although 
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the leg clearance allows Hannibal to clear large obstacles, it also raises the center of 

gravity further from the ground, making it less stable     

 

 

 

Torque Calculations 

 

   

For the robot to be statically stable, least three legs must be on the ground at all 

times.  Each leg servo must therefore be capable of producing enough torque to 

counterbalance one third the entire weight at the end of a leg. The lower foreleg segment 

is connected directly to the servo.  This fore leg is a 3.5 inch torque arm.  In static 

equilibrium, 1/3rd  of the total normal force will push against the end of the leg.  Since the 

servo is approximately 5 inches from the robot's center of mass, the torque required to 

balance this force is Torque= (W_robot/3)* (3.5*cos θ), where θ is as indicated in the 

figure below: 
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Since the weight of the robot is 4.5 lbs. , or 92oz, the maximum torque  

required is Torque =92/3 *(3.5*cos θ) = 107.3 oz/in.  Since the leg servos can output 

130oz/in of torque, they are sufficient to balance the robot against gravity.  There are 23 

oz/in of extra torque available.  With this extra force, one servo can tilt the platform off 

balance.  If Hannibal is walking over rough terrain and a leg servo is hard-coded with a 

PWM value to send it to its maximum position, and it strikes an object closer than the 

maximum position, the servo has enough force to make the platform unstable.  Therefore, 

we must use a closed loop feedback system to sense when a leg has struck an object, and 

to stop moving it when this occurs. 
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Actuation 
 
    

 

        Each of Hannibal’s legs is driven by two servos to provide two degrees of 

freedom. One 42 oz/in servo provides a sweeping rotation motion from front-to-back and 

back-to-front. The other leg servo (130 oz/in) lifts the leg in an up-and-down manner.   

Due to the complexity of controlling all 12 of these servos, a separate processor is 

required for generating the pulse-width-modulated signals. A 68HC11 single-chip board 

from Mekatronix will be used as Hannibal's servo controller since ports B and C are 

available on this board.  This board also has a power and ground bus surrounding each 

port which can either be used with the regulated 5V powering the chip itself, or an 

external power supply can be used.  This is well suited for driving servos since they 

typically require 6 Volts for full torque and they draw so much current that the 

microprocessor  will reset if both servos and the processor are powered from the same 

battery pack.  I will use the 68HC11E2 since it has the highest, and readily accessible, 

internal memory of any processor in the E-series.  A Motorola 68HC11(A1) evaluation 

with  32Kbytes of external RAM, two output ports at $2000 and $3000, and an input port 

memory mapped at $2000 will be used to incorporate the sensors and generate the signals 

required to control the servos.   At first I intended to use the MTJPro board produced by 

Mekatronix, since it has a everything the EVBU board does plus a built-in 40kHz 

generator  for modulating the IR LED's  and is much smaller than the EVBU.  However, I 

accidentally shorted power to ground on the first board I built and fried all of the 

circuitry.  When I built the  second  one,  Mekatronix was out of the low-profile 8MHz 
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crystals the MTJPro boards were designed for and I had to resort to modifying a regular 

sized crystal  based on the following diagram:  

 
 Where the capacitors are 22pF.  Since I experienced such trouble with the prefabricated 

boards, I had to build my own 40kHz generator using a  74HC390 to step down the 

processor's 8 MHz clock to 40kHz for the Infrared LED's.   

 
Description of Software for Actuation. 
 
 In early July I received a copy of the  library files developed by Ivan Zapata for 

the base platform of RoboBug.  It included functions specifically designed to control up 

to 16 servos using Ports B and C on  the single chip board.  It also included a program 

designed to allow the user to calibrate the minimum, middle, and maximum positions for 

particular servo and generates the integer value ( between 1000 and 4900) corresponding 

to these servo positions.  Upon  execution of this calibration program, the following table 

was produced: 
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Servo # Middle  Up/ Forward Down/ Back Acronym for servo 

2 2260 1000 3360 RFL-- right front leg 

3 2730 1930 3570 RFS --right front shoulder 

4 2430 1200 3870 RML-- right middle leg 

5 2430 1730 3570 RMS--right middle  shoulder 

6 2500 1070 4800 RRL-- right rear leg 

7 2400 1700 3610 RRS-- right rear shoulder 

8 2200 3870 1000 LFL--left front leg 

9 3280 4170 2460 LFS--left front shoulder 

10 2200 3940 1000 LML--left middle leg 

11 3180 3940 2400 LMS--left middle shoulder 

12 2200 4000 1000 LRL--left rear leg 

13 3280 4170 2200 LRS--left rear shoulder 

 

Since the code for integrating all the sensors and controlling servo actuation will most 

certainly require  more than 2K of memory, and the MTJPro is only capable of 

controlling 5 servos, some type of inter-processor communication  is necessary. The 

serial communications interface is the simplest method to implement this since.  The 

program on the single ship will obtain the necessary signals to control the servos, through 

the SCI interface, from the EVBU board.  A dummy character  will be sent to initialize 

communication, then EVBU board transmit the number of the servo to move and the 

position to send it to.  The single-chip board will, in turn,  receive the servo number, 

initialize that servo and transmit the proper pulse width.   However, since the final pulse 

widths can range from 1000-4900, and the largest integer size is 255,  the proper pulse 

widths must be calculated using a general algorithm. .   Since this range of integers also 

corresponds to the maximum range of the servos (180° )  there is approximately (180°) / 
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(3900 ∆PWM)= 0.046°/ PWM.  If we want the error to be within 2° of the actual value,  

the value of the PWM sent must be ± 44 of the desired value.  If we simply multiply the 

PWM value sent through the serial port by 44 we obtain the desired pwm with a 98% 

accuracy.  With a 3.5 inch torque arm this corresponds to an overshoot of  ds=r*dθ(rad)= 

3.5 in *2.02° *(π*/180°)= 0.125inches.    

 

 
Walking Gaits 
 
 To maneuver across rough terrain, Hannibal must not only be able to vary its leg 

position based on terrain.  However, this if its walking gait is not stable it can't possibly 

maneuver over smooth terrain.  The most difficult aspect of walking robots is designing a 

dynamically stable gait because the center of gravity shifts throughout the gait.   The key 

to designing a stable gait is the position of the shoulder servos before and after leg  

placement.      

  
  
 
Tripod gait 
 
  This gait is by far the fastest insect-like walking gait.   For stability reasons the 

bug must have three legs on the ground at all times.  In the tripod gait, the middle leg on 

one side and the front and rear legs on the other side lift and sweep forward, while the 

other legs extend and sweep backwards.  Of all the different gaits, this one was most 

difficult to implement.  The robot's weight is easily supported by three legs, but when it 

would propel itself with only three legs on the ground, stability was lost and Hannibal 

tended to tip forwards.  
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Metachronal Wave Gait 

 

  This is the most stable of the gaits I experimented with.  During a wave gait, the 

robot always has at least 5 legs on the ground at all times.  The walk starts at the rear leg 

on each side.  The leg lifts, swings forward, and after it is placed on the ground, the leg in 

front of it is swung forward and planted on the ground.  The wave moves up each side, 

and when it reaches the front leg, the gait switches to the rear leg on the opposite side. 

  

 

Oar Gait 

 

 This gait, though somewhat slower than the tripod gait, was fastest and most 

stable gait  I experimented with.  Four legs are on the ground at all times to keep it level.  

The gait begins as the middle legs lift swing forward, touch ground and swing back. 

 Then the left front and right rear legs lift, swing forward and touch down, and swing 

back.  Next, the right front and left rear legs swing forward, down and back.   

Turning 

 To turn in place, a walking routine similar to the Oar gait described above is used.  

To spin counterclockwise  in place,  all legs will move similar to the Oar gait routine 

except the legs on the right side will lift, swing back, place, and swing forwards.   To spin 

clockwise in place, all legs will move similar to the Oar gait routine except the legs on 

the left will lift, swing back, place, and swing forward.  
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Sensors 
 
Contact Switches 
  

 To keep Hannibal stable while walking over rough terrain, contact feedback from 

the legs is necessary to keep the leg in its current position when it steps on an obstacle.  

Otherwise, the robot will attempt to keep pushing against the obstacle, which could 

possibly tip it over.  Every servo is designed with a specific gear ratio, which determines 

how long it takes for the servo to reach a certain position.  Knowing this, we can design a 

contact feedback sensor that will alter the PWM signal sent by the processor to the servos 

and keep the servo in its current position.  

  

     To keep the robot stable, it must be able to sense when one of its legs solid ground.  

To accomplish this, I must be able to change the Pulse-width modulated signal being sent 

to the servos to keep them at the position when the feet hit the ground.   

   The servos I am using for leg extension are 130 oz/in with a 60°/.22s transfer 

rate.  Since a servo requires a 20ms PWM signal with time high between .7ms and 1.7 ms 

and will rotate only 180° in either direction, we need to determine the time elapsed from 

the beginning of the leg extension until the foot hits a surface. The angular distance 

traveled by the leg is given by the following equation : 

 

distance[d] =angular velocity[w] * time [t]. 

 

Since the torque arm is 3 inches long, the vertical distance traveled by the leg with 

respect to time is d=[60°  /.22sec]*t.  Therefore, the ration of the distance traveled to the 
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total possible distance is [(4*π/3)*t]/π . The required PWM signal to send the servo to one 

of its maximum positions way has a time high of 1.7ms and the other has a time high of 

.7ms. This signal is equivalent to the ratio of the distance traveled to the total possible 

distance.  Therefore, the new PWM must have a high time of 1.7ms*[(4*π/3)*t]/π , where 

t is the elapsed time elapsed during the leg extension.  Simplification produces the 

following equation:   

 

New time high (T) =(4/3)* 1.75ms * [1E clock/500ns] * elapsed time (t).  

 

  Some of the servos will require a signal with approximately a .7ms high time. 

For these, the following equation will be used : 

 

New time high (T) = [ 2.1 ms *1E clock/500ns] /(4* elapsed time(t) 

 The bump switches will be connected directly to the microprocessor using the 

memory mapped digital input port at $2000.  The figure below is a diagram of the bump 

switches as they were connected to the digital input port:  

 

Implementation.  

  The above description for altering the PWM signals being sent to the 

servos to control leg position was so difficult to implement that a different approach was 

needed.  In mid July I was given a set of libraries developed for RoboBug by Ivan 

Zapata. These libraries included  a routine for controlling up to 16 servos. The function 

takes in two variables, a servo number and pulse width, and generates the PWM signal 
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for that servo continually until it receives a different  pulse width.  To implement the 

touch sensor, I created a loop that polls the foot switch of each leg as it extends towards 

the floor incrementing the PWM value sent to the servo controller by 2 each time through 

the loop.  Each time through the loop the program  waits for approximately  1ms for the 

switch bouncing to settle.  Though this delay means the legs will extend somewhat 

slower than if the loop was running wide open, a delay is absolutely necessary for 

debouncing the switch.  Without it, the loop program will miss the switch feedback 

entirely.  Whenever the switch closes, the program exits the loop and the servo position is 

held.  The servo controller function requires that the PWM sent to the servos be within 

1000 and 4900.  Since this range of integers also corresponds to the maximum range of 

the servos (180° )  there is approximately (180°) / (3900 ∆PWM)= 0.046°/ PWM.  Since 

the servo controller automatically multiplies the integer it receives  for the PWM signal 

by 44, an error of  ± 2.02° will always be present.  Also, the leg extension loop 

increments the signal it sends to the servo controller by 2 each time through the loop. 

Thus, when the foot switch is pressed the leg will have a minimum overshoot of  4.04°.  

With a 3.5 inch torque arm this corresponds to an overshoot of  ds=r*dθ(rad)= 3.5 in 

*4.04° *(π*/180°)= 0.25inches.  This quarter of an inch error, also  ensures that extra 

pressure is applied to a leg while it is in contact with the ground and is so slight that it 

would not significantly affect the robot's balance.   
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Infrared 
 

  Two Sharp 40 kHz IR detectors hacked to produce analog signals will output analog ports 1 and 

2 used for collision avoidance.  One infrared detector and emitter pair will be mounted on each 

of the front two legs.  As the legs sweep forward, Hannibal will scan for obstacles.  Since 

we are only concerned with obstacles that we can not climb over, scanning will only take 

place while a leg is at its full height.  Therefore, if we detect an object close to the leg, we 

know that Hannibal can not possibly climb over it.   

 However, after it has climbed a step, Hannibal may end up in a crouched position 

and will be unable to climb over successive objects unless it can return to its full stance.  

To solve this problem, I have placed  one hacked Sharp IR detector  directly beneath the 

center of the robot and two high-power IR  LED  one in forward and one aft, each 

pointing at a      ° down from the body. When Hannibal's body  is too close to a large 

obstacle, it will know to rise up to full stance position--thus enabling it to climb over 

successive obstacles.  With all of the sensors working properly, we will be able to 

maneuver over rough terrain without knowing exactly what kind of terrain it is.  To the 

robot, stairs would just look like a series of obstacles, and as long as there is enough 

space on the ledge of each stair for the robot, Hannibal will be able to climb onto it. 
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Behaviors 
  

 Hannibal will exhibit general obstacle avoidance, but with special consideration 

to its own ability to maneuver across rough terrain.  In other words, if it can climb over 

an obstacle, it will; otherwise, it will maneuver around the obstacle.   It will also vary its 

gait based on the number of rough obstacles it has stepped on. The more frequent 

Hannibal has to stop a leg short of its maximum extension the gait will become slow then 

change. As it moves across smooth terrain to rough terrain, Hannibal will change from 

Tripod gait to the Oar gait.  If the terrain is very rough, it will slow to a Metachronal 

Wave gait. 
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Murphy's Law 
 
 
 Nothing could have prepared me for the complexity of this project.  Although I 

finished the mobile platform within the first 6 weeks, I spent almost two weeks during the 

second semester working out bugs in the Mekatronix MTJPRO11 boards I built.  The 

first time I built one of these boards, it tested correctly.  I set it aside until the platform 

was finished.  Once, I accidentally connected the power and ground to both the single 

chip board and the MTJPRO11board backwards.  This blew the 5V regulator on the 

single chip board, and both the 74HC573 and the 74HC138 chips on the MTJPRO board.  

I replaced these components and the single chip was back in working order.  I spent a 

week developing and testing different gaints using the single chip alone.  However, it did 

not have enough memory required to integrate the sensors, gaits, and the  corresponding 

servo actuation.  I required the 32K of the TJRO board to incorporate the system. 

   At one point I realized that the crystal was not working properly--possibly broken 

after dropping it on the ground At this point, Mekatronix ran out of the low profile 8MHz 

crystals used on their TJPRO boards.  I modified a standard crystal with two 22pF 

capacitors, as discussed above, but this still did not fix my problems.   At this point I 

decided to assemble another one to replace it.  I spent three days building and testing the 

new board. The new board never worked properly and, as a last ditch attempt and with a 

week to go in the second semester, I switched to using an EVBU board since I knew it 

worked.  With all these hardware problems, I was left with a week to complete all the 

necessary software.  I was able to incorporate the feet sensors and the robot walked, but I 

ran out of time and was not able to implement the IR sensors in software. 
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CONCLUSION 

 Despite the time, money, and Murphy-inspired migraines, I believe that I received 

considerably more from this class than I put in. The mechanical design of my robot was 

much too complicated for my first robot design.  Though I was able to implement most of 

my plans for Hannibal, time caught up with me and I was unable to integrate all the 

sensors with the proper behaviors.  The complexity of the software for controlling all the 

different gaits and sensors overwhelmed me.   After dealing with faulty electronics for 

most of Summer B, I was left with just a week to develop all the software needed for the 

different behaviors. Ultimately, my design did not work properly because Hannibal 

remains unfinished. The Intelligent Machine Design Lab not only gave me design 

experience, it also made me realize the real-world limitations to any project--namely 

time, and Murphy's Law. 


