MACO

Multiple Agent Climbing Organism

Final Report

Ted Belser
University of Florida, Department of Computer Engineering
EEL 5666, Machine Intelligence Design Laboratory

Table of Contents

MACO

Multiple Agent ClImbing OFGARISIcccuciiiuiiiiiiiiiii ettt ettt
TABLE OF CONTENTS

ABSTRACT

EXECUTIVE SUMMARY

INTRODUCTION

INTEGRATED SYSTEM

MOBILE PLATFORM

S INDIVIDUAL AGENTS ... it e
LARGE SERVOSuuuuuuiiii e annaanaanann
EXTENDING ARM ...t nanaaaannnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
LY) T = N
N 1= N

ACTUATION

SENSORS

BEHAVIORS

EXPERIMENTAL LAYOUT AND RESULTS
POWER CONCERNSiiitttttiiiee e ettt s e e e e s eeab b s s e essees s b s eeesse e s b b seessses s bbb eeesse s s bbb seassesssbaanseassernsres
CONCLUSION

DOCUMENTATION

APPENDICIES

Abstract

The design objective of this project is to develop an autonomous system of robots that can coordinate and
perform the task of climbing a 30-inch wall. A mechanical design based on multiple constraints allows for
three agents to be connected as a cooperative whole. Many design problems arose during the devel opment
of this system.

Executive Summary

The acronym MACO stands for ‘multiple agent climbing organism.” The MACO design is based on an
SBIR topic calling for a shape-shifting robot capable of reaching inaccessible locations. Inspired by this
topic the design objective of MACO isto climb athirty-inch wall. This objective was not achieved because
of time limitations and design mistakes.

MACO isaproject in progress, as such there is not much to report on the capabilities of the platform. The
project, however, has resulted in many lessons learned.

Introduction

The design theme for MACO is influenced by an SBIR (http://www.darpa.mil/SBIR/shir.html) topic calling
for a shape-shifting robot capable of reaching inaccessible locations. Building arobot to actually meet this
design description is beyond the scope and time of thisclass. Instead MACO is designed to be a proof of
concept prototype on which to build future designs. The design goal of MACO isto climb onto a 30" wall.
This objective was never realized because of the time constraints of a summer semester. The problems
encountered will be addressed within the paper. Basic functionality in mechanical design however was
achieved and information gathered during the design project will be useful for any future developments of
climbing platforms. This paper primarily discusses the mechanical design process of MACO. For sensory
input MACO uses standard IMDL sensors including analog IR and discrete bump sensors. Stimulus
response is actuated by four large 330 oz-in servos and four 42 0z-in servos modified to run as motors.
Behavior exhibited through actuation was not well devel oped by project’send. Overall MACO was an
ambitious project to design and build within a three-month period.

Integrated System

MACO was designed as a multiple agent organism. Each of the three robots of MACO was to function
independently of each other. Each individual would make a request of the other when a particular task was
to be accomplished. Unfortunately this type of system was never implemented in MACO.

SCRIPTED BEHAVIOR

MWoster Agant | Sl = Slave Agent
Right Agert Motors Lef% Apgent Hotors
Fight Arm Actuoton Left Arm Achuntion

Two Motorola 68HC11 processors control MACO, one on each of the end agents, provide PWM signalsto
drive al 8 servos. Inter-processor communication is achieved through use of the SCI system. The
communication protocol involves amaster and aslave. The master controls the slave by sending single
characters over the SCI line. Despite duplex capability MACO only sends datain one direction, from
master to slave.

The code written for the end of semester presentation was developed in the ICC11 compiler using
Mekatronix TJPro libraries. An RTI multitasking kernel was developed entirely in assembly but because of
time constraints was never used. The RTI multitasking code works and is appended to this document.

An eight-segment LED display was built for decoding and user interface purposes. The TJPro board has
four fully decoded active low outputs and four fully decoded active low input addresses. An output port
(74HC574 8-hit latch) drives the display. The cathode of each LED in the display is connected to one of
the output bits and the anode is connected to a 33kW resistor to ground. A software driver was written for
the display. Thisdriver ran successfully within the RTI kernel.

An assembly servo driver was also written for the RTI multitasking kernel but was never fully debugged.
The driver controls servos using Output Compare ports OC2 — OC5.

Behaviors are scripted because MACO has no sensory capahilities. The integrated system design of
MACO islargely undevel oped.

Mobile Platform
The mechanical design of MACO posed the greatest design challenge of the project.

3 Individual Agents

A 3-agent design simplifies the mechanics of a climbing robot. The middle robot acts as afulcrum on
which the end robots balance.

Large Servos

Asaclimbing robot MACO must have the mechanical power to lift itself to a particular height. The design
goa is 30" but without a wall-clinging mechanism this must be achieved using a structure at least 30" tall.
Thisiswhere the torque problem is introduced into the design. Torque is directly proportional to the length
of the moment arm. A larger moment arm requires larger servos. This relationship is a design divergence
typical to engineering. Thisdivergenceiseasily quelled by noticing that as an arm reaches a vertical
position the gravity component of the torque approaches zero. The largest load on the arm occurs when the
armis parallel to the ground. This produces the first design constraint.

Constraint 1-- The arm actuator must produce the torque required when the arm is paralléel to the earth.
Thistorque is calculated by multiplying the mass of the end robot by the length of the arm at zero degrees.
Constraint 2-- The largest servo within budget is a 350 oz-in Hitec 805BB+. Four of these servos were
bought.

Extending Arm

Constraint 3-- A functional end robot weighs ~25 oz.

The above constraints result in amiddle robot with two 3500z-in servos for each arm. This produces a
total torque of 700 oz-in on each arm. 700 oz-in divided by 25 oz allows for a moment arm of 28 inches.
Dividing again by 1.75 for safety alows for a 16 inch moment arm. Thisresult is one-half of the 30 inch
design goal. The simplest solution toward achieving the 30in span is to telescope the arm. A telescoping
arm however was not achieved in this project.

Middle Agent

The function of the middle agent is solely to provide the mechanical means to climb onto aledge. 4 servos,
2 on each arm perform one of two functions. Each pair is either lifting the end robot or lifting the middle
robot. Each of these functionsis performed in the various phases of the climbing behavior (See drawing 1).

End Agents

The end agents perform different functions depending on whether the robot is combined or undocked. Asa
part of the combined robot the end agent acts as afoot for the middie agent. The end agents also provide
mobility for the organism when MACO is not performing the climbing behavior. The end agents are based
on aTJ platform, modified to function as part of the MACO design. Undocked end agents were never
realized in this project.

Actuation

As aclimbing robot sufficient actuation is needed to achieve a workable climbing behavior. Agile
actuation is a critical design objective of the MACO platform. The primary actuation of MACO is
achieved through two servo pairs on each side of the middle robot. Each servo pair provides the speed and
strength to move MACO with agility. The Hitec 805BB+ servos provide 350 oz-in of torque at 6.0 V each.
The speed of the servos as specified by Hitec RCD is 0.16sec/60°. The Hitec servos perform well as an
integral part of the MACO platform. The strength and speed of the servos are not only sufficient for quasi-
static behavior but also have the potential to perform dynamic behaviors. Dynamic mechanical behaviors
are untested at this stage in the development but the agility of the Hitec servos bodes probable success.

Some careful calibration was required to devel op the software driving the arms. The two servos on each
arm must move synchronously. Thiswas achieved by moving each servo to its extents and recording the
corresponding pulse-width. The extents are matched so that even though one servo may be able to move
further it does not move beyond the extents of the other servo. Knowing both the clockwise and counter-
clockwise extents of the servo a pulse-width range is calculated. Thisrangeis then divided by 300
producing a 300-point resolution to the movement of the arm. The following code snippet shows the
implementation of the algorithm.

/* MoveRi ght Arm */
voi d MoveRi ght Arn{ position)
{
servo(0, (11. 5*posi tion)+1650);
servo(1, 5000-(11. 3*position));
}

The power and speed of the Hitec servos may pose a problem in certain applications. When programming
the motion of these servos one should consider gradually changing the pulse-width rather than sending a
position and having the servo circuitry control the movement. This gradual changeis easier to handle and
the physics calculations are simpler.

Planar locomotion is achieved through hacked 42 oz-in servos, two on each end robot. The servo
modification (hack) is described in Mekatronix reference material. These hacked servos drive 3" diameter,
1” wide wheels. The wheels are attached by compression fit to a disk screwed on the servo horn.

Sensors

The sensor suite of MACO is minimal and unimplemented. The sensors used are analog infrared sensors
and bump sensors. A sonar circuit built for use on MACO was not implemented.

Behaviors

MACO can only perform one scripted behavior. This behavior converts MACO from a completely flat
position to araised position (see title page).

Experimental Layout and Results

Power Concerns

One major concern is the power consumption of the large 350 oz-in servos. The included data shows the
battery performance of two battery packs. For each battery pack data was sampled for multiple loads and
also for a constant load measured over time.

Graph 1 compares the performance of two battery packs, alab standard 6-cell eveready pack and a 6-cell
1200 mAh Vinnic racing pack. The Vinnic pack was charged for 15 minutes on an AstroFlight quick
charger. The eveready pack was charged by a dc power supply over 10 minutes. The data seems to
indicate that the charges were insufficient.

6-Cell Battery/Servo Performance
Constant Load 150z at 13"

10
© 8
.
s 6 —e— Eveready
g 4 —®— Racing Pak
e 2

0
0 5 10 15
Time (min)

The eveready pack provided an average of 1.06 Amps over 10 minutes. Power from the everyready was
only sufficient during the first 5 minutes, averaging 1.74 Amps. This particular charge only provided
96mAh of sufficient power. There isno printed power rating on the eveready pack, however 96mAh is
obviously well below expected performance.

The Vinnic pack provided an average of 1.12 Amps over 10.5 minutes. Power from the Vinnic was only
sufficient for the first 6 minutes, averaging 1.19 Amps. This particular charge only provided 130 mAh of
sufficient power. The Vinnic pack is rated at 1200 mAh.

Although the eveready pack did not last aslong asthe Vinnic it did provide more power to the servos. The
6-year age of the Vinnic pack may be attributable to the poor performance. The 10 minute quick-charge
may be attributable to the poor performance of the eveready pack.

Conclusion

MACO is an unfinished project but it is aworking prototype with the potential for further experimentation.
The notable performance of the Hitec servos indicates that a climbing behavior is likely.

MACO was conceived as an dternative to the typical platforms of past IMDL projects. The design of the
platform expended more time than expected. This attention to mechanical design resulted in many
unfinished components. Time spent on conceptualizing mechanisms such as arm extension and docking
compounded into alarge amount of wasted time resulting in an unfinished project. Initially MACO'’s
software was written in assembly because of the freedom and control of assembly source, but this also
expended valuable time needed to produce aworking project. This apparent failure however isalarge

lesson in design. Listed below are some important lessons learned when devel oping a new mechanical
platform:

1. Theacquisition of partsisthe most time consuming activity in the design process. If the parts are not
readily available the designer must find and posses them within one week or change the design.

2. A corollary to lesson 1: Design around parts that are readily available. Do not assume the existence of
apart.

3. Use AutoCAD to visualize the entire project. Become familiar with the AutoCAD tools and use them
to test all mechanical extents.

4. Spend only 50% of time on design and construction of the prototype. Spend the other 50% on design
of software and the debugging of the prototype’ s design.

5. Make no assumptions.

Because MACO is an incomplete project there is much room for future work on the design. Thisreportisa
summary of a semester of work on MACO. Work on MACO will be continued to a satisfactory conclusion
and a more comprehensive report will replace this one.

Documentation
[1] Mekatronics TIPro Assembly Manual. http:\\www.M ekatronix.com

[2] Motorola HC11 Reference Manual, Motorola Inc. 1991
[3] MotorolaHC11 Programming Reference Guide, Motorola Inc. 1991

[4] Katia P. Sycara, Multiagent Systems, Al Magazine, Vol. 18 No. 2, American Association for Artificial
Intelligence, Summer 1998

Appendicies

Left Robot Demonstration Code

#i ncl ude <tj pbase. h>
#i ncl ude <servotjp. h>
#i ncl ude <stdio. h>

/[**** Behaviors and Arbitrator */
void MovelLeft Arn(int);

//***** Ival n Loop *****/
char conmand,
voi d mai n(voi d)
{
i nit_anal og();
init_clocktjp();
init_notortjp();
init_servotjp();
whi | e(1){
conmmand=get char () ;
i f(conmand == 'qg"){
not or p(0, 100) ;
not or p(1, 100) ;

el se if(command == 's"){
not or p(0, 0) ;

not or p(1, 0);

}

el se if(command == "I"){
MovelLef t Arn{10) ;
not or p(0, - 100) ;
not or p(1, - 100);
wai t (500);
not or p(0, 0) ;
not or p(1, 0);

}

}

/* MovelLeft Arm */
voi d MovelLeft Arm(position)
{
servo(0, (11. 5*posi tion)+1650);
servo(1, 5040-(11. 17*position));
}

Right Robot Demonstration Code

#i ncl ude <tj pbase. h>

#i ncl ude <servotjp. h>
#i ncl ude <notortjp. h>
#i ncl ude <stdio. h>

/[**** Behaviors and Arbitrator */
voi d MoveR ght Arn(int);

//***** Ival n Loop *****/

voi d mai n(voi d)

{
i nit_anal og();
init_clocktjp();
init_notortjp();
init_servotjp();
printf("l");
MoveRi ght Arm(10) ;
not or p(0, - 100) ;
not or p(1, - 100) ;
wai t (500);
printf("s");
not or p(0, 0) ;
nmot or p(1, 0);
wai t (500);
printf("g");
not or p(0, - 100) ;
not or p(0, - 100) ;
wai t (2000) ;
printf("s");
not or p(0, 0) ;
not or p(0, 0) ;

}

/* MoveRi ght Arm */

voi d MoveRi ght Arn{ position)

{
servo(0, (11. 5*posi tion)+1650);
servo(1, 5000-(11. 3*position));

}

MACO Multitasking RTI kernel including buggy servo drivers and LED display driver

Rk I b o bk O R Rk Ik O b S R R R I bk b b O R R Rk S kS b

* Title : MACO mul ti-tasking kernel

* Fi |l enane . mMaco. asm

* Programmer . Ted Bel ser

* Date . 6-9-98

* \ersi on A0

*

* Drivers

* Driverl -- LED 7 segnent display driver
* Driver2 -- Servo Handl er

*

Rk S b S I R I kR R I kS R R Ik kR Rk R I bk kb S R O
*

DEFI NI TI ONS
Rk S b b R R I kR Ik R kS R R Sk S b bk I b R R o b O

*

REGS EQU $1000
_TCNT EQU $0E
“TCTL1 EQU $20
TCTL2 EQU $21
“TFLGL EQU $23
TTFL&R2 EQU $25
TTMBKL EQU $22
TTMBK2 EQU $24
"PACTLEQU $26
"BAUD EQU $2B
TSCCRLEQU $2C
"SCCRR EQU $2D

TCNT Hi gh byte

Contains RTIF flag

RTI1 enable flag

RTI Tiner control

BAUD rate control register to set the BAUD rate
Seri al Comuni cation Control Register-1

Seri al Communi cation Control Register-2

_SCSR EQU $2E Serial Communication Status Register

_SCDR EQU $2F Serial Communication Data Register

_OPTION EQU $39 ; Option Register

TCNT EQU $100E ; TCNT High byte
TCTL1 EQU $1020 ; Pin Control for TOC
TCTL2 EQU $1021 :
TFLGL EQU $1023 :

TFL& EQU $1025 ; Contains RTIF flag
TMSK1 EQU $1022 ; TOC Interrupt enable
TIVBK2 EQU $1024 ; RTIl enable flag
OCiD EQU $100D ;o TOC1

TOC1

TOCl Regi ster
TOC2 Regi ster
TOCl Regi ster
TOC2 Regi ster

OCIM EQU $100C
TOCI EQU $1016
TOC2 EQU $1018
TOC3 EQU $101A
TOC4 EQU $101C
TOC5 EQU $101E

PACTL EQU $1026 ; RTI Timer control

BAUD EQU $102B ; BAUD rate control register to set the BAUD
rate

SCCR1 EQU $102C ; Serial Communication Control Register-1
SCCR2 EQU $102D ; Serial Communication Control Register-2

SCSR EQU $102E ; Serial Communication Status Register

SCDR EQU $102F ; Serial Communication Data Register

OPTIONEQU $1039 . A'D Power Up (bit 7)
ADCTL EQU $1030 A/ D Control Status

ADRL EQU $1031 ; A/D Results

ADR2 EQU $1032 ;

ADR3 EQU $1033 ;

ADR4A EQU $1034 :

ECS EQU $04 ; User-defined End O String (ECS) character
CR EQU $0D ; Carriage Return Character

LF EQU $0A Li ne Feed Character

ESC EQU $1B Escape Charracter

BITO EQ %90000001 ;
BITT EQ %90000010 ;
BIT2 EQ %©0000100 ;
BIT3 EQ %©0001000 ;
BIT4 EQ %©0010000 ;
BITS EQ %©0100000 ;
BIT6 EQ %©1000000 ;
BIT7 EQ 940000000 ;

*

Rk I b Sk R IR Ik kO bk S R S R Rk bk O I Rk Ik R b kR o O

* Initialize Interrupt Junmp Vectors
R R S I kR I I R R S R R I I I R O I

* Buffalo junp vectors

* $00EB

* jmp RTI_ISR

* ORG $00F7

* imp ILL_OP_ISR

* ORG $00DC

* jnmp TOC2_ISR

* ORG $00D9

* jnmp TOC3_ISR

* ORG $00D6

* jmp TOC4_I SR

* ORG $00D3

* jnmp TOC5_ISR
org $fff0
fdbo RTI_ISR
ORG $fff8
fdo ILL_OP_ISR
ORG $ffeb
fdb TOC2_I SR
ORG $ffed
fdb TOC3_I SR
ORG $ffe2
fdb TOCA_I SR
ORG $ff el
fdb TOC5_I SR
ORG $fffe
fdb $8000

*

Rk S b Sk R R R ok bk S bk S R R Rk kS kb ke kO R R Rk I b O Rk S b O

* Define Strings and Reserve Variabl e nenory space for system use

* such as CPT, DSPT, CurPID, etc.

R R R S R R S S R S R I O I
ORG $8000
jmp Main

*

PID rmb 1

CPT rmb 16

DSPT rnb 16

CrScr FCB ESC, $5B, $32, $4A ; ANSI sequence to clear screen
FCB ESC, $5B, $3B, $48 ; and nove cursor to hone
FCB ECS : ECS character

*

Rk I b o bk O R R Rk kS b Sk R R Rk kb bk b R I o S

MAI N PROGRAM

*

The main program perforns the foll ow ng tasks:
- Disable interrupts

- Initialize RTI

- Initialize SC

- Zero out the initial Current Process Table
- Initialize system CurPID

- Initialize CPT[0] w th DSPT[0]

- Initialize SP with CPT[0]

- Enables interrupts

E R I R I I B

Rk I b S R R R S kR I Rk R Sk kI R kR o I R

Main |ds #3$41 ; Initialize Stack Pointer
sei ; disable interrupts
jsr I nitSCl ; initialize the SC system
jsr I ni t RTI ; initialize the RTI system
jsr I ni t Tabl es c Initialize tables
| daa #0 c Initialize the PID
St aa Pl D "
| dx DSPT ; Initialize CPT[O]
st x CPT "
| ds CPT ; Initialize SP with CPT[O]
cli ; enable interrupts
* Execute the Autoexec
jmp Aut oexec ; Startup the system
*
RS S S S EE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEIEEEEEEEEEEEEEEEEEEEEEEEEEEES
* Subroutine: InitTable
* Functi on: Initializes Current Process Table
* | nput: None
* Qut put: initializes the process table

Rk I b o bk O R R Rk Sk O b S R R R R R kb Sk b R IR I S kS

*

I nit Tabl es
psha
pshb
pshx

[dab #0

| dx #CPT : zero the CPT
Loop_Tabl es

stab 0, X ;

i nx

cpx #CPT+16

bne Loop_Tabl es ;

| dy #$90FF : create the DSPT
Loop_Tabl es_2

sty 0, X ;

i nx

i nx

| dab #$FF :

aby ;

i ny

cpx #CPT+32 ;

bne Loop_Tabl es_2 ;

pul x

11

pul b
pul a

rts
*

Rk I b o bk O R R Rk kS b Sk R R Rk kb bk b R I o S

* Subrouti ne:
* Function:

*

* | nput:

* Qut put:

I ni t RTI

This routine enables RTIs and sets the RTlI rate to

32. 77ns.
None

Initializes RTI

Rk I b o bk O R Rk kO bk A Rk R ok bk R Rk Ik b S kR

*

I ni t RTI
pshx

| dx
bset
bset

pul x

rts
*

#RECS

_TNVBK2, X 991000000
_PACTL, X 990000011

1

1

turn on RTI
set to 32.7 ns

Rk I b o bk O R R Rk kb R R O kR kR R o kb S I R o

*

Interrupt Service Routine (ISR):

PI D]

R R S b R R R SR I kO kR I kR Rk kR Rk I b O R

1

RTI ISR
This ISR services the Real-Tinme Interrupts.

- Update current SP in CPT[Current PID|

clear the RTI Flag

load PIDinto b

|l oad CPT start in X
multiply PID by 2
and add to X (X = CPT)

store old stack ptr to the table
Restart the PIDat O if

PID = 7.

i ncrenent the PID

load the PIDinto b

load the stk ptr intoy
check if is enpty slot

; go to next slot
|l oad stack ptr fromtable

reset PIDto O

* Functi on:
* This I SR should do the foll ow ngs:
* - Clear RTI flag.
*
* - Find next PID
* - Update CurPID
* - Load New SP from CPT[Next
*
*
RTI _I SR

| dx #REGS

bset _TFL&, X 991000000
* save old stack ptr

Idab PID

| dx #CPT

Islb

abx

sts 0, X
Set _new

Idab PID

cnpb #7

beq Restart _PID
* set new stack ptr

inc PI D
Set _new 2

Idab PID

| dx #CPT

Islb

abx

| dy 0, X

cpy #$0000

beq Set _new

| ds 0, X

bra END RTI ISR
Restart_PID

| daa #0

staa PID

bra Set _new 2
END_RTI I SR

12

*

rti

1

return frominterrupt

Rk I b o bk O R Rk kS b R R R Ik kR Rk b S I Rk o

*

E R S I

Subr out i ne:
Functi on:

I nput :

Cut put :

Destroys:

Side effects

Spawn

generates a new process

X: starting address of the process

A. PID of the process just created, or
$FF if no slots are avail able

Contents of A register

Creates the initia

stack for the process. This

stack nmust have the process PIDin A and %%1000000

in CCR

Rk I b o bk O R Rk kO b Sk R R R I bk b b S S R R I R kb

*

Spawn

pshy
pshb
pshx

| dx
| daa

Loopl_Spawn

cpx
beq
| dy
cpy
beq
i nXx
i nXx
i nca
bra

Start_Proc

tab
Islb
| dx
abx
| dy
| dx
abx
sei
sty
| dx
| dab
stab
st aa
puly
sty
cl
pshy
pul x
bra

Error _End

pul x
| daa

End_Spawn

*

pul b

puly
rts

#CPT
#0

#CPT+16
Error _End
0, X

#0
Start_Proc

Loopl_Spawn

#DSPT
0, X
#CPT

0, X
0, X
#%©100000
1, X
3, X

8, X

End_Spawn

#$FF

1

push pc on stack

first find open slot

nove default stack |ocation
to CPT.

di sable interrupts

store new stk ptr in CPT
load the stk ptr into x
load init ccr value into b

pull pc from stack
set pc

enabl e interrupts
copy pc to X

Rk Ik I b o bk O R R Rk kS b Sk R R R R b Sk R IR I S kb o

*

*

Subr out i ne:
Functi on:

Kill

renoves a currently active process

13

* | nput: A: process IDto kill
* Qut put: A process IDjust killed
* Destroys: None

RS S S S EE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEIEEEEEEEEEEEEEEEEEEEEEEEEEEES
*
Kill

pshx

pshb

sei ; disable interrupts

| dx #CPT ;
t ab ;
I slb ;
abx ;
| dab ;
stab
stab

o H®
X X

cli ; enable interrupts
pul b
pul x

rts
*

Rk I b o bk O R Rk bk O b S R R O kR kR S kb S kR

* Subroutine: ILL_OP_ISR

* Functi on: Prints a nmessage if ther is an Illegal op-code
* I nput:

* Qutput:

* Destroys: St ops operation of all processes and returns to
* Buf f al o.

Rk I b o bk O R Rk Ik O bk R R R b Sk b b S O R Rk S kb o

*

ILL_OP_ERR fcc @ATAL ERRCR ::: Illegal Qperation@
fcb ECS
ILL_OP_ ISR
| dx #C r Scr
jsr Qut Str
ldx #l LL_OP_ERR
jsr Qut Str
SWi

** AUTCEXEC **

Rk I b o bk O R Rk kO b S R R R R bk b R R Rk S b b o

Aut oexec
| dx #Driverl
jsr Spawn
| dx #Dri ver2
jsr Spawn
Aut o_end

bra Aut o_end
* % I:RI VERS * %

Rk Ik I b o bk O R R Rk kO b kR R R bk b b R IR I S ko b o

* Driverl

* Function: Drives the one 7 segnent display
* | nput

* Qutput : CQutputs pattern to displays

* Note :

Rk I b o bk O R Rk kO b S R R R R kb Sk b R Rk S kb o

* interface

DIMI rnb 32 ; 16 Message QUEUE
* Characters

LEDbpl fcb $48, $C7, $CD, $59, $9D, $9F, $C8, $DF, $DD, $DE
* Equat es

14

LEDI EQU $4000 :

Driverl

* lnitialization ;
| dab #0 ;
| dx #D1MT ;

DL L 1
stab 0, X ;
i nx ;

*

cpx #D1MT+32
bne DL L 1 ;
Driver Main Loop

D1I_M | dx #DLMT- 2 ;

DI L_2inx ;
i nx ;
cpx #D1MT+32 ;
beq D1_M ;
| dy 0, X ;
cpy #0 ;
beq DL L 2 ;
ldab 0,Y ; Read the nunber of display
D1 L_3cmpb #0 ; patterns in message.
beq DL L 2 ;
decb ;
iny ;
ldaa 0,Y ;
St aa LED1 ;
iny ;
ldaa 0,Y ;
DL L_4jsr Del ay ;
deca ;
cnpa #0 ;

*

*

bne DL L 4 ;
bra D1 L_3 ;
End of Driverl Code

Rk I b o bk O R Rk Ik O b R R bk b b S O R Rk S kb

*

* F *

*

Driver2

Function: Drives 4 servos using TOCs 1-4
| nput

CQut put

Not e

Rk I b o bk O R Rk kO b S R R R R bk b R R Rk S b b o

*

Dut y2E r mb
Dut y3E rmb
Dut y4E r mb
Dut y5E r mb

*

Duty2 rnmb 2
Duty3 rnmb 2
Duty4 rnmb 2
Duty5 rnb 2
Low2 rnb 2
Lowd rnb 2
Lowd rnb 2
Lows rnb 2
Si gnal 2 r
Si gnal 3 r
Si gnal 4 r
Signal5 rnb 1

*

Interface
; O her Processes may change
: these val ues.

Local Vars

333

Dat a

D2_Message

15

fcb

Driver2
* Initialization
| dx #REGS
bset _PACTL, X 940001000
bclr _PACTL, X 990000100
belr _TMBK1, X 941111111
bset _TFLGL, X 991111000
belr _TCTL1, X 941111111
| daa #%©0000000
staa TCTL1
Idab #0
| dx #Dut y2E
D2_1 L1
stab 0, X
i nx
cpx #Si gnal 5+1
bne D2_I_L1
| dx #D2_Message
St X D1MT
| dd #1000
std Dut y2E
std Dut y3E
std Dut y4E
std Dut y5E
| dx #REGS
* Driver Min Loop
D2_M. ldd Duty2E
cpd #0
bne Set Dut y2
bclr _TCTL1, X 941000000
belr _TMBK1, X BI T6
D2_ L1 ldd Duty3E
cpd #0
bne Set Duty3
bclr _TCTL1, X 990110000
belr _TMBK1, X BI TS5
D2_L2 Idd Duty4E
cpd #0
bne Set Dut y4
bclr _TCTL1, X 990001100
belr _TMBK1, X BI T4
D2_L3 Idd Duty5E
cpd #0
bne Set Dut y5
bclr _TCTL1, X 990000011
belr _TMBK1, X BI T3
D2_L4 bra D2_L5
Set Dut y2
| dd #$9C40
subd Duty2E
sei
std Low2
| dd Dut y2E
std Duty?2
cl
bset _TCTL1, X BI T6
bset _TMBK1, X BI T6
bra D2_L1
Set Duty3
| dd #$9C40
subd Duty3E
sei

8, $80, 1, $40, 1, $01, 1, $02, 1, $04, 1, $08, 1, $01, 1, $10, 1

set data directions for
porta.

di sable the interrupts
clear flags

set all pins | ow

di sable pins 2-5

1

zero Vars

: end of zero Vars
**xx%*% send nessage to
LED dri ver
TCC test
TOC test

| oop

*kkk k%
*kkk k%
*kkkk*x
*kkkk k%
*kkkk k%

*kkkk k%

first check to see which
Servos are turned on
(Dut yXE! =0) .

di sabl e pins

di sabl e i nterrupt

Ecl ks in a 50Hz period
Subtract the duty cycle
di sable interrupts

store |l ow cycle duration

store duty cycle duration
enabl e interrupts

clear | ocal nask

Ecl ks in a 50Hz period
Subtract the duty cycle
di sable interrupts

16

std Low3 ; store low cycle duration

| dd Dut y3E ;
std Duty3 ; store duty cycle duration
cli ; enable interrupts
bset _TCTL1, X BI T4
bset _TMBK1, X BI T5 : clear |ocal nmask
bra D2_L2 ;
Set Dut y4
| dd #$9C40 ; Eclks in a 50Hz period

subd Duty4E Subtract the duty cycle

sei ; disable interrupts
std Low4 ; store low cycle duration
| dd Dut y4E ;
std Dut y4 ; store duty cycle duration
cli ; enable interrupts
bset _TCTL1, X BI T2
bset _TMBK1, X BI T4 : clear |ocal nmask
bra D2_L3 ;
Set Dut y5
| dd #$9C40 ; Eclks in a 50Hz period

subd Duty5E Subtract the duty cycle

sei ; disable interrupts

std Lows ; store low cycle duration
| dd Dut y5E ;

std Duty5 ; store duty cycle duration
cli ; enable interrupts

bset _TCTL1, X BITO

bset _TMBK1, X BI T3 : clear |ocal nmask

bra D2_L4 ;

D2_L5 jnp D2_M ;
* Driver2 ISR s

TOC2_1 SR
| dx #REGS ;
bset _TFLGL, X BI T6 ; clear flag
I daa Signal2 ; load the signal state
cnpa #0 ; if it's 0 then set pin high
beq TOC2_|I SR HI GH ; for the duty duration
| daa #0 ; Oherwise set it |ow
staa Signal 2 ; to conplete a 50Hz wave.
| dd TCNT ;
addd Low2 ;
std TOC2 ;

bra TOC2_I SR END
TOC2_1 SR HI GH

| daa #1 ;
staa Signal 2 ;
| dd TCNT ;
addd Duty?2 ;
std TOC2 ;

TOC2_1 SR END

rti
*

TOC3_ I SR
| dx #REGS ;
bset _TFLGL, X BI T5 ; clear flag
| daa Signal 3 ; load the signal state
cnpa #0 ; if it's 0 then set pin high
beq TOC3_I SR H GH ; for the duty duration
| daa #0 ; Oherwise set it |ow
staa Signal 3 ; to conplete a 50Hz wave.
| dd TCNT ;
addd Low3 ;

std TOC3 ;

bra TOC3_| SR END
TOC3_1 SR HI GH

| daa #1 ;
staa Signal 3 ;
| dd TCNT ;
addd Duty3 ;
std TOC3 ;

TOC3_1 SR END

rti
*

TOCA_I SR
| dx #REGS ;
bset _TFLGL, X BI T4 ; clear flag
I daa Signal4 ; load the signal state
cnpa #0 ; if it's 0 then set pin high
beq TOCA_| SR H GH ; for the duty duration
| daa #0 ; Oherwise set it |ow
staa Signal4 ; to conplete a 50Hz wave.
| dd TCNT ;
addd Low4 ;
std TOCA ;

bra TOC4_ | SR END
TOCA_ | SR HI GH

| daa #1 ;
staa Signal4 ;
| dd TCNT ;
addd Duty4 ;
std TOCA ;

TOC4_| SR_END

rti
*

TOC5_| SR
| dx #REGS ;
bset _TFLGL, X BI T3 ; clear flag
Idaa Signal5 ; load the signal state
cnpa #0 ; if it's 0 then set pin high
beq TOC5_| SR HI GH ; for the duty duration
| daa #0 ; Oherwise set it |ow
staa Signal5 ; to conplete a 50Hz wave.
| dd TCNT ;
addd Lows ;
std TOCS ;

bra TOC5_| SR END
TOC5_ | SR HI GH

| daa #1 ;
staa Signal5 ;
| dd TCNT ;
addd Duty5 ;
std TOCS ;

TOC5_| SR_END
rti
* End of Driver2 Code

Message fcc @hello Victorial @

fcb ECS
Driver3 jsr I nitSCl
| dx #LEDbpl
|daa 0, X
d3_m staa $4000
|daa 0, X
i nx

pshx

| dx
jsr
pul x
psha
jsr
pul a
bra

#Message

Qutstr

I nChar

d3_m

** UTILITIES **

Rk I b o bk O R R Rk S b kR R R R bk b R R IR IR I S ko b o

*

Subr out i ne:

*

* | nput:

* Qut put:
* Destroys:
* Not e:

*

*

*

Del ay PSHA

PSHB
PSHX
PSHY
LDX #00002
Qut er LDY #10000
I nner LDD TCNT
DEY
BNE | nner
DEX
BNE Qut er
PULY
PULX
PULB
PULA
RTS
*
*
*
*
* Description:
*
* 1 stop bit.
*
* | nput None.
* Qut put
* Destroys None.
* Calls None.

Del ay
None

Provi des a del ay by sinple | ooping

None

If you're looking to save nenory, this function
may be rewritten or subsunmed by Process since

Process is the only routine to call it.
R R R S R I R S S R S I R R I I

Save registers

Load outer |oop counter
Load i nner | oop counter
Decrenent inner counter
Branch if >0 to inner |oop
Decrenent outer counter

Branch if >0 to outer |oop
Restore registers

Return from subroutine

R Rk o bk I R Rk b Sk R R Rk I b R e kS R R

SUBRQUTI NE - | nitSCl
This subroutine initializes the BAUD rate to 9600 and
sets up the SCl port for 1 start bit, 8 data bits and
It also enables the transmtter and receiver.
Effected regi sters are BAUD, SCCR1, and SCCR2.

Initializes SC .

Rk S b Sk R R R kI bk S R R R Rk bk I b S R R bk R O O

*

I nitSCl PSHA
LDAA
STAA
CLR

LDAA
STAA
PULA
RTS

*

#3$30
BAUD
SCCR1

#$0C
SCCR2

Save contents of A register
Set BAUD rate to 9600

Set SCI Mbde to 1 start bit,
8 data bits, and 1 stop bit.
Enable SCI Transmitter
and Recei ver
Restore A register
Return from subt outi ne

Rk S b I S R R ok kb kR S R Rk kR Rk Ik kI b R R R R I O

*

SUBROQUTI NE - Qut Char

19

* Description: Qutputs the character in register Ato the screen after
* checking if the Transmitter Data Register is Enpty.

* | nput : Data to be transmitted in register A

* Qut put : Transmit the data.

* Destroys : None.

* Calls : None.

Rk S b S R R Rk ok kb kR I SRR Rk o bk O b I R R R kO b O

*

Qut Char PSHB ; Save contents of B register

Loopl LDAB SCSR ; Check status reg (load it into B reg)
ANDB #$80 ; Check if transmt buffer is enpty
BEQ Loopl ; Vit until enpty
STAA SCDR ; Register A ==> SCl data
PULB ; Restore B register
RTS : Return from subtoutine

*

Rk S b O R IR Sk bk O bk kR S R Rk bk b R IR R kb kO b O

* SUBROUTI NE - QutStr2

* Description: Qutputs the string term nated by ECS. The starting

* | ocation of the string is pointed by X register. Calls

* the Qut Char subroutine to display a character on the screen
* and exit once ECS has been reached. |In order to print the
* string properly with RTI, it automatically disables and

* enabl es interrupts.

*

* | nput : Starting location of the string to be transnitted

* (passed in X register)

* Qut put : Prints the string.

* Destroys : Contents of X register.

* Calls : Qut Char.

Rk I b Sk R SRR Ik bk S bk S R R R Rk o bk S R R R b kO R

*

Qut Str2 PSHA ; Save contents of A register
SEl ; Disable interrupts
Loop2 LDAA 0, X ; Get a character (put in A register)
CMPA #ECS : Check if it's ECS
BEQ Done : Branch to Done if it's ECS
JSR Qut Char ; Print the character by calling QutChar
I NX ;I ncrenent index
BRA Loop2 ; Branch to Loop2 for the next char.
Done CLI ; Enable interrupts
PULA ; Restore A register
RTS : Return from subtoutine

*

Rk S b Sk R R R ok bk S b kR R Rk Rk bk Ik b S R R R R kO b O R

* SUBROUTINE - QutStr

* Description: Qutputs the string term nated by ECS. The starting

* | ocation of the string is pointed by X register. Calls

* the Qut Char subroutine to display a character on the screen
* and exit once ECS has been reached.

*

* | nput : Starting location of the string to be transnitted

* . (passed in X register)

* Qut put : Prints the string.

* Destroys : Contents of X register.

* Calls : Qut Char.

Rk S b Sk R R R ok kb kR R Rk Rk bk bk S R R Rk kb O b O

*

QutStr PSHA ; Save contents of A register

Loop_ LDAA 0,X ; Get a character (put in A register)
CMPA #ECS : Check if it's ECS
BEQ Done_ : Branch to Done if it's ECS
JSR Qut Char ; Print the character by calling QutChar

20

I NX
BRA

Done_

PULA

RTS

*

Loo

p_

ncr ement

i ndex

; Branch to Loop2 for the next char.
Restore A register
: Return from subtoutine

Rk S b Sk R R R kO b R R SRk Rk o bk O b S R R R kO b O R

SUBROUTI NE
Recei ves the typed character into register A

*

I nput
Qut put

* % Xk F

Calls

Descri ption:

Destroys

None

- InChar

Regi ster A = input from SCl
Contents of Register A

None.

Rk S b S R R R I O kb ok S R R Rk Rk o kb R IR R Sk kO b o O

*

I nChar LDAA
*

ANDA
BEQ
LDAA
RTS

*

SCS|

R

#3$20
| nChar
SCDR

Check if
Vit until
SCl data ==> A register
Return from subroutine

Check status reg.

(load it into A reg)

receive buffer full

data present

Rk I b S R IR Ik bk O bk S R S R Rk bk Ok R IR R kO b o O

END OF CCDE

Rk I b Sk R SRR Ik bk S b kR S R Rk bk b S R R b kO S S O

Eveready Multiple Load

Torque Volts Amps Watts
189.8 6.45 1.4 9.03
175.2 6.55 1.26 8.253
160.6 6.53 1.21 7.9013
146 6.63 1.07 7.0941
131.4 6.7 0.96 6.432
116.8 6.75 0.89 6.0075
102.2 6.83 0.77 5.2591
87.6 6.93 0.64 4.4352
73 7.09 0.48 3.4032
58.4 7.41 0.18 1.3338
43.8 7.45 0.15 1.1175
Eveready Constant Load
Torque Volts Amps Watts Time(min)
160.6 6.46 1.2 7.752 0
160.6 6.28 1.19 7.4732 1
160.6 6.23 1.16 7.2268 2
160.6 6.14 1.16 7.1224 3
160.6 6.04 1.16 7.0064 4
160.6 458 1.02 4.6716 5
160.6 4.44 1.01 4.4844 6

21

160.6 4.05 1.06 4.293 7
160.6 3.24 1 3.24 8
160.6 2.71 0.64 1.7344 9
Vinic Multiple Load
Torque Volts Amps Watts
189.8 6.8 1.38 9.384
175.2 6.5 1.31 8.515
160.6 6.52 1.19 7.7588
146 6.45 1.12 7.224
131.4 6.46 0.97 6.2662
116.8 6.33 0.9 5.697
102.2 5.37 0.71 3.8127
87.6 5.43 0.62 3.3666
73 5.54 0.5 2.77
58.4 5.79 0.27 1.5633
43.8 6.07 0.05 0.3035
Vinic Constant Load
Torque Volts Amps Watts Time(min)
160.6 4.99 1.05 5.2395 0
160.6 4.97 1.06 5.2682 0.25
160.6 4.97 1.06 5.2682 0.5
160.6 4.94 1.03 5.0882 15
160.6 4.82 11 5.302 25
160.6 4.76 111 5.2836 3.5
160.6 4.71 1.09 5.1339 4.5
160.6 4.61 11 5.071 55
160.6 4.05 0.99 4.0095 6.5
160.6 3.15 1.02 3.213 7.5
160.6 3.1 1.03 3.193 8.5
160.6 3 1.01 3.03 9.5
160.6 2.86 0.87 2.4882 10.5

22

