MACO

Multiple Agent Climbing Organism

Final Report

Ted Belser

University of Florida, Department of Computer Engineering

EEL 5666, Machine Intelligence Design Laboratory

[image: image1.wmf]6-Cell Battery/Servo Performance

Constant Load 15oz at 13"

0

2

4

6

8

10

0

2

4

6

8

10

12

Time (min)

Power (Watts)

Eveready

Racing Pak

Table of Contents

1MACO

Multiple Agent Climbing Organism
1
Table of Contents
2
Abstract
3
Executive Summary
3
Introduction
3
Integrated System
3
Mobile Platform
4
3 Individual Agents
4
Large Servos
4
Extending Arm
4
Middle Agent
5
End Agents
5
Actuation
5
Sensors
5
Behaviors
5
Experimental Layout and Results
6
Power Concerns
6
Conclusion
6
Documentation
7
Appendicies
7

Abstract

The design objective of this project is to develop an autonomous system of robots that can coordinate and perform the task of climbing a 30-inch wall. A mechanical design based on multiple constraints allows for three agents to be connected as a cooperative whole. Many design problems arose during the development of this system.

Executive Summary

The acronym MACO stands for ‘multiple agent climbing organism.’ The MACO design is based on an SBIR topic calling for a shape-shifting robot capable of reaching inaccessible locations. Inspired by this topic the design objective of MACO is to climb a thirty-inch wall. This objective was not achieved because of time limitations and design mistakes.

MACO is a project in progress, as such there is not much to report on the capabilities of the platform. The project, however, has resulted in many lessons learned.

Introduction

The design theme for MACO is influenced by an SBIR (http://www.darpa.mil/SBIR/sbir.html) topic calling for a shape-shifting robot capable of reaching inaccessible locations. Building a robot to actually meet this design description is beyond the scope and time of this class. Instead MACO is designed to be a proof of concept prototype on which to build future designs. The design goal of MACO is to climb onto a 30” wall. This objective was never realized because of the time constraints of a summer semester. The problems encountered will be addressed within the paper. Basic functionality in mechanical design however was achieved and information gathered during the design project will be useful for any future developments of climbing platforms. This paper primarily discusses the mechanical design process of MACO. For sensory input MACO uses standard IMDL sensors including analog IR and discrete bump sensors. Stimulus response is actuated by four large 330 oz-in servos and four 42 oz-in servos modified to run as motors. Behavior exhibited through actuation was not well developed by project’s end. Overall MACO was an ambitious project to design and build within a three-month period.

Integrated System

[image: image2.png]
MACO was designed as a multiple agent organism. Each of the three robots of MACO was to function independently of each other. Each individual would make a request of the other when a particular task was to be accomplished. Unfortunately this type of system was never implemented in MACO.

Two Motorola 68HC11 processors control MACO, one on each of the end agents, provide PWM signals to drive all 8 servos. Inter-processor communication is achieved through use of the SCI system. The communication protocol involves a master and a slave. The master controls the slave by sending single characters over the SCI line. Despite duplex capability MACO only sends data in one direction, from master to slave.

The code written for the end of semester presentation was developed in the ICC11 compiler using Mekatronix TJPro libraries. An RTI multitasking kernel was developed entirely in assembly but because of time constraints was never used. The RTI multitasking code works and is appended to this document.

An eight-segment LED display was built for decoding and user interface purposes. The TJPro board has four fully decoded active low outputs and four fully decoded active low input addresses. An output port (74HC574 8-bit latch) drives the display. The cathode of each LED in the display is connected to one of the output bits and the anode is connected to a 33k(resistor to ground. A software driver was written for the display. This driver ran successfully within the RTI kernel.

An assembly servo driver was also written for the RTI multitasking kernel but was never fully debugged. The driver controls servos using Output Compare ports OC2 – OC5.

Behaviors are scripted because MACO has no sensory capabilities. The integrated system design of MACO is largely undeveloped.

Mobile Platform

The mechanical design of MACO posed the greatest design challenge of the project.

3 Individual Agents

A 3-agent design simplifies the mechanics of a climbing robot. The middle robot acts as a fulcrum on which the end robots balance.

Large Servos

As a climbing robot MACO must have the mechanical power to lift itself to a particular height. The design goal is 30” but without a wall-clinging mechanism this must be achieved using a structure at least 30” tall. This is where the torque problem is introduced into the design. Torque is directly proportional to the length of the moment arm. A larger moment arm requires larger servos. This relationship is a design divergence typical to engineering. This divergence is easily quelled by noticing that as an arm reaches a vertical position the gravity component of the torque approaches zero. The largest load on the arm occurs when the arm is parallel to the ground. This produces the first design constraint.

Constraint 1-- The arm actuator must produce the torque required when the arm is parallel to the earth. This torque is calculated by multiplying the mass of the end robot by the length of the arm at zero degrees.

Constraint 2-- The largest servo within budget is a 350 oz-in Hitec 805BB+. Four of these servos were bought.

Extending Arm

Constraint 3-- A functional end robot weighs ~25 oz.

The above constraints result in a middle robot with two 350oz-in servos for each arm. This produces a total torque of 700 oz-in on each arm. 700 oz-in divided by 25 oz allows for a moment arm of 28 inches. Dividing again by 1.75 for safety allows for a 16 inch moment arm. This result is one-half of the 30 inch design goal. The simplest solution toward achieving the 30in span is to telescope the arm. A telescoping arm however was not achieved in this project.

Middle Agent

The function of the middle agent is solely to provide the mechanical means to climb onto a ledge. 4 servos, 2 on each arm perform one of two functions. Each pair is either lifting the end robot or lifting the middle robot. Each of these functions is performed in the various phases of the climbing behavior (See drawing 1).

End Agents

The end agents perform different functions depending on whether the robot is combined or undocked. As a part of the combined robot the end agent acts as a foot for the middle agent. The end agents also provide mobility for the organism when MACO is not performing the climbing behavior. The end agents are based on a TJ platform, modified to function as part of the MACO design. Undocked end agents were never realized in this project.

Actuation

As a climbing robot sufficient actuation is needed to achieve a workable climbing behavior. Agile actuation is a critical design objective of the MACO platform. The primary actuation of MACO is achieved through two servo pairs on each side of the middle robot. Each servo pair provides the speed and strength to move MACO with agility. The Hitec 805BB+ servos provide 350 oz-in of torque at 6.0 V each. The speed of the servos as specified by Hitec RCD is 0.16sec/60(. The Hitec servos perform well as an integral part of the MACO platform. The strength and speed of the servos are not only sufficient for quasi-static behavior but also have the potential to perform dynamic behaviors. Dynamic mechanical behaviors are untested at this stage in the development but the agility of the Hitec servos bodes probable success.

Some careful calibration was required to develop the software driving the arms. The two servos on each arm must move synchronously. This was achieved by moving each servo to its extents and recording the corresponding pulse-width. The extents are matched so that even though one servo may be able to move further it does not move beyond the extents of the other servo. Knowing both the clockwise and counter-clockwise extents of the servo a pulse-width range is calculated. This range is then divided by 300 producing a 300-point resolution to the movement of the arm. The following code snippet shows the implementation of the algorithm.

/* MoveRightArm */

void MoveRightArm(position)

{

servo(0,(11.5*position)+1650);

servo(1,5000-(11.3*position));

}
The power and speed of the Hitec servos may pose a problem in certain applications. When programming the motion of these servos one should consider gradually changing the pulse-width rather than sending a position and having the servo circuitry control the movement. This gradual change is easier to handle and the physics calculations are simpler.

Planar locomotion is achieved through hacked 42 oz-in servos, two on each end robot. The servo modification (hack) is described in Mekatronix reference material. These hacked servos drive 3” diameter, 1” wide wheels. The wheels are attached by compression fit to a disk screwed on the servo horn.

Sensors

The sensor suite of MACO is minimal and unimplemented. The sensors used are analog infrared sensors and bump sensors. A sonar circuit built for use on MACO was not implemented.

Behaviors

MACO can only perform one scripted behavior. This behavior converts MACO from a completely flat position to a raised position (see title page).

Experimental Layout and Results

Power Concerns

One major concern is the power consumption of the large 350 oz-in servos. The included data shows the battery performance of two battery packs. For each battery pack data was sampled for multiple loads and also for a constant load measured over time.

Graph 1 compares the performance of two battery packs, a lab standard 6-cell eveready pack and a 6-cell 1200 mAh Vinnic racing pack. The Vinnic pack was charged for 15 minutes on an AstroFlight quick charger. The eveready pack was charged by a dc power supply over 10 minutes. The data seems to indicate that the charges were insufficient.

[image: image3.png]
The eveready pack provided an average of 1.06 Amps over 10 minutes. Power from the everyready was only sufficient during the first 5 minutes, averaging 1.74 Amps. This particular charge only provided 96mAh of sufficient power. There is no printed power rating on the eveready pack, however 96mAh is obviously well below expected performance.

The Vinnic pack provided an average of 1.12 Amps over 10.5 minutes. Power from the Vinnic was only sufficient for the first 6 minutes, averaging 1.19 Amps. This particular charge only provided 130 mAh of sufficient power. The Vinnic pack is rated at 1200 mAh.

Although the eveready pack did not last as long as the Vinnic it did provide more power to the servos. The 6-year age of the Vinnic pack may be attributable to the poor performance. The 10 minute quick-charge may be attributable to the poor performance of the eveready pack.

Conclusion

MACO is an unfinished project but it is a working prototype with the potential for further experimentation. The notable performance of the Hitec servos indicates that a climbing behavior is likely.

MACO was conceived as an alternative to the typical platforms of past IMDL projects. The design of the platform expended more time than expected. This attention to mechanical design resulted in many unfinished components. Time spent on conceptualizing mechanisms such as arm extension and docking compounded into a large amount of wasted time resulting in an unfinished project. Initially MACO’s software was written in assembly because of the freedom and control of assembly source, but this also expended valuable time needed to produce a working project. This apparent failure however is a large lesson in design. Listed below are some important lessons learned when developing a new mechanical platform:

1. The acquisition of parts is the most time consuming activity in the design process. If the parts are not readily available the designer must find and posses them within one week or change the design.

2. A corollary to lesson 1: Design around parts that are readily available. Do not assume the existence of a part.

3. Use AutoCAD to visualize the entire project. Become familiar with the AutoCAD tools and use them to test all mechanical extents.

4. Spend only 50% of time on design and construction of the prototype. Spend the other 50% on design of software and the debugging of the prototype’s design.

5. Make no assumptions.

Because MACO is an incomplete project there is much room for future work on the design. This report is a summary of a semester of work on MACO. Work on MACO will be continued to a satisfactory conclusion and a more comprehensive report will replace this one.

Documentation

[1] Mekatronics TJPro Assembly Manual. http:\\www.Mekatronix.com

[2] Motorola HC11 Reference Manual, Motorola Inc. 1991

[3] Motorola HC11 Programming Reference Guide, Motorola Inc. 1991

[4] Katia P. Sycara, Multiagent Systems, AI Magazine, Vol. 18 No. 2, American Association for Artificial Intelligence, Summer 1998

Appendicies

Left Robot Demonstration Code

#include <tjpbase.h>

#include <servotjp.h>

#include <stdio.h>

//**** Behaviors and Arbitrator */

void MoveLeftArm(int);

//***** Main Loop *****/

char command;

void main(void)

{

init_analog();

init_clocktjp();

init_motortjp();

init_servotjp();

while(1){

command=getchar();

if(command == 'g'){

motorp(0,100);

motorp(1,100);

}

else if(command == 's'){

motorp(0,0);

motorp(1,0);

}

else if(command == 'l'){

MoveLeftArm(10);

motorp(0,-100);

motorp(1,-100);

wait(500);

motorp(0,0);

motorp(1,0);

}

}

}

/* MoveLeftArm */

void MoveLeftArm(position)

{

servo(0,(11.5*position)+1650);

servo(1,5040-(11.17*position));

}

Right Robot Demonstration Code

#include <tjpbase.h>

#include <servotjp.h>

#include <motortjp.h>

#include <stdio.h>

//**** Behaviors and Arbitrator */

void MoveRightArm(int);

//***** Main Loop *****/

void main(void)

{

init_analog();

init_clocktjp();

init_motortjp();

init_servotjp();

printf("l");

MoveRightArm(10);

motorp(0,-100);

motorp(1,-100);

wait(500);

printf("s");

motorp(0,0);

motorp(1,0);

wait(500);

printf("g");

motorp(0,-100);

motorp(0,-100);

wait(2000);

printf("s");

motorp(0,0);

motorp(0,0);

}

/* MoveRightArm */

void MoveRightArm(position)

{

servo(0,(11.5*position)+1650);

servo(1,5000-(11.3*position));

}

MACO Multitasking RTI kernel including buggy servo drivers and LED display driver

**

* Title : MACO multi-tasking kernel

* Filename : maco.asm

* Programmer : Ted Belser

* Date : 6-9-98

* Version : A.0

*

* Drivers
:

*

Driver1 -- LED 7 segment display driver

*

Driver2 -- Servo Handler

*

**

* DEFINITIONS

**

*

REGS
EQU
$1000

;

_TCNT
EQU
$0E

; TCNT High byte

_TCTL1
EQU
$20

;

_TCTL2
EQU
$21

;

_TFLG1
EQU
$23

;

_TFLG2
EQU
$25

; Contains RTIF flag

_TMSK1
EQU
$22

;

_TMSK2
EQU
$24

; RTII enable flag

_PACTL
EQU
$26

; RTI Timer control

_BAUD
EQU
$2B

; BAUD rate control register to set the BAUD rate

_SCCR1
EQU
$2C

; Serial Communication Control Register-1

_SCCR2
EQU
$2D

; Serial Communication Control Register-2

_SCSR
EQU
$2E

; Serial Communication Status Register

_SCDR
EQU
$2F

; Serial Communication Data Register

_OPTION
EQU
$39

; Option Register

TCNT EQU $100E

; TCNT High byte

TCTL1
EQU
$1020

; Pin Control for TOC

TCTL2
EQU
$1021

;

TFLG1
EQU
$1023

;

TFLG2 EQU $1025

; Contains RTIF flag

TMSK1
EQU
$1022

; TOC Interrupt enable

TMSK2 EQU $1024

; RTII enable flag

OC1D
EQU
$100D

; TOC1

OC1M
EQU
$100C

; TOC1

TOC1
EQU
$1016

; TOC1 Register

TOC2
EQU
$1018

; TOC2 Register

TOC3
EQU
$101A

; TOC1 Register

TOC4
EQU
$101C

; TOC2 Register

TOC5
EQU
$101E

PACTL EQU $1026

; RTI Timer control

BAUD EQU $102B

; BAUD rate control register to set the BAUD rate

SCCR1 EQU $102C

; Serial Communication Control Register-1

SCCR2 EQU
$102D

; Serial Communication Control Register-2

SCSR EQU $102E

; Serial Communication Status Register

SCDR EQU $102F

; Serial Communication Data Register

OPTION
EQU
$1039

; A/D Power Up (bit 7)

ADCTL
EQU
$1030

; A/D Control Status

ADR1
EQU
$1031

; A/D Results

ADR2
EQU
$1032

;

ADR3
EQU
$1033

;

ADR4
EQU
$1034

;

EOS EQU $04

; User-defined End Of String (EOS) character

CR EQU $0D

; Carriage Return Character

LF EQU $0A

; Line Feed Character

ESC EQU $1B

; Escape Charracter

BIT0
EQU
%00000001
;

BIT1
EQU
%00000010
;

BIT2
EQU
%00000100
;

BIT3
EQU
%00001000
;

BIT4
EQU
%00010000
;

BIT5
EQU
%00100000
;

BIT6
EQU
%01000000
;

BIT7
EQU
%10000000
;

*

**

* Initialize Interrupt Jump Vectors

**

* Buffalo jump vectors

*
ORG
$00EB

*
jmp
RTI_ISR

*
ORG
$00F7

*
jmp
ILL_OP_ISR

*
ORG
$00DC

*
jmp
TOC2_ISR

*
ORG
$00D9

*
jmp
TOC3_ISR

*
ORG
$00D6

*
jmp
TOC4_ISR

*
ORG
$00D3

*
jmp
TOC5_ISR

org
$fff0

fdb
RTI_ISR

ORG
$fff8

fdb
ILL_OP_ISR

ORG
$ffe6

fdb
TOC2_ISR

ORG
$ffe4

fdb
TOC3_ISR

ORG
$ffe2

fdb
TOC4_ISR

ORG
$ffe0

fdb
TOC5_ISR

ORG
$fffe

fdb
$8000

*

**

* Define Strings and Reserve Variable memory space for system use

* such as CPT, DSPT, CurPID, etc.

**

 ORG $8000

 jmp
Main

*

PID
rmb
1

CPT
rmb
16

DSPT
rmb
16

ClrScr FCB ESC,$5B,$32,$4A ; ANSI sequence to clear screen

 FCB ESC,$5B,$3B,$48 ; and move cursor to home

 FCB EOS ; EOS character

*

**

* MAIN PROGRAM

*

* The main program performs the following tasks:

* - Disable interrupts

* - Initialize RTI

* - Initialize SCI

* - Zero out the initial Current Process Table

* - Initialize system CurPID

* - Initialize CPT[0] with DSPT[0]

* - Initialize SP with CPT[0]

* - Enables interrupts

Main
lds
#$41

; Initialize Stack Pointer

sei

; disable interrupts

jsr
InitSCI

; initialize the SCI system

jsr
InitRTI

; initialize the RTI system

jsr
InitTables
; Initialize tables

ldaa
#0

; Initialize the PID

staa
PID

; "

ldx
DSPT

; Initialize CPT[0]

stx
CPT

; "

lds
CPT

; Initialize SP with CPT[0]

cli

; enable interrupts

* Execute the Autoexec

jmp
Autoexec
; Startup the system

*

**

* Subroutine: InitTable

* Function: Initializes Current Process Table

* Input: None

* Output: initializes the process table

**

*

InitTables

psha

pshb

pshx

ldab
#0

;

ldx
#CPT

; zero the CPT

Loop_Tables

stab
0,X

;

inx

;

cpx
#CPT+16

bne
Loop_Tables

;

ldy
#$90FF

; create the DSPT

Loop_Tables_2

sty
0,X

;

inx

;

inx

;

ldab
#$FF

;

aby

;

iny

cpx
#CPT+32

;

bne
Loop_Tables_2

;

pulx

pulb

pula

rts

*

**

* Subroutine: InitRTI

* Function: This routine enables RTIs and sets the RTI rate to

* 32.77ms.

* Input: None

* Output: Initializes RTI

**

*

InitRTI

pshx

ldx
#REGS

bset
_TMSK2,X %01000000
; turn on RTI

bset
_PACTL,X %00000011
; set to 32.7 ms

pulx

rts

*

**

* Interrupt Service Routine (ISR): RTI_ISR

* Function: This ISR services the Real-Time Interrupts.

* This ISR should do the followings:

* - Clear RTI flag.

* - Update current SP in CPT[Current PID]

* - Find next PID

* - Update CurPID

* - Load New SP from CPT[Next PID]

**

*

RTI_ISR

ldx
#REGS

bset
_TFLG2,X %01000000
; clear the RTI Flag

* save old stack ptr

ldab
PID

; load PID into b

ldx
#CPT

; load CPT start in X

lslb

; multiply PID by 2

abx

; and add to X (X = CPT)

sts
0,X

; store old stack ptr to the table

Set_new

ldab
PID

;

cmpb
#7

; Restart the PID at 0 if

beq
Restart_PID

; PID = 7.

* set new stack ptr

inc
PID

; increment the PID

Set_new_2

ldab
PID

; load the PID into b

ldx
#CPT

;

lslb

;

abx

;

ldy
0,X

; load the stk ptr into y

cpy
#$0000

; check if is empty slot

beq
Set_new

; go to next slot

lds
0,X

; load stack ptr from table

bra
END_RTI_ISR

;

Restart_PID

ldaa
#0

;

staa
PID

; reset PID to 0

bra
Set_new_2

;

END_RTI_ISR

rti

; return from interrupt

*

**

* Subroutine: Spawn

* Function: generates a new process

* Input: X: starting address of the process

* Output: A: PID of the process just created, or

* $FF if no slots are available

* Destroys: Contents of A register

* Side effects: Creates the initial stack for the process. This

* stack must have the process PID in A, and %01000000

* in CCR.

**

*

Spawn

pshy

pshb

pshx

; push pc on stack

ldx
#CPT

; first find open slot

ldaa
#0

;

Loop1_Spawn

cpx
#CPT+16

;

beq
Error_End

;

ldy
0,X

;

cpy
#0

;

beq
Start_Proc

;

inx

;

inx

;

inca

;

bra
Loop1_Spawn

;

Start_Proc

tab

;

lslb

;

ldx
#DSPT

; move default stack location

abx

; to CPT.

ldy
0,X

;

ldx
#CPT

;

abx

;

sei

; disable interrupts

sty
0,X

; store new stk ptr in CPT

ldx
0,X

; load the stk ptr into x

ldab
#%0100000

; load init ccr value into b

stab
1,X

;

staa
3,X

;

puly

; pull pc from stack

sty
8,X

; set pc

cli

; enable interrupts

pshy

; copy pc to X

pulx

;

bra
End_Spawn

Error_End

pulx

;

ldaa
#$FF

;

End_Spawn

pulb

puly

rts

*

**

* Subroutine: Kill

* Function: removes a currently active process

* Input: A: process ID to kill

* Output: A: process ID just killed

* Destroys: None

**

*

Kill

pshx

pshb

sei

; disable interrupts

ldx
#CPT

;

tab

;

lslb

;

abx

;

ldab
#0

;

stab
0,X

;

stab
1,X

;

cli

; enable interrupts

pulb

pulx

rts

*

**

* Subroutine: ILL_OP_ISR

* Function: Prints a message if ther is an Illegal op-code

* Input:

* Output:

* Destroys: Stops operation of all processes and returns to

*
 Buffalo.

**

*

ILL_OP_ERR
fcc
@FATAL ERROR ::: Illegal Operation@

fcb
EOS

ILL_OP_ISR

ldx
#ClrScr

jsr
OutStr

ldx
#ILL_OP_ERR

jsr
OutStr

swi

** AUTOEXEC **

**

Autoexec

ldx
#Driver1

jsr
Spawn

ldx
#Driver2

jsr
Spawn

Auto_end

bra
Auto_end

** DRIVERS **

**

* Driver1

* Function: Drives the one 7 segment display

* Input :

* Output : Outputs pattern to displays

* Note :

**

* interface

D1MT
rmb
32

; 16 Message QUEUE

* Characters

LEDbp1
fcb
$48,$C7,$CD,$59,$9D,$9F,$C8,$DF,$DD,$DE

* Equates

LED1
EQU
$4000

;

Driver1

* Initialization

;

ldab
#0

;

ldx
#D1MT

;

D1_L_1

stab
0,X

;

inx

;

cpx
#D1MT+32

bne
D1_L_1

;

* Driver Main Loop

D1_ML
ldx
#D1MT-2

;

D1_L_2
inx

;

inx

;

cpx
#D1MT+32

;

beq
D1_ML

;

ldy
0,X

;

cpy
#0

;

beq
D1_L_2

;

ldab
0,Y

; Read the number of display

D1_L_3
cmpb
#0

; patterns in message.

beq
D1_L_2

;

decb

;

iny

;

ldaa
0,Y

;

staa
LED1

;

iny

;

ldaa
0,Y

;

D1_L_4
jsr
Delay

;

deca

;

cmpa
#0

;

bne
D1_L_4

;

bra
D1_L_3

;

* End of Driver1 Code

*

**

* Driver2

* Function: Drives 4 servos using TOCs 1-4

* Input :

* Output :

* Note :

**

* Interface

Duty2E
rmb
2

; Other Processes may change

Duty3E
rmb
2

; these values.

Duty4E
rmb
2

;

Duty5E
rmb
2

;

* Local Vars

Duty2
rmb
2

;

Duty3
rmb
2

;

Duty4
rmb
2

;

Duty5
rmb
2

;

Low2
rmb
2

;

Low3
rmb
2

;

Low4
rmb
2

;

Low5
rmb
2

;

Signal2
rmb
1

;

Signal3
rmb
1

;

Signal4
rmb
1

;

Signal5 rmb
1

;

* Data

D2_Message

fcb
8,$80,1,$40,1,$01,1,$02,1,$04,1,$08,1,$01,1,$10,1

Driver2

* Initialization

ldx
#REGS

;

bset
_PACTL,X %10001000
; set data directions for

bclr
_PACTL,X %00000100
; porta.

bclr
_TMSK1,X %11111111
; disable the interrupts

bset
_TFLG1,X %01111000
; clear flags

bclr
_TCTL1,X %11111111
; set all pins low

ldaa
#%00000000

; disable pins 2-5

staa
TCTL1

;

ldab
#0

;

ldx
#Duty2E

;

D2_I_L1

stab
0,X

; zero Vars

inx

;

cpx
#Signal5+1

;

bne
D2_I_L1

; end of zero Vars loop

ldx
#D2_Message

; ****** send message to

stx
D1MT

; ****** LED driver

ldd
#1000

; ****** TOC test

std
Duty2E

; ****** TOC test

std
Duty3E

; ******

std
Duty4E

; ******

std
Duty5E

; ******

ldx
#REGS

;

* Driver Main Loop

D2_ML
ldd
Duty2E

; first check to see which

cpd
#0

; Servos are turned on

bne
SetDuty2

; (DutyXE!=0).

bclr
_TCTL1,X %11000000
; disable pins

bclr
_TMSK1,X BIT6

; disable interrupt

D2_L1
ldd
Duty3E

;

cpd
#0

;

bne
SetDuty3

;

bclr
_TCTL1,X %00110000
;

bclr
_TMSK1,X BIT5

;

D2_L2
ldd
Duty4E

;

cpd
#0

;

bne
SetDuty4

;

bclr
_TCTL1,X %00001100
;

bclr
_TMSK1,X BIT4

;

D2_L3
ldd
Duty5E

;

cpd
#0

;

bne
SetDuty5

;

bclr
_TCTL1,X %00000011
;

bclr
_TMSK1,X BIT3

;

D2_L4
bra
D2_L5

;

SetDuty2

ldd
#$9C40

; Eclks in a 50Hz period

subd
Duty2E

; Subtract the duty cycle

sei

; disable interrupts

std
Low2

; store low cycle duration

ldd
Duty2E

;

std
Duty2

; store duty cycle duration

cli

; enable interrupts

bset
_TCTL1,X BIT6

;

bset
_TMSK1,X BIT6

; clear local mask

bra
D2_L1

;

SetDuty3

ldd
#$9C40

; Eclks in a 50Hz period

subd
Duty3E

; Subtract the duty cycle

sei

; disable interrupts

std
Low3

; store low cycle duration

ldd
Duty3E

;

std
Duty3

; store duty cycle duration

cli

; enable interrupts

bset
_TCTL1,X BIT4

bset
_TMSK1,X BIT5

; clear local mask

bra
D2_L2

;

SetDuty4

ldd
#$9C40

; Eclks in a 50Hz period

subd
Duty4E

; Subtract the duty cycle

sei

; disable interrupts

std
Low4

; store low cycle duration

ldd
Duty4E

;

std
Duty4

; store duty cycle duration

cli

; enable interrupts

bset
_TCTL1,X BIT2

bset
_TMSK1,X BIT4

; clear local mask

bra
D2_L3

;

SetDuty5

ldd
#$9C40

; Eclks in a 50Hz period

subd
Duty5E

; Subtract the duty cycle

sei

; disable interrupts

std
Low5

; store low cycle duration

ldd
Duty5E

;

std
Duty5

; store duty cycle duration

cli

; enable interrupts

bset
_TCTL1,X BIT0

bset
_TMSK1,X BIT3

; clear local mask

bra
D2_L4

;

D2_L5
jmp
D2_ML

;

* Driver2 ISR's

TOC2_ISR

ldx
#REGS

;

bset
_TFLG1,X BIT6

; clear flag

ldaa
Signal2

; load the signal state

cmpa
#0

; if it's 0 then set pin high

beq
TOC2_ISR_HIGH

; for the duty duration

ldaa
#0

; Otherwise set it low

staa
Signal2

; to complete a 50Hz wave.

ldd
TCNT

;

addd
Low2

;

std
TOC2

;

bra
TOC2_ISR_END

TOC2_ISR_HIGH

ldaa
#1

;

staa
Signal2

;

ldd
TCNT

;

addd
Duty2

;

std
TOC2

;

TOC2_ISR_END

rti

*

TOC3_ISR

ldx
#REGS

;

bset
_TFLG1,X BIT5

; clear flag

ldaa
Signal3

; load the signal state

cmpa
#0

; if it's 0 then set pin high

beq
TOC3_ISR_HIGH

; for the duty duration

ldaa
#0

; Otherwise set it low

staa
Signal3

; to complete a 50Hz wave.

ldd
TCNT

;

addd
Low3

;

std
TOC3

;

bra
TOC3_ISR_END

TOC3_ISR_HIGH

ldaa
#1

;

staa
Signal3

;

ldd
TCNT

;

addd
Duty3

;

std
TOC3

;

TOC3_ISR_END

rti

*

TOC4_ISR

ldx
#REGS

;

bset
_TFLG1,X BIT4

; clear flag

ldaa
Signal4

; load the signal state

cmpa
#0

; if it's 0 then set pin high

beq
TOC4_ISR_HIGH

; for the duty duration

ldaa
#0

; Otherwise set it low

staa
Signal4

; to complete a 50Hz wave.

ldd
TCNT

;

addd
Low4

;

std
TOC4

;

bra
TOC4_ISR_END

TOC4_ISR_HIGH

ldaa
#1

;

staa
Signal4

;

ldd
TCNT

;

addd
Duty4

;

std
TOC4

;

TOC4_ISR_END

rti

*

TOC5_ISR

ldx
#REGS

;

bset
_TFLG1,X BIT3

; clear flag

ldaa
Signal5

; load the signal state

cmpa
#0

; if it's 0 then set pin high

beq
TOC5_ISR_HIGH

; for the duty duration

ldaa
#0

; Otherwise set it low

staa
Signal5

; to complete a 50Hz wave.

ldd
TCNT

;

addd
Low5

;

std
TOC5

;

bra
TOC5_ISR_END

TOC5_ISR_HIGH

ldaa
#1

;

staa
Signal5

;

ldd
TCNT

;

addd
Duty5

;

std
TOC5

;

TOC5_ISR_END

rti

* End of Driver2 Code

Message fcc
@ hello Victoria! @

fcb
EOS

Driver3
jsr
InitSCI

ldx
#LEDbp1

ldaa
0,X

d3_ml
staa
$4000

ldaa
0,X

inx

pshx

ldx
#Message

jsr
OutStr

pulx

psha

jsr
InChar

pula

bra
d3_ml

** UTILITIES **

**

*

* Subroutine: Delay

* Input: None

* Output: Provides a delay by simple looping

* Destroys: None

* Note: If you're looking to save memory, this function

* may be rewritten or subsumed by Process since

* Process is the only routine to call it.

**

*

Delay PSHA ;

 PSHB ;

 PSHX ; Save registers

 PSHY ;

 LDX #00002 ; Load outer loop counter

Outer LDY #10000 ; Load inner loop counter

Inner LDD TCNT

 DEY ; Decrement inner counter

 BNE Inner ; Branch if >0 to inner loop

 DEX ; Decrement outer counter

 BNE Outer ; Branch if >0 to outer loop

 PULY ; Restore registers

 PULX ;

 PULB ;

 PULA ;

 RTS ; Return from subroutine

*

*

**

* SUBROUTINE - InitSCI

* Description: This subroutine initializes the BAUD rate to 9600 and

* sets up the SCI port for 1 start bit, 8 data bits and

* 1 stop bit. It also enables the transmitter and receiver.

* Effected registers are BAUD, SCCR1, and SCCR2.

* Input : None.

* Output : Initializes SCI.

* Destroys : None.

* Calls : None.

**

*

InitSCI PSHA ; Save contents of A register

 LDAA #$30 ; Set BAUD rate to 9600

 STAA BAUD

 CLR SCCR1 ; Set SCI Mode to 1 start bit,

* ; 8 data bits, and 1 stop bit.

 LDAA #$0C ; Enable SCI Transmitter

 STAA SCCR2 ; and Receiver

 PULA ; Restore A register

 RTS ; Return from subtoutine

*

**

* SUBROUTINE - OutChar

* Description: Outputs the character in register A to the screen after

* checking if the Transmitter Data Register is Empty.

* Input : Data to be transmitted in register A.

* Output : Transmit the data.

* Destroys : None.

* Calls : None.

**

*

OutChar PSHB ; Save contents of B register

Loop1 LDAB SCSR ; Check status reg (load it into B reg)

 ANDB #$80 ; Check if transmit buffer is empty

 BEQ Loop1 ; Wait until empty

 STAA SCDR ; Register A ==> SCI data

 PULB ; Restore B register

 RTS ; Return from subtoutine

*

**

* SUBROUTINE - OutStr2

* Description: Outputs the string terminated by EOS. The starting

* location of the string is pointed by X register. Calls

* the OutChar subroutine to display a character on the screen

* and exit once EOS has been reached. In order to print the

* string properly with RTI, it automatically disables and

* enables interrupts.

*

* Input : Starting location of the string to be transmitted

* : (passed in X register)

* Output : Prints the string.

* Destroys : Contents of X register.

* Calls : OutChar.

**

*

OutStr2 PSHA ; Save contents of A register

 SEI ; Disable interrupts

Loop2 LDAA 0,X ; Get a character (put in A register)

 CMPA #EOS ; Check if it's EOS

 BEQ Done ; Branch to Done if it's EOS

 JSR OutChar ; Print the character by calling OutChar

 INX ; Increment index

 BRA Loop2 ; Branch to Loop2 for the next char.

Done CLI ; Enable interrupts

 PULA ; Restore A register

 RTS ; Return from subtoutine

*

**

* SUBROUTINE - OutStr

* Description: Outputs the string terminated by EOS. The starting

* location of the string is pointed by X register. Calls

* the OutChar subroutine to display a character on the screen

* and exit once EOS has been reached.

*

* Input : Starting location of the string to be transmitted

* : (passed in X register)

* Output : Prints the string.

* Destroys : Contents of X register.

* Calls : OutChar.

**

*

OutStr PSHA ; Save contents of A register

Loop_ LDAA 0,X ; Get a character (put in A register)

 CMPA #EOS ; Check if it's EOS

 BEQ Done_ ; Branch to Done if it's EOS

 JSR OutChar ; Print the character by calling OutChar

 INX ; Increment index

 BRA Loop_ ; Branch to Loop2 for the next char.

Done_ PULA ; Restore A register

 RTS ; Return from subtoutine

*

**

* SUBROUTINE - InChar

* Description: Receives the typed character into register A.

* Input : None

* Output : Register A = input from SCI

* Destroys : Contents of Register A

* Calls : None.

**

*

InChar LDAA SCSR ; Check status reg.

* ; (load it into A reg)

 ANDA #$20 ; Check if receive buffer full

 BEQ InChar ; Wait until data present

 LDAA SCDR ; SCI data ==> A register

 RTS ; Return from subroutine

*

**

END OF CODE

**
Eveready Multiple Load

Torque
Volts
Amps
Watts

189.8
6.45
1.4
9.03

175.2
6.55
1.26
8.253

160.6
6.53
1.21
7.9013

146
6.63
1.07
7.0941

131.4
6.7
0.96
6.432

116.8
6.75
0.89
6.0075

102.2
6.83
0.77
5.2591

87.6
6.93
0.64
4.4352

73
7.09
0.48
3.4032

58.4
7.41
0.18
1.3338

43.8
7.45
0.15
1.1175

Eveready Constant Load

Torque
Volts
Amps
Watts
Time(min)

160.6
6.46
1.2
7.752
0

160.6
6.28
1.19
7.4732
1

160.6
6.23
1.16
7.2268
2

160.6
6.14
1.16
7.1224
3

160.6
6.04
1.16
7.0064
4

160.6
4.58
1.02
4.6716
5

160.6
4.44
1.01
4.4844
6

160.6
4.05
1.06
4.293
7

160.6
3.24
1
3.24
8

160.6
2.71
0.64
1.7344
9

Vinic Multiple Load

Torque
Volts
Amps
Watts

189.8
6.8
1.38
9.384

175.2
6.5
1.31
8.515

160.6
6.52
1.19
7.7588

146
6.45
1.12
7.224

131.4
6.46
0.97
6.2662

116.8
6.33
0.9
5.697

102.2
5.37
0.71
3.8127

87.6
5.43
0.62
3.3666

73
5.54
0.5
2.77

58.4
5.79
0.27
1.5633

43.8
6.07
0.05
0.3035

Vinic Constant Load

Torque
Volts
Amps
Watts
Time(min)

160.6
4.99
1.05
5.2395
0

160.6
4.97
1.06
5.2682
0.25

160.6
4.97
1.06
5.2682
0.5

160.6
4.94
1.03
5.0882
1.5

160.6
4.82
1.1
5.302
2.5

160.6
4.76
1.11
5.2836
3.5

160.6
4.71
1.09
5.1339
4.5

160.6
4.61
1.1
5.071
5.5

160.6
4.05
0.99
4.0095
6.5

160.6
3.15
1.02
3.213
7.5

160.6
3.1
1.03
3.193
8.5

160.6
3
1.01
3.03
9.5

160.6
2.86
0.87
2.4882
10.5

� EMBED Excel.Sheet.8 ���

� EMBED Word.Picture.8 ���

7
2

[image: image4.png][image: image5.wmf]6-Cell Battery/Servo Performance

Constant Load 15oz at 13"

0

2

4

6

8

10

0

2

4

6

8

10

12

Time (min)

Power (Watts)

Eveready

Racing Pak

_995355421.xls
Chart1

		0		0

		1		0.25

		2		0.5

		3		1.5

		4		2.5

		5		3.5

		6		4.5

		7		5.5

		8		6.5

		9		7.5

				8.5

				9.5

				10.5

Eveready

Racing Pak

Time (min)

Power (Watts)

6-Cell Battery/Servo Performance
Constant Load 15oz at 13"

7.752

5.2395

7.4732

5.2682

7.2268

5.2682

7.1224

5.0882

7.0064

5.302

4.6716

5.2836

4.4844

5.1339

4.293

5.071

3.24

4.0095

1.7344

3.213

3.193

3.03

2.4882

Sheet1

		

				Torque		Volts		Amps		Watts

				189.8		6.45		1.4		9.03

				175.2		6.55		1.26		8.253

				160.6		6.53		1.21		7.9013

				146		6.63		1.07		7.0941

				131.4		6.7		0.96		6.432

				116.8		6.75		0.89		6.0075

				102.2		6.83		0.77		5.2591

				87.6		6.93		0.64		4.4352

				73		7.09		0.48		3.4032

				58.4		7.41		0.18		1.3338

				43.8		7.45		0.15		1.1175

				Torque		Volts		Amps		Watts		Time(min)

				160.6		6.46		1.2		7.752		0

				160.6		6.28		1.19		7.4732		1

				160.6		6.23		1.16		7.2268		2

				160.6		6.14		1.16		7.1224		3

				160.6		6.04		1.16		7.0064		4

				160.6		4.58		1.02		4.6716		5

				160.6		4.44		1.01		4.4844		6

				160.6		4.05		1.06		4.293		7

				160.6		3.24		1		3.24		8

				160.6		2.71		0.64		1.7344		9

				Torque		Volts		Amps		Watts

				189.8		6.8		1.38		9.384

				175.2		6.5		1.31		8.515

				160.6		6.52		1.19		7.7588

				146		6.45		1.12		7.224

				131.4		6.46		0.97		6.2662

				116.8		6.33		0.9		5.697

				102.2		5.37		0.71		3.8127

				87.6		5.43		0.62		3.3666

				73		5.54		0.5		2.77

				58.4		5.79		0.27		1.5633

				43.8		6.07		0.05		0.3035												1.06

				Torque		Volts		Amps		Watts		Time(min)

				160.6		4.99		1.05		5.2395		0										1.174		0.0833333333		0.0978333333

				160.6		4.97		1.06		5.2682		0.25										1.1266666667

				160.6		4.97		1.06		5.2682		0.5										1.19875		0.1083333333		0.1298645833

				160.6		4.94		1.03		5.0882		1.5

				160.6		4.82		1.1		5.302		2.5

				160.6		4.76		1.11		5.2836		3.5

				160.6		4.71		1.09		5.1339		4.5

				160.6		4.61		1.1		5.071		5.5

				160.6		4.05		0.99		4.0095		6.5

				160.6		3.15		1.02		3.213		7.5

				160.6		3.1		1.03		3.193		8.5

				160.6		3		1.01		3.03		9.5

				160.6		2.86		0.87		2.4882		10.5

Sheet1

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

				0

				0

				0

Eveready

Racing Pak

Time (min)

Power (Watts)

6-Cell Battery/Servo Performance

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		

Sheet3

		

_995350938.doc
[image: image1.png]

