
MACO
Multiple Agent Climbing Organism

Final Report

Ted Belser
University of Florida, Department of Computer Engineering
EEL 5666, Machine Intelligence Design Laboratory

2

Table of Contents

MACO .. 1

Multiple Agent Climbing Organism... 1

TABLE OF CONTENTS ... 2

ABSTRACT.. 3

EXECUTIVE SUMMARY... 3

INTRODUCTION.. 3

INTEGRATED SYSTEM .. 3

MOBILE PLATFORM.. 4

3 INDIVIDUAL AGENTS .. 4
LARGE SERVOS ... 4
EXTENDING ARM .. 4
MIDDLE AGENT .. 5
END AGENTS... 5

ACTUATION ... 5

SENSORS... 5

BEHAVIORS ... 5

EXPERIMENTAL LAYOUT AND RESULTS... 6

POWER CONCERNS .. 6

CONCLUSION... 6

DOCUMENTATION ... 7

APPENDICIES... 7

3

Abstract
The design objective of this project is to develop an autonomous system of robots that can coordinate and
perform the task of climbing a 30-inch wall. A mechanical design based on multiple constraints allows for
three agents to be connected as a cooperative whole. Many design problems arose during the development
of this system.

Executive Summary
The acronym MACO stands for ‘multiple agent climbing organism.’ The MACO design is based on an
SBIR topic calling for a shape-shifting robot capable of reaching inaccessible locations. Inspired by this
topic the design objective of MACO is to climb a thirty-inch wall. This objective was not achieved because
of time limitations and design mistakes.

MACO is a project in progress, as such there is not much to report on the capabilities of the platform. The
project, however, has resulted in many lessons learned.

Introduction
The design theme for MACO is influenced by an SBIR (http://www.darpa.mil/SBIR/sbir.html) topic calling
for a shape-shifting robot capable of reaching inaccessible locations. Building a robot to actually meet this
design description is beyond the scope and time of this class. Instead MACO is designed to be a proof of
concept prototype on which to build future designs. The design goal of MACO is to climb onto a 30” wall.
This objective was never realized because of the time constraints of a summer semester. The problems
encountered will be addressed within the paper. Basic functionality in mechanical design however was
achieved and information gathered during the design project will be useful for any future developments of
climbing platforms. This paper primarily discusses the mechanical design process of MACO. For sensory
input MACO uses standard IMDL sensors including analog IR and discrete bump sensors. Stimulus
response is actuated by four large 330 oz-in servos and four 42 oz-in servos modified to run as motors.
Behavior exhibited through actuation was not well developed by project’s end. Overall MACO was an
ambitious project to design and build within a three-month period.

Integrated System
MACO was designed as a multiple agent organism. Each of the three robots of MACO was to function
independently of each other. Each individual would make a request of the other when a particular task was
to be accomplished. Unfortunately this type of system was never implemented in MACO.

4

Two Motorola 68HC11 processors control MACO, one on each of the end agents, provide PWM signals to
drive all 8 servos. Inter-processor communication is achieved through use of the SCI system. The
communication protocol involves a master and a slave. The master controls the slave by sending single
characters over the SCI line. Despite duplex capability MACO only sends data in one direction, from
master to slave.

The code written for the end of semester presentation was developed in the ICC11 compiler using
Mekatronix TJPro libraries. An RTI multitasking kernel was developed entirely in assembly but because of
time constraints was never used. The RTI multitasking code works and is appended to this document.

An eight-segment LED display was built for decoding and user interface purposes. The TJPro board has
four fully decoded active low outputs and four fully decoded active low input addresses. An output port
(74HC574 8-bit latch) drives the display. The cathode of each LED in the display is connected to one of
the output bits and the anode is connected to a 33kΩ resistor to ground. A software driver was written for
the display. This driver ran successfully within the RTI kernel.

An assembly servo driver was also written for the RTI multitasking kernel but was never fully debugged.
The driver controls servos using Output Compare ports OC2 – OC5.

Behaviors are scripted because MACO has no sensory capabilities. The integrated system design of
MACO is largely undeveloped.

Mobile Platform
The mechanical design of MACO posed the greatest design challenge of the project.

3 Individual Agents
A 3-agent design simplifies the mechanics of a climbing robot. The middle robot acts as a fulcrum on
which the end robots balance.

Large Servos
As a climbing robot MACO must have the mechanical power to lift itself to a particular height. The design
goal is 30” but without a wall-clinging mechanism this must be achieved using a structure at least 30” tall.
This is where the torque problem is introduced into the design. Torque is directly proportional to the length
of the moment arm. A larger moment arm requires larger servos. This relationship is a design divergence
typical to engineering. This divergence is easily quelled by noticing that as an arm reaches a vertical
position the gravity component of the torque approaches zero. The largest load on the arm occurs when the
arm is parallel to the ground. This produces the first design constraint.
Constraint 1-- The arm actuator must produce the torque required when the arm is parallel to the earth.
This torque is calculated by multiplying the mass of the end robot by the length of the arm at zero degrees.
Constraint 2-- The largest servo within budget is a 350 oz-in Hitec 805BB+. Four of these servos were
bought.

Extending Arm
Constraint 3-- A functional end robot weighs ~25 oz.
The above constraints result in a middle robot with two 350oz-in servos for each arm. This produces a
total torque of 700 oz-in on each arm. 700 oz-in divided by 25 oz allows for a moment arm of 28 inches.
Dividing again by 1.75 for safety allows for a 16 inch moment arm. This result is one-half of the 30 inch
design goal. The simplest solution toward achieving the 30in span is to telescope the arm. A telescoping
arm however was not achieved in this project.

5

Middle Agent
The function of the middle agent is solely to provide the mechanical means to climb onto a ledge. 4 servos,
2 on each arm perform one of two functions. Each pair is either lifting the end robot or lifting the middle
robot. Each of these functions is performed in the various phases of the climbing behavior (See drawing 1).

End Agents
The end agents perform different functions depending on whether the robot is combined or undocked. As a
part of the combined robot the end agent acts as a foot for the middle agent. The end agents also provide
mobility for the organism when MACO is not performing the climbing behavior. The end agents are based
on a TJ platform, modified to function as part of the MACO design. Undocked end agents were never
realized in this project.

Actuation
As a climbing robot sufficient actuation is needed to achieve a workable climbing behavior. Agile
actuation is a critical design objective of the MACO platform. The primary actuation of MACO is
achieved through two servo pairs on each side of the middle robot. Each servo pair provides the speed and
strength to move MACO with agility. The Hitec 805BB+ servos provide 350 oz-in of torque at 6.0 V each.
The speed of the servos as specified by Hitec RCD is 0.16sec/60°. The Hitec servos perform well as an
integral part of the MACO platform. The strength and speed of the servos are not only sufficient for quasi-
static behavior but also have the potential to perform dynamic behaviors. Dynamic mechanical behaviors
are untested at this stage in the development but the agility of the Hitec servos bodes probable success.

Some careful calibration was required to develop the software driving the arms. The two servos on each
arm must move synchronously. This was achieved by moving each servo to its extents and recording the
corresponding pulse-width. The extents are matched so that even though one servo may be able to move
further it does not move beyond the extents of the other servo. Knowing both the clockwise and counter-
clockwise extents of the servo a pulse-width range is calculated. This range is then divided by 300
producing a 300-point resolution to the movement of the arm. The following code snippet shows the
implementation of the algorithm.

/* MoveRightArm */
void MoveRightArm(position)
{

servo(0,(11.5*position)+1650);
servo(1,5000-(11.3*position));

}

The power and speed of the Hitec servos may pose a problem in certain applications. When programming
the motion of these servos one should consider gradually changing the pulse-width rather than sending a
position and having the servo circuitry control the movement. This gradual change is easier to handle and
the physics calculations are simpler.

Planar locomotion is achieved through hacked 42 oz-in servos, two on each end robot. The servo
modification (hack) is described in Mekatronix reference material. These hacked servos drive 3” diameter,
1” wide wheels. The wheels are attached by compression fit to a disk screwed on the servo horn.

Sensors
The sensor suite of MACO is minimal and unimplemented. The sensors used are analog infrared sensors
and bump sensors. A sonar circuit built for use on MACO was not implemented.

Behaviors
MACO can only perform one scripted behavior. This behavior converts MACO from a completely flat
position to a raised position (see title page).

6

Experimental Layout and Results

Power Concerns
One major concern is the power consumption of the large 350 oz-in servos. The included data shows the
battery performance of two battery packs. For each battery pack data was sampled for multiple loads and
also for a constant load measured over time.
Graph 1 compares the performance of two battery packs, a lab standard 6-cell eveready pack and a 6-cell
1200 mAh Vinnic racing pack. The Vinnic pack was charged for 15 minutes on an AstroFlight quick
charger. The eveready pack was charged by a dc power supply over 10 minutes. The data seems to
indicate that the charges were insufficient.

The eveready pack provided an average of 1.06 Amps over 10 minutes. Power from the everyready was
only sufficient during the first 5 minutes, averaging 1.74 Amps. This particular charge only provided
96mAh of sufficient power. There is no printed power rating on the eveready pack, however 96mAh is
obviously well below expected performance.

The Vinnic pack provided an average of 1.12 Amps over 10.5 minutes. Power from the Vinnic was only
sufficient for the first 6 minutes, averaging 1.19 Amps. This particular charge only provided 130 mAh of
sufficient power. The Vinnic pack is rated at 1200 mAh.
Although the eveready pack did not last as long as the Vinnic it did provide more power to the servos. The
6-year age of the Vinnic pack may be attributable to the poor performance. The 10 minute quick-charge
may be attributable to the poor performance of the eveready pack.

Conclusion
MACO is an unfinished project but it is a working prototype with the potential for further experimentation.
The notable performance of the Hitec servos indicates that a climbing behavior is likely.

MACO was conceived as an alternative to the typical platforms of past IMDL projects. The design of the
platform expended more time than expected. This attention to mechanical design resulted in many
unfinished components. Time spent on conceptualizing mechanisms such as arm extension and docking
compounded into a large amount of wasted time resulting in an unfinished project. Initially MACO’s
software was written in assembly because of the freedom and control of assembly source, but this also
expended valuable time needed to produce a working project. This apparent failure however is a large

6-Cell Battery/Servo Performance
Constant Load 15oz at 13"

0

2

4

6

8

10

0 5 10 15

Time (min)

P
o

w
er

 (
W

at
ts

)

Eveready

Racing Pak

7

lesson in design. Listed below are some important lessons learned when developing a new mechanical
platform:

1. The acquisition of parts is the most time consuming activity in the design process. If the parts are not
readily available the designer must find and posses them within one week or change the design.

2. A corollary to lesson 1: Design around parts that are readily available. Do not assume the existence of
a part.

3. Use AutoCAD to visualize the entire project. Become familiar with the AutoCAD tools and use them
to test all mechanical extents.

4. Spend only 50% of time on design and construction of the prototype. Spend the other 50% on design
of software and the debugging of the prototype’s design.

5. Make no assumptions.

Because MACO is an incomplete project there is much room for future work on the design. This report is a
summary of a semester of work on MACO. Work on MACO will be continued to a satisfactory conclusion
and a more comprehensive report will replace this one.

Documentation
[1] Mekatronics TJPro Assembly Manual. http:\\www.Mekatronix.com

[2] Motorola HC11 Reference Manual, Motorola Inc. 1991

[3] Motorola HC11 Programming Reference Guide, Motorola Inc. 1991

[4] Katia P. Sycara, Multiagent Systems, AI Magazine, Vol. 18 No. 2, American Association for Artificial
Intelligence, Summer 1998

Appendicies

Left Robot Demonstration Code

#include <tjpbase.h>
#include <servotjp.h>
#include <stdio.h>

//**** Behaviors and Arbitrator */

void MoveLeftArm(int);

//***** Main Loop *****/
char command;
void main(void)
{

init_analog();
init_clocktjp();
init_motortjp();
init_servotjp();
while(1){

command=getchar();
if(command == 'g'){

motorp(0,100);
motorp(1,100);

}
else if(command == 's'){

motorp(0,0);

8

motorp(1,0);
}
else if(command == 'l'){

MoveLeftArm(10);
motorp(0,-100);
motorp(1,-100);
wait(500);
motorp(0,0);
motorp(1,0);

}
}

}

/* MoveLeftArm */
void MoveLeftArm(position)
{

servo(0,(11.5*position)+1650);
servo(1,5040-(11.17*position));

}

Right Robot Demonstration Code

#include <tjpbase.h>
#include <servotjp.h>
#include <motortjp.h>
#include <stdio.h>

//**** Behaviors and Arbitrator */

void MoveRightArm(int);

//***** Main Loop *****/
void main(void)
{

init_analog();
init_clocktjp();
init_motortjp();
init_servotjp();
printf("l");
MoveRightArm(10);
motorp(0,-100);
motorp(1,-100);
wait(500);
printf("s");
motorp(0,0);
motorp(1,0);
wait(500);
printf("g");
motorp(0,-100);
motorp(0,-100);
wait(2000);
printf("s");
motorp(0,0);
motorp(0,0);

}

/* MoveRightArm */

9

void MoveRightArm(position)
{

servo(0,(11.5*position)+1650);
servo(1,5000-(11.3*position));

}

MACO Multitasking RTI kernel including buggy servo drivers and LED display driver

**
* Title : MACO multi-tasking kernel
* Filename : maco.asm
* Programmer : Ted Belser
* Date : 6-9-98
* Version : A.0
*
* Drivers :
* Driver1 -- LED 7 segment display driver
* Driver2 -- Servo Handler
*
**
* DEFINITIONS
**
*

REGS EQU $1000 ;
_TCNT EQU $0E ; TCNT High byte
_TCTL1 EQU $20 ;
_TCTL2 EQU $21 ;
_TFLG1 EQU $23 ;
_TFLG2 EQU $25 ; Contains RTIF flag
_TMSK1 EQU $22 ;
_TMSK2 EQU $24 ; RTII enable flag
_PACTL EQU $26 ; RTI Timer control
_BAUD EQU $2B ; BAUD rate control register to set the BAUD rate
_SCCR1 EQU $2C ; Serial Communication Control Register-1
_SCCR2 EQU $2D ; Serial Communication Control Register-2
_SCSR EQU $2E ; Serial Communication Status Register
_SCDR EQU $2F ; Serial Communication Data Register
_OPTION EQU $39 ; Option Register

TCNT EQU $100E ; TCNT High byte
TCTL1 EQU $1020 ; Pin Control for TOC
TCTL2 EQU $1021 ;
TFLG1 EQU $1023 ;
TFLG2 EQU $1025 ; Contains RTIF flag
TMSK1 EQU $1022 ; TOC Interrupt enable
TMSK2 EQU $1024 ; RTII enable flag
OC1D EQU $100D ; TOC1
OC1M EQU $100C ; TOC1
TOC1 EQU $1016 ; TOC1 Register
TOC2 EQU $1018 ; TOC2 Register
TOC3 EQU $101A ; TOC1 Register
TOC4 EQU $101C ; TOC2 Register
TOC5 EQU $101E
PACTL EQU $1026 ; RTI Timer control
BAUD EQU $102B ; BAUD rate control register to set the BAUD
rate
SCCR1 EQU $102C ; Serial Communication Control Register-1
SCCR2 EQU $102D ; Serial Communication Control Register-2
SCSR EQU $102E ; Serial Communication Status Register
SCDR EQU $102F ; Serial Communication Data Register

10

OPTION EQU $1039 ; A/D Power Up (bit 7)
ADCTL EQU $1030 ; A/D Control Status
ADR1 EQU $1031 ; A/D Results
ADR2 EQU $1032 ;
ADR3 EQU $1033 ;
ADR4 EQU $1034 ;

EOS EQU $04 ; User-defined End Of String (EOS) character
CR EQU $0D ; Carriage Return Character
LF EQU $0A ; Line Feed Character
ESC EQU $1B ; Escape Charracter
BIT0 EQU %00000001 ;
BIT1 EQU %00000010 ;
BIT2 EQU %00000100 ;
BIT3 EQU %00001000 ;
BIT4 EQU %00010000 ;
BIT5 EQU %00100000 ;
BIT6 EQU %01000000 ;
BIT7 EQU %10000000 ;

*
**
* Initialize Interrupt Jump Vectors
**
* Buffalo jump vectors
* ORG $00EB
* jmp RTI_ISR
* ORG $00F7
* jmp ILL_OP_ISR
* ORG $00DC
* jmp TOC2_ISR
* ORG $00D9
* jmp TOC3_ISR
* ORG $00D6
* jmp TOC4_ISR
* ORG $00D3
* jmp TOC5_ISR

org $fff0
fdb RTI_ISR
ORG $fff8
fdb ILL_OP_ISR
ORG $ffe6
fdb TOC2_ISR
ORG $ffe4
fdb TOC3_ISR
ORG $ffe2
fdb TOC4_ISR
ORG $ffe0
fdb TOC5_ISR
ORG $fffe
fdb $8000

*
**
* Define Strings and Reserve Variable memory space for system use
* such as CPT, DSPT, CurPID, etc.
**
 ORG $8000
 jmp Main
*
PID rmb 1
CPT rmb 16
DSPT rmb 16

11

ClrScr FCB ESC,$5B,$32,$4A ; ANSI sequence to clear screen
 FCB ESC,$5B,$3B,$48 ; and move cursor to home
 FCB EOS ; EOS character
*
**
* MAIN PROGRAM
*
* The main program performs the following tasks:
* - Disable interrupts
* - Initialize RTI
* - Initialize SCI
* - Zero out the initial Current Process Table
* - Initialize system CurPID
* - Initialize CPT[0] with DSPT[0]
* - Initialize SP with CPT[0]
* - Enables interrupts

Main lds #$41 ; Initialize Stack Pointer

sei ; disable interrupts
jsr InitSCI ; initialize the SCI system
jsr InitRTI ; initialize the RTI system
jsr InitTables ; Initialize tables
ldaa #0 ; Initialize the PID
staa PID ; "
ldx DSPT ; Initialize CPT[0]
stx CPT ; "
lds CPT ; Initialize SP with CPT[0]
cli ; enable interrupts

* Execute the Autoexec
jmp Autoexec ; Startup the system

*
**
* Subroutine: InitTable
* Function: Initializes Current Process Table
* Input: None
* Output: initializes the process table
**
*
InitTables

psha
pshb
pshx

ldab #0 ;
ldx #CPT ; zero the CPT

Loop_Tables
stab 0,X ;
inx ;
cpx #CPT+16
bne Loop_Tables ;
ldy #$90FF ; create the DSPT

Loop_Tables_2
sty 0,X ;
inx ;
inx ;
ldab #$FF ;
aby ;
iny
cpx #CPT+32 ;
bne Loop_Tables_2 ;

pulx

12

pulb
pula
rts

*
**
* Subroutine: InitRTI
* Function: This routine enables RTIs and sets the RTI rate to
* 32.77ms.
* Input: None
* Output: Initializes RTI
**
*
InitRTI

pshx

ldx #REGS
bset _TMSK2,X %01000000 ; turn on RTI
bset _PACTL,X %00000011 ; set to 32.7 ms

pulx
rts

*
**
* Interrupt Service Routine (ISR): RTI_ISR
* Function: This ISR services the Real-Time Interrupts.
* This ISR should do the followings:
* - Clear RTI flag.
* - Update current SP in CPT[Current PID]
* - Find next PID
* - Update CurPID
* - Load New SP from CPT[Next PID]
**
*
RTI_ISR

ldx #REGS
bset _TFLG2,X %01000000 ; clear the RTI Flag

* save old stack ptr
ldab PID ; load PID into b
ldx #CPT ; load CPT start in X
lslb ; multiply PID by 2
abx ; and add to X (X = CPT)
sts 0,X ; store old stack ptr to the table

Set_new
ldab PID ;
cmpb #7 ; Restart the PID at 0 if
beq Restart_PID ; PID = 7.

* set new stack ptr
inc PID ; increment the PID

Set_new_2
ldab PID ; load the PID into b
ldx #CPT ;
lslb ;
abx ;
ldy 0,X ; load the stk ptr into y
cpy #$0000 ; check if is empty slot
beq Set_new ; go to next slot
lds 0,X ; load stack ptr from table
bra END_RTI_ISR ;

Restart_PID
ldaa #0 ;
staa PID ; reset PID to 0
bra Set_new_2 ;

END_RTI_ISR

13

rti ; return from interrupt
*
**
* Subroutine: Spawn
* Function: generates a new process
* Input: X: starting address of the process
* Output: A: PID of the process just created, or
* $FF if no slots are available
* Destroys: Contents of A register
* Side effects: Creates the initial stack for the process. This
* stack must have the process PID in A, and %01000000
* in CCR.
**
*
Spawn

pshy
pshb
pshx ; push pc on stack

ldx #CPT ; first find open slot
ldaa #0 ;

Loop1_Spawn
cpx #CPT+16 ;
beq Error_End ;
ldy 0,X ;
cpy #0 ;
beq Start_Proc ;
inx ;
inx ;
inca ;
bra Loop1_Spawn ;

Start_Proc
tab ;
lslb ;
ldx #DSPT ; move default stack location
abx ; to CPT.
ldy 0,X ;
ldx #CPT ;
abx ;
sei ; disable interrupts
sty 0,X ; store new stk ptr in CPT
ldx 0,X ; load the stk ptr into x
ldab #%0100000 ; load init ccr value into b
stab 1,X ;
staa 3,X ;
puly ; pull pc from stack
sty 8,X ; set pc
cli ; enable interrupts
pshy ; copy pc to X
pulx ;
bra End_Spawn

Error_End
pulx ;
ldaa #$FF ;

End_Spawn
pulb
puly
rts

*
**
* Subroutine: Kill
* Function: removes a currently active process

14

* Input: A: process ID to kill
* Output: A: process ID just killed
* Destroys: None
**
*
Kill

pshx
pshb
sei ; disable interrupts

ldx #CPT ;
tab ;
lslb ;
abx ;
ldab #0 ;
stab 0,X ;
stab 1,X ;

cli ; enable interrupts
pulb
pulx
rts

*
**
* Subroutine: ILL_OP_ISR
* Function: Prints a message if ther is an Illegal op-code
* Input:
* Output:
* Destroys: Stops operation of all processes and returns to
* Buffalo.
**
*
ILL_OP_ERR fcc @FATAL ERROR ::: Illegal Operation@

fcb EOS
ILL_OP_ISR

ldx #ClrScr
jsr OutStr
ldx #ILL_OP_ERR
jsr OutStr
swi

** AUTOEXEC **
**
Autoexec

ldx #Driver1
jsr Spawn
ldx #Driver2
jsr Spawn

Auto_end
bra Auto_end

** DRIVERS **
**
* Driver1
* Function: Drives the one 7 segment display
* Input :
* Output : Outputs pattern to displays
* Note :
**
* interface
D1MT rmb 32 ; 16 Message QUEUE
* Characters
LEDbp1 fcb $48,$C7,$CD,$59,$9D,$9F,$C8,$DF,$DD,$DE
* Equates

15

LED1 EQU $4000 ;

Driver1
* Initialization ;

ldab #0 ;
ldx #D1MT ;

D1_L_1
stab 0,X ;
inx ;
cpx #D1MT+32
bne D1_L_1 ;

* Driver Main Loop
D1_ML ldx #D1MT-2 ;
D1_L_2 inx ;

inx ;
cpx #D1MT+32 ;
beq D1_ML ;
ldy 0,X ;
cpy #0 ;
beq D1_L_2 ;
ldab 0,Y ; Read the number of display

D1_L_3 cmpb #0 ; patterns in message.
beq D1_L_2 ;
decb ;
iny ;
ldaa 0,Y ;
staa LED1 ;
iny ;
ldaa 0,Y ;

D1_L_4 jsr Delay ;
deca ;
cmpa #0 ;
bne D1_L_4 ;
bra D1_L_3 ;

* End of Driver1 Code
*
**
* Driver2
* Function: Drives 4 servos using TOCs 1-4
* Input :
* Output :
* Note :
**
* Interface
Duty2E rmb 2 ; Other Processes may change
Duty3E rmb 2 ; these values.
Duty4E rmb 2 ;
Duty5E rmb 2 ;
* Local Vars
Duty2 rmb 2 ;
Duty3 rmb 2 ;
Duty4 rmb 2 ;
Duty5 rmb 2 ;
Low2 rmb 2 ;
Low3 rmb 2 ;
Low4 rmb 2 ;
Low5 rmb 2 ;
Signal2 rmb 1 ;
Signal3 rmb 1 ;
Signal4 rmb 1 ;
Signal5 rmb 1 ;
* Data
D2_Message

16

fcb 8,$80,1,$40,1,$01,1,$02,1,$04,1,$08,1,$01,1,$10,1
Driver2
* Initialization

ldx #REGS ;
bset _PACTL,X %10001000 ; set data directions for
bclr _PACTL,X %00000100 ; porta.
bclr _TMSK1,X %11111111 ; disable the interrupts
bset _TFLG1,X %01111000 ; clear flags
bclr _TCTL1,X %11111111 ; set all pins low
ldaa #%00000000 ; disable pins 2-5
staa TCTL1 ;
ldab #0 ;
ldx #Duty2E ;

D2_I_L1
stab 0,X ; zero Vars
inx ;
cpx #Signal5+1 ;
bne D2_I_L1 ; end of zero Vars loop
ldx #D2_Message ; ****** send message to
stx D1MT ; ****** LED driver
ldd #1000 ; ****** TOC test
std Duty2E ; ****** TOC test
std Duty3E ; ******
std Duty4E ; ******
std Duty5E ; ******
ldx #REGS ;

* Driver Main Loop
D2_ML ldd Duty2E ; first check to see which

cpd #0 ; Servos are turned on
bne SetDuty2 ; (DutyXE!=0).
bclr _TCTL1,X %11000000 ; disable pins
bclr _TMSK1,X BIT6 ; disable interrupt

D2_L1 ldd Duty3E ;
cpd #0 ;
bne SetDuty3 ;
bclr _TCTL1,X %00110000 ;
bclr _TMSK1,X BIT5 ;

D2_L2 ldd Duty4E ;
cpd #0 ;
bne SetDuty4 ;
bclr _TCTL1,X %00001100 ;
bclr _TMSK1,X BIT4 ;

D2_L3 ldd Duty5E ;
cpd #0 ;
bne SetDuty5 ;
bclr _TCTL1,X %00000011 ;
bclr _TMSK1,X BIT3 ;

D2_L4 bra D2_L5 ;
SetDuty2

ldd #$9C40 ; Eclks in a 50Hz period
subd Duty2E ; Subtract the duty cycle
sei ; disable interrupts
std Low2 ; store low cycle duration
ldd Duty2E ;
std Duty2 ; store duty cycle duration
cli ; enable interrupts
bset _TCTL1,X BIT6 ;
bset _TMSK1,X BIT6 ; clear local mask
bra D2_L1 ;

SetDuty3
ldd #$9C40 ; Eclks in a 50Hz period
subd Duty3E ; Subtract the duty cycle
sei ; disable interrupts

17

std Low3 ; store low cycle duration
ldd Duty3E ;
std Duty3 ; store duty cycle duration
cli ; enable interrupts
bset _TCTL1,X BIT4
bset _TMSK1,X BIT5 ; clear local mask
bra D2_L2 ;

SetDuty4
ldd #$9C40 ; Eclks in a 50Hz period
subd Duty4E ; Subtract the duty cycle
sei ; disable interrupts
std Low4 ; store low cycle duration
ldd Duty4E ;
std Duty4 ; store duty cycle duration
cli ; enable interrupts
bset _TCTL1,X BIT2
bset _TMSK1,X BIT4 ; clear local mask
bra D2_L3 ;

SetDuty5
ldd #$9C40 ; Eclks in a 50Hz period
subd Duty5E ; Subtract the duty cycle
sei ; disable interrupts
std Low5 ; store low cycle duration
ldd Duty5E ;
std Duty5 ; store duty cycle duration
cli ; enable interrupts
bset _TCTL1,X BIT0
bset _TMSK1,X BIT3 ; clear local mask
bra D2_L4 ;

D2_L5 jmp D2_ML ;
* Driver2 ISR's
TOC2_ISR

ldx #REGS ;
bset _TFLG1,X BIT6 ; clear flag
ldaa Signal2 ; load the signal state
cmpa #0 ; if it's 0 then set pin high
beq TOC2_ISR_HIGH ; for the duty duration
ldaa #0 ; Otherwise set it low
staa Signal2 ; to complete a 50Hz wave.
ldd TCNT ;
addd Low2 ;
std TOC2 ;
bra TOC2_ISR_END

TOC2_ISR_HIGH
ldaa #1 ;
staa Signal2 ;
ldd TCNT ;
addd Duty2 ;
std TOC2 ;

TOC2_ISR_END
rti

*
TOC3_ISR

ldx #REGS ;
bset _TFLG1,X BIT5 ; clear flag
ldaa Signal3 ; load the signal state
cmpa #0 ; if it's 0 then set pin high
beq TOC3_ISR_HIGH ; for the duty duration
ldaa #0 ; Otherwise set it low
staa Signal3 ; to complete a 50Hz wave.
ldd TCNT ;
addd Low3 ;
std TOC3 ;

18

bra TOC3_ISR_END
TOC3_ISR_HIGH

ldaa #1 ;
staa Signal3 ;
ldd TCNT ;
addd Duty3 ;
std TOC3 ;

TOC3_ISR_END
rti

*
TOC4_ISR

ldx #REGS ;
bset _TFLG1,X BIT4 ; clear flag
ldaa Signal4 ; load the signal state
cmpa #0 ; if it's 0 then set pin high
beq TOC4_ISR_HIGH ; for the duty duration
ldaa #0 ; Otherwise set it low
staa Signal4 ; to complete a 50Hz wave.
ldd TCNT ;
addd Low4 ;
std TOC4 ;
bra TOC4_ISR_END

TOC4_ISR_HIGH
ldaa #1 ;
staa Signal4 ;
ldd TCNT ;
addd Duty4 ;
std TOC4 ;

TOC4_ISR_END
rti

*
TOC5_ISR

ldx #REGS ;
bset _TFLG1,X BIT3 ; clear flag
ldaa Signal5 ; load the signal state
cmpa #0 ; if it's 0 then set pin high
beq TOC5_ISR_HIGH ; for the duty duration
ldaa #0 ; Otherwise set it low
staa Signal5 ; to complete a 50Hz wave.
ldd TCNT ;
addd Low5 ;
std TOC5 ;
bra TOC5_ISR_END

TOC5_ISR_HIGH
ldaa #1 ;
staa Signal5 ;
ldd TCNT ;
addd Duty5 ;
std TOC5 ;

TOC5_ISR_END
rti

* End of Driver2 Code

Message fcc @ hello Victoria! @
fcb EOS

Driver3 jsr InitSCI
ldx #LEDbp1
ldaa 0,X

d3_ml staa $4000
ldaa 0,X
inx
pshx

19

ldx #Message
jsr OutStr
pulx
psha
jsr InChar
pula
bra d3_ml

** UTILITIES **
**
*
* Subroutine: Delay
* Input: None
* Output: Provides a delay by simple looping
* Destroys: None
* Note: If you're looking to save memory, this function
* may be rewritten or subsumed by Process since
* Process is the only routine to call it.
**
*
Delay PSHA ;
 PSHB ;
 PSHX ; Save registers
 PSHY ;
 LDX #00002 ; Load outer loop counter

Outer LDY #10000 ; Load inner loop counter
Inner LDD TCNT
 DEY ; Decrement inner counter
 BNE Inner ; Branch if >0 to inner loop
 DEX ; Decrement outer counter
 BNE Outer ; Branch if >0 to outer loop
 PULY ; Restore registers
 PULX ;
 PULB ;
 PULA ;
 RTS ; Return from subroutine
*
*
**
* SUBROUTINE - InitSCI
* Description: This subroutine initializes the BAUD rate to 9600 and
* sets up the SCI port for 1 start bit, 8 data bits and
* 1 stop bit. It also enables the transmitter and receiver.
* Effected registers are BAUD, SCCR1, and SCCR2.
* Input : None.
* Output : Initializes SCI.
* Destroys : None.
* Calls : None.
**
*
InitSCI PSHA ; Save contents of A register
 LDAA #$30 ; Set BAUD rate to 9600
 STAA BAUD
 CLR SCCR1 ; Set SCI Mode to 1 start bit,
* ; 8 data bits, and 1 stop bit.
 LDAA #$0C ; Enable SCI Transmitter
 STAA SCCR2 ; and Receiver
 PULA ; Restore A register
 RTS ; Return from subtoutine
*
**
* SUBROUTINE - OutChar

20

* Description: Outputs the character in register A to the screen after
* checking if the Transmitter Data Register is Empty.
* Input : Data to be transmitted in register A.
* Output : Transmit the data.
* Destroys : None.
* Calls : None.
**
*
OutChar PSHB ; Save contents of B register
Loop1 LDAB SCSR ; Check status reg (load it into B reg)
 ANDB #$80 ; Check if transmit buffer is empty
 BEQ Loop1 ; Wait until empty
 STAA SCDR ; Register A ==> SCI data
 PULB ; Restore B register
 RTS ; Return from subtoutine
*
**
* SUBROUTINE - OutStr2
* Description: Outputs the string terminated by EOS. The starting
* location of the string is pointed by X register. Calls
* the OutChar subroutine to display a character on the screen
* and exit once EOS has been reached. In order to print the
* string properly with RTI, it automatically disables and
* enables interrupts.
*
* Input : Starting location of the string to be transmitted
* : (passed in X register)
* Output : Prints the string.
* Destroys : Contents of X register.
* Calls : OutChar.
**
*
OutStr2 PSHA ; Save contents of A register
 SEI ; Disable interrupts
Loop2 LDAA 0,X ; Get a character (put in A register)
 CMPA #EOS ; Check if it's EOS
 BEQ Done ; Branch to Done if it's EOS
 JSR OutChar ; Print the character by calling OutChar
 INX ; Increment index
 BRA Loop2 ; Branch to Loop2 for the next char.
Done CLI ; Enable interrupts
 PULA ; Restore A register
 RTS ; Return from subtoutine
*
**
* SUBROUTINE - OutStr
* Description: Outputs the string terminated by EOS. The starting
* location of the string is pointed by X register. Calls
* the OutChar subroutine to display a character on the screen
* and exit once EOS has been reached.
*
* Input : Starting location of the string to be transmitted
* : (passed in X register)
* Output : Prints the string.
* Destroys : Contents of X register.
* Calls : OutChar.
**
*
OutStr PSHA ; Save contents of A register
Loop_ LDAA 0,X ; Get a character (put in A register)
 CMPA #EOS ; Check if it's EOS
 BEQ Done_ ; Branch to Done if it's EOS
 JSR OutChar ; Print the character by calling OutChar

21

 INX ; Increment index
 BRA Loop_ ; Branch to Loop2 for the next char.
Done_ PULA ; Restore A register
 RTS ; Return from subtoutine
*
**
* SUBROUTINE - InChar
* Description: Receives the typed character into register A.
* Input : None
* Output : Register A = input from SCI
* Destroys : Contents of Register A
* Calls : None.
**
*
InChar LDAA SCSR ; Check status reg.
* ; (load it into A reg)
 ANDA #$20 ; Check if receive buffer full
 BEQ InChar ; Wait until data present
 LDAA SCDR ; SCI data ==> A register
 RTS ; Return from subroutine
*

**
END OF CODE

**

Eveready Multiple Load

Torque Volts Amps Watts

189.8 6.45 1.4 9.03
175.2 6.55 1.26 8.253
160.6 6.53 1.21 7.9013

146 6.63 1.07 7.0941
131.4 6.7 0.96 6.432
116.8 6.75 0.89 6.0075
102.2 6.83 0.77 5.2591
87.6 6.93 0.64 4.4352

73 7.09 0.48 3.4032
58.4 7.41 0.18 1.3338
43.8 7.45 0.15 1.1175

Eveready Constant Load

Torque Volts Amps Watts Time(min)

160.6 6.46 1.2 7.752 0
160.6 6.28 1.19 7.4732 1
160.6 6.23 1.16 7.2268 2
160.6 6.14 1.16 7.1224 3
160.6 6.04 1.16 7.0064 4
160.6 4.58 1.02 4.6716 5
160.6 4.44 1.01 4.4844 6

22

160.6 4.05 1.06 4.293 7
160.6 3.24 1 3.24 8
160.6 2.71 0.64 1.7344 9

Vinic Multiple Load

Torque Volts Amps Watts

189.8 6.8 1.38 9.384
175.2 6.5 1.31 8.515
160.6 6.52 1.19 7.7588

146 6.45 1.12 7.224
131.4 6.46 0.97 6.2662
116.8 6.33 0.9 5.697
102.2 5.37 0.71 3.8127
87.6 5.43 0.62 3.3666

73 5.54 0.5 2.77
58.4 5.79 0.27 1.5633
43.8 6.07 0.05 0.3035

Vinic Constant Load

Torque Volts Amps Watts Time(min)

160.6 4.99 1.05 5.2395 0
160.6 4.97 1.06 5.2682 0.25
160.6 4.97 1.06 5.2682 0.5
160.6 4.94 1.03 5.0882 1.5
160.6 4.82 1.1 5.302 2.5
160.6 4.76 1.11 5.2836 3.5
160.6 4.71 1.09 5.1339 4.5
160.6 4.61 1.1 5.071 5.5
160.6 4.05 0.99 4.0095 6.5
160.6 3.15 1.02 3.213 7.5
160.6 3.1 1.03 3.193 8.5
160.6 3 1.01 3.03 9.5
160.6 2.86 0.87 2.4882 10.5

