
University of Aveiro
Electronics and Telecommunications’ Department

Cyclop

Autonomous Mobile Robots
(Final Report)

Professor Keith L. Doty
Scott Jantz

July 95

Rosa Maria Charneca Pasadas - 6319 ET
Rui Jorge Ferreira da Costa - 5691 ET

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

2

Table of Contents

Abstract .. 3

Executive Summary ... 3

Introduction ... 4

Integrated System .. 4

Mobile Platform ... 5

Actuation .. 6

Sensors.. 7

Behaviors.. 8

Experimental Layout and Results ... 13

Conclusion .. 17

Documentation ... 18

Appendices ... 19

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

3

Abstract

This paper is a brief description of Cyclop (presented firstly as Fly): an
autonomous mobile robot that was designed to do simple obstacle avoidance, bump
detection and floor absence detection (in order to prevent Cyclop from falling into holes
or abysses). It integrates six IR sensors: three in the front for obstacle avoidance (used
in the first presentation), two in front of Cyclop’s two wheels for abyss detection and
one pointing to a rotating mirror that is supposed to perform a 360º obstacle detection
around the robot (this is Cyclop’s most salient characteristic), hence its name. It also
integrates three bumpers in the front to perform bump detection.

Cyclop has two actuators (motor drivers) that respond accordingly to the
stimulus input at his sensors.

The obstacle avoidance algorithm used in the first presentation was
performed by a non-linear dynamic system differential equation for heading
direction dynamics and a linear function for speed dynamics.

The obstacle avoidance algorithm that will be used in the second presentation
is performed by a function that averages and differentiates the readings between the
left and right side of the robot for heading direction and a non-linear dynamic
system differential equation for speed dynamics.

Executive Summary

In this project the obstacle avoidance behavior was implemented in the first stage

with three IR sensors in Cyclop’s front. Later on we tried to do it with one IR led

and one IR sensor that were above a rotating mirror, and finally we used just one IR

sensor above the mirror and six pointing ahead IR leds in Cyclop’s front.

The six pointing ahead leds illuminate the obstacles and the mirror reflects the beams

(reflected from the obstacles) to the IR sensor that’s above it.

To drive the motor that rotates the mirror, we used a PWM signal that was

programmed in the MC68HC11A0FN microprocessor in an adaptive way. For some

unknown reason the PWM signal changed in an unusual way during program’s execution

and we decided to make a circuit that generates the PWM signal.

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

4

This circuit compares data from a counter and data that was defined by the user with

four switches, giving a PWM signal as a result of this comparison.

This evolution will be explained in more detail in the “Experimental Layout and
Results” item.

Introduction

This project is integrated in the M. Sc. in Electronics Engineering subject “Autonomous

Mobile Robots” that is still taking place in the University of Aveiro (June/July, 95). It

consists of designing an autonomous robot, Cyclop, that can perform obstacle avoidance

using a rotating IR sensor. We tested a particular algorithm for obstacle avoidance with

three frontal IR sensors that worked fairly well. This last sensor gave us (and still is

giving) many practical problems explained in detail in the “Experimental Layout and

Results” item.

Integrated System

The following figure is Cyclop’s organisational description.

figure 1

Obstacle Avoidance

Speed Dynamics

Random Turn

Vertigo Behavior

Bumper Behavior

Three frontal
IR sensors

Abyss Sensor

Bumper sensors

Arbitration
Network

Cyclop sensor

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

5

Mobile Platform

At first we thought about using a 45º mirror and make the adjustment of the angle

between the beam and the floor adjusting the angle between the IR led and the rotational

axis. As one can see in the next figure, this is a basic error, for if in one instant the beam

is pointing down, it will point up after the mirror rotates 180º.

figure 2

To achieve a solution we need axial symmetry. The angle of the beam will have to be

determined by the angle between the mirror and the floor:

• The IR emitter must be placed on the rotational axis

• β must be chosen to design γ

figure 3

2α+β=90º and α+γ=90º ⇒ γγ=45+ββ/2

Motor Motor

I II

α i
45º

45º

α
α

IR emitter/receiver

α

αα
β

γ

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

6

The mobile platform was designed as shown in the figure below.

figure 4

Actuation

figure 5

Is there a hole?

Did I hit something?

Use obstacle avoidance
behavior’s output

Use vertigo behavior’s
output

Use bump behavior’s
output

Arbitration
process’
beginning

Arbitration
process’
end

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

7

Sensors

The following table summarises Cyclop's sensors.

Physical Sensor Function Location Quantity

IR avoid obstacles front, front left, front right 3

IR avoid obstacles up, pointed at the rotating
mirror

1

IR avoid holes under the robot’s board,
before the wheels

2

Bumper Bump detection front 3

The bumpers are simple switches that give the robot a digital input. They were designed

the same way our colleagues’ A. Branco and P. Kulzer.

The rotating IR sensor works as follows (see next figure):The illuminating leds beam the

obstacle, which reflects radiation to the robot. If the reflected beam has the angle

depicted in the “Mobile Platform” item it is felt by the IR sensor. The sensor’s colimer

eliminates other beaming directions. When the mirror (powered by a PWM driven

motor) passes by the synchronising led it gives a pulse to the sensor. We can thus know

where the sensor is looking at.

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

8

figure 6

Behaviors

•Obstacle avoidance with the three frontal IR sensors:

For the first presentation we just implemented two behaviors: obstacle avoidance

(using the three frontal IR sensors) with controlled speed and turn back (when it

reached a local minimum that he could not leave if it had only the obstacle avoidance

behavior), currently modified to a random turn.

The obstacle avoidance behavior was based on a non-linear dynamic system

differential equation (see code in appendix - obavoid file’s process “obavoid”), i.e.,

something like:

dθ/dt = f(θ),

where f(.) is a non-linear function [5].

Synchronising
IR led

IR sensor

Illuminating
IR ledObstacle

Motor

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

9

Let us now introduce the concept of repellor: a repellor is a zero of the previous

equation with negative values of dθ/dt at its left and positive at the right, at some

neighbourhood of that point. Like this, if we are close to the zero at its right, dθ/dt >0,

so θ increases, getting away from the zero. The same happens at the left of the zero: we

get more and more away from the zero, hence the name.

figure 7

We understand easily the concept of attractor under the same ideas.

We can not use simple linear functions like the ones above to implement obstacle

avoidance for a repellor has a limited influence around him, and the repellor represented

has unlimited influence.

dθ/dt dθ/dt

Zooming the root’s
neighbourhood...

Zooming the root’s
neighbourhood...

Repellor Attractor

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

10

In our task we used the following function as the basic repellor:

figure 8

As the obstacle gets closer, the height and width of the two pulses become higher. The

integration of the three frontal sensors is accomplished by an addition of the resultant

repellor functions.

The speed dynamics is supposed to be directly related to the duty-cycle of the motor

drivers, and is accomplished by a simple linear function:

V = Vmax -m*(Sensor-S0), where m=(Vmax-Vmin)/(Sat-S0)

figure 9

dθ/dt

Repellor

Sensor Readings

Speed

Vmax

Vmin

SsatS0

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

11

When the robot falls in local minima its speed decreases to a certain value. When the

robot’s arbitration network detects that, it switches to the turn back behavior.

Mathematical representation of the world might be seen by some as traditional AI [4]. It

must be seen as well under another point of view: mathematical language is a synthetic

one. One can say much using few words, thus reducing substantially the code.

•Obstacle avoidance using the rotating IR sensor

Cyclop also supports bump and vertigo behaviour, although these were not

implemented by the time of the first presentation.

After a bump or a dangerous height detection it turns back for a while. Afterwards it

turns to the left or to the right if it felt the stimulus at the right or at the left, respectively.

If the stimulus is symmetric it turns back for a while and performs a random rotation to

avoid the problem.

We weren’t able though to use the vertigo behavior integrated with the rotating IR

sensor. We could use it only with the three frontal IR sensors, for we needed a high

intensity on the leds used to illuminate the obstacles for the rotating IR sensor and this

interfered with the vertigo IR sensors. We could not switch between the two groups of

leds easily because of a timing problem that will be later detailed (Experimental Layout

and Conclusion), so we only used this behavior in the three frontal IR detector case.

The heading direction dynamics used in the rotating IR sensor case is simple: we make a

weighted average on the left and the right side of our retina (with greater weights on the

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

12

dead-ahead direction), compare the values and decide thus which side to turn, if at all.

figure 10

For the speed dynamics we used a non-linear dynamic system differential equation:

dv
dt = -v*f(Rmax)+β*v,

where Rmax is the retina’s maximum sensor reading and ββ is a constant.

This equation is non-linear in the sense that f(.) is a non-linear function that depends on

the robot’s sensor readings, which depend themselves on the robot’s cinematic variables,

among which is the robot’s speed.

When the retina has saturation readings, f(Rmax) is -1, giving an attractor to zero. When

there are no obstacles, f(Rmax)> 0, giving an attractor to infinity. We added another

attractor to infinity (β*v) to allow the robot to escape from local minima where it would

be trapped. In case it hits the obstacle, the bumper switches to another behavior.

Heading direction (relative to the robot)

Weight magnitude

Dead ahead

90º right90º left

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

13

Experimental Layout and Results

In this item we will describe the problems we experienced and the causes we think that

caused them.

In the beginning we used both a led and an IR sensor above the mirror, as close as

possible to the motor’s rotational axis. The synchronising led’s pulse is reproduced in

situation a).

figure 11

As one can see, the synchronising pulses have a too large width. This can hide obstacles

of low magnitude. This could be due to two factors: an IR sensor frequency response too

low for high frequencies or led or sensor’s miscolimming. We changed the SHARP IR

sensor output OPAMP’s capacitor to 4.7nF.

Afterwards we put three colimed leds in the front of the robot, instead of close to the

sensor, thus spreading the light to illuminate the obstacles like a car at night. The

situation did not improve very much. Finally we uncolimed the three leds and colimed

the sensor. The colimed sensor avoids direct radiation from both the synchronising led

and the illuminating ones, selecting only the reflected radiation from the obstacles in the

angle defined in the “Mobile Platform” section. The results were much improved, as we

can see in the next picture.

a) Colimed illuminating
leds, uncolimed sensor

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

14

figure 12

For the first test our PWM was generated by the CPU and updated according to a PI

algorithm:

The period read from the board was unstable. So, we programmed a constant PWM.

We simply used the OC1M4 and OC1D4 bits to program port A’s pin 4, just like the

following process’ code extract:
...

bit_set(OC1M, 0b00010000);
while(1){
 bit_set(OC1D, 0b00010000);
 wait(0.07);
 bit_clear(OC1D, 0b00010000);
 wait(0.03);}
...

 {...}
 /*Duty cycle processing*/

 error = IrMotorPeriod-DESIRED_IR_MOTOR_PERIOD;

 Integral += error*Ki;/*Determining integral additive...*/

 /*if(Integral>0.8) Integral=0.8;
 if(Integral<-0.8) Integral=-0.8;/*Limiting integral
additive...*/

 dutyCycle = Kp*error + Integral;/*PI controller*/
 if (dutyCycle> 1.0) dutyCycle=1.0;
 if (dutyCycle< 0.0) dutyCycle=0.0;
 {... }

ADC reading:156
Oscilloscope: 2V

Synchronizing led’s pulses

Obstacles
(the authors)

ADC reading: 116-119
Oscilloscope: 0.4V

b) Uncolimed illuminating
leds, colimed sensor

T

•T variable with PWM
•Usual values: 72 to 120ms
•Synchronizing pulses’ width
for T=72ms: 12ms on the base,
6ms on the top
•Obstacle’s greatest magnitude:
146 (ADC)

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

15

The resulting PWM was barely correct, but in some periods there was no signal:

figure 13

Afterwards we tried to use the HC11’s TOC4 register. The PWM was OK, but the

system time was not functioning properly. It would measure time delays of 1 second

while we measured 5 seconds in our watches.

Finally we used a binary counter, a binary comparator and a 555 to generate our PWM,

as can be seen in the electrical scheme. We used a very simple routine to detect the signal

that our synchronising led gives when the mirror faces the back of the robot, as one can

see in the “vision()” function (see “cyclop.c” file, in the appendix).

The mirror’s rotation period read from the board was usually lower than the correct one,

read from the oscilloscope, and it varied a lot, while the oscilloscope waveform had a

very stable period. There were times, however, when the period read from the board was

quite stable. Usually this occurred when the vision routine was the only one running.

When we added all the code, the two periods would only match if their value was above

100ms. In this situation the ADC values read from the sensor were also reasonably stable

and coherent with the obstacles’ position and distance.

In one experiment we took 240 samples at Ts = 1ms, registering the retina values with

their respective instants. The result was a distance between synchronising peaks of 23

samples. That would mean a rotating mirror’s period of 23ms. However, reading the

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

16

difference between any consecutive samples’ instants we measured 4ms! That means a

92ms period, a value that matched the oscilloscope measured period.

In summary, when the period read from the board was too short compared to the one

read from the oscilloscope or when it was unstable, the ADC values were inaccurate.

When the period was shorter than about 100ms, the retina values became nonsense,

taking into account the obstacles’ places.

Our last code uses neither processes nor local variables. We decided to do so comparing

the two possibilities on their rotating periods and retina’s coherence with what we saw

on the oscilloscope.

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

17

Conclusion

 Without a stable period it is impossible to relate the samples we are taking to their

positions, because we are basing ourselves on the last period to calculate the next sample

period. Even if you do a completely asynchronous routine, you still have to decide when

are you going to sample again, so the last rotating period must be close to the next one.

We are sure that the smaller period is not due to close obstacles’ readings because we

took measurements with the motor standing still and they were quite lower than the

synchronising led’s signal (146, as described in the previous item, against a 150

threshold).

We are also sure that the ADC is working properly. If it wasn’t, we would not give

coherent values at lower periods.

We suspect that the following factors somehow give problems to the system timer:

• Using processes: we compared just the sample acquisition routine as a process and as a

function inside an infinite loop in the main function. The second situation’s results were

more reasonable.

•Using variables inside the functions: Somehow the results were more logic using all

variables as global, at least in some cases.

We have a fair obstacle avoidance and speed dynamic algorithm for the three frontal

obstacle avoidance IR sensors and operational bump and vertigo behaviors, although

there are calibration problems in peculiar situations of the vertigo sensors.

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

18

Our robot’s main characteristic is the rotating IR sensor. Its hardware is OK and the

vision routine works correctly for periods lower than 100ms (otherwise the rotating

period becomes extremely incoherent and unstable). However, as strange as it may be,

our current motor’s period is of about 72ms, and the obstacle avoidance behavior works,

although we are quite sure that its retina’s values are quite inconsistent at that frequency.

All the facts detailed in the experiments point out that the problem is a timing one. So we

can only conclude that Interactive C cannot handle our task’s timings.

If we started our project again we would definitely use assembly language. Another

important thing that anyone that plans to build a robot with a similar sensor should know

is that the sensor above the mirror should be colimed.

This robot is not R2D2 or 3CPO but it worked in spite of all the troubles we had. So

perhaps it shouldn’t be called Waterloo. Perhaps it deserved the Cyclop name.

Documentation

[1] Tracy L. Anderson and Max Donath, "Animal Behavior as a Paradigm for
Developing Robot Autonomy", edited by Pattie Maes, MIT/Elsevier; pp 145-168.
[2] Randall D. Beer, Hillel J. Chiel, and Leon S. Sterling, "A Biological Perspective on
Autonomous Agent Design", edited by Pattie Maes, MIT/Elsevier; pp169-186.
[3] Valentino Braintenberg, "Vehicles: Experiments in Synthectic Psychology".

[4] R. A. Brooks, “Elephants don’t play chess” - extracted from “Designing
Autonomous Agents”, edited by Pattie Maes, MIT/Elsevier, pp3-15.
[5] John J, D’Azzo, Constantine H. Houpis, “Linear Control System Analysis and
Design Conventional and Modern”, McGraw-Hill International Editions, 3rd edition, pp
21, 505-541.
[6] Keith L. Doty and Akram Bou-Ghannam, "Controlling Situated Agent Behaviors
with Consistent World Modeling and Reasoning".
[7] Keith L. Doty and Reid R. Harrison, "Sweep Stractegies for a Sensory-Driven,
Behavior-Based Vacuum Cleanning Agent", AAAI 1993 Fall Symposium Series
Instantiating Real-world Agents.
[8] Keith L. Doty, Stefano Caselli, Reid R. Harrison, Francesco Zanichelli, "Landmark
Map Construction and Navigation in Enclosed Environments".

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

19

[9] Keith L. Doty, Stefano Caselli, Reid R. Harrison, Francesco Zanichelli, "Mobile
Robot Navigation in Enclosed Large-scale Space".
[10] Keith L. Doty, "Position Paper on Lessons Learned from Implemented Software
Architectures for Physical Agents".

[11] Keith L. Doty and Steven Louis Seed, "Autonomous Agent Map Construction in
Unknown Enclosed Environments", MLC-COLT'94 Robot Learning Workshop,
Rutgers, New Brunswick, N.J.

[12] Joseph L. Jones, Anita M. Flynn, "Mobile Robots Inspiration to Implementation",
A.K.Peters, Ltd.

[13] K.S. Fu, R.C. Gonzalez, C.S.G. Lee, "Robotics Control, Sensing, Vision, and
Intelligence", McGraw-Hill International Editions, pp. 267-293.

[14] Richard D. Klafter, Thomas A. Chmielewski, Michael Negin, "Robotic Enginnering
An Integrated Approach", Prentice Hall, pp. 314-508, pp. 665-691.

[15] Fred Martin, "The 6.270 Robot Builder's Guide for the 1992 MIT LEGO Robot
design Competition".

[16] Gregor Schoner and Michael Dose, “A dynamical systems approach to task-level
system integration used to plan and control autonomous vehicle motion”.

Appendices

File “obavoid.c”: source code for Obstacle avoidance using the 3 frontal IR
sensors, vertigo and bump behaviors:
/*CONSTANTS*/

/*IR sensor readings when there are no obstacles*/
int Sensor0=105;

/*IR Sensor saturation readings*/
int SensorSat=160;

/*IR Sensor security reading*/ /*######*/
int SensorSec=150;

/*IR left, center and right sensors' positions*/
float L_SENSOR_DEGREE = -45.0;
float C_SENSOR_DEGREE = 0.0;
float R_SENSOR_DEGREE = 45.0;

/*Repellor's width factor*/
float WIDTH_FACTOR = 4.0;

/*Obstacle's weight factor*/
float OBSTACLE_WEIGHT = 1.5;

/*Motor Compensation (one of our motor is slower than the other)*/
float MOTOR_COMPENS = 0.81;

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

20

/*Speed dynamics parameter (slope)*/
float m = 90.0/((float) (SensorSat-Sensor0));

/*GLOBAL VARIABLES*/

/*IR Sensor readings initializations*/
int lSensor=Sensor0,
 cSensor=Sensor0,
 rSensor=Sensor0,
 lDownSensor=SensorSec, /*######*/
 rDownSensor=SensorSec;

/*Bumper readings initializations*/
int lBumpSensor, /*$$$$*/
 cBumpSensor,
 rBumpSensor;

/*Motor power obstacle avoidance behaviour's output*/
float lMotorObavoid, rMotorObavoid;

/*Vertigo behaviour's output*/ /*#######*/
int vertigoBack,
 vertigoRight,
 vertigoLeft;

/*Bump behaviour's output*/ /*$$$$$$$*/
int bumpBack,
 bumpRight,
 bumpLeft;

/* behavior's output flags */ /*&&&&&&*/
int bumpFlag=0,
 vertigoFlag=0,
 avoidFlag=0;

/*Speed dynamics' output*/
float Speed_dSpeed;

/*Robot's speed*/
float speed;

/*AUXILIARY FUNCTIONS*/

float abs(float x)
{
 if (x<0.0) return(-x);
 else return x;
}

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

21

float repellor(float x, float w)
/*
 "x" is the obstacle's position
 "w" is the repellor's width (allways positive)
*/
{
 if (x<-w || x==0.0 || x>w)
 return 0.0;
 else if (-w<=x && x<0.0)

 return (-1.0);
 else if (x>0.0 && x<=w)

 return 1.0;
}

void wait(int milisec)
{
 long timer_a;

 timer_a = mseconds()+ (long) milisec;

 while(timer_a > mseconds())
 {
 defer();
 }
}

int random()
{
 return (int) mseconds() & 0x3FF;
}

void turn_back(float speed)
{
 motor(0, -speed);
 motor(1, -speed);
 wait(random()+500);
}

void turn_left(float speed)
{
 motor(0, -speed);
 motor(1, speed);
 wait(random()+500);
}

void turn_right(float speed)
{
 motor(0, speed);
 motor(1, -speed);
 wait(random()+500);
}

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

22

void random_turn(float speed)
{
 if (random() & 1)
 turn_left(speed);
 else
 turn_right(speed);
}

void sound(float frequency, float length)
{
 pokeword(0x26,(int)(1E6 / frequency));
 bit_set(0x1020,0b10000000); /*PA7*/
 sleep(length);
 bit_clear(0x1020,0b10000000);
 pokeword(0x26,0);
 bit_clear(0x1000,8); /*turn power to spkr off*/
}

/*PROCESSES/BEHAVIOURS*/

/*Sensing process*/
void sensing()
{
 while(1)
 {
 lSensor=analog(1);
 cSensor=analog(2);
 rSensor=analog(0);
 lDownSensor=analog(3); /*######*/
 rDownSensor=analog(5);
 lBumpSensor=digital(2); /*$$$$$$*/
 cBumpSensor=digital(1);
 rBumpSensor=digital(0);
 }

}

/*Speed dynamics process*/
void dSpeed()
{
 int maximum;

 while(1)
 {
 maximum = lSensor;
 if (cSensor>maximum) maximum=cSensor;
 if (rSensor>maximum) maximum=rSensor;

 Speed_dSpeed = 100.0-m*((float) (maximum-Sensor0));
 }
}

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

23

/*Obstacle avoidance behaviour's process*/
void obavoid()
{
 float headDot;
 float left, center, right;

 while(1)
 {
 left= (float) (lSensor-Sensor0);
 center= (float) (cSensor-Sensor0);
 right= (float) (rSensor-Sensor0);

 headDot = left*repellor(-L_SENSOR_DEGREE,
 left*WIDTH_FACTOR)+

 center*repellor(-C_SENSOR_DEGREE,
 center*WIDTH_FACTOR)+

 right*repellor(-R_SENSOR_DEGREE,
 right*WIDTH_FACTOR);

 headDot = headDot/((float) (SensorSat-Sensor0));

 lMotorObavoid = speed*(1.0+OBSTACLE_WEIGHT*headDot);
 rMotorObavoid = speed*(1.0-OBSTACLE_WEIGHT*headDot);
 avoidFlag=1;
 }

}

/*highs avoidance behaviour's process*/ /*####*/
void vertigo()
{
 while(1)
 {
 if (lDownSensor < SensorSec && rDownSensor < SensorSec)
 {

vertigoFlag=1;
vertigoBack=1;
vertigoRight=(random() & 1);
vertigoLeft=(random() & 1);

 }
 else if (lDownSensor < SensorSec)
 {

vertigoFlag=1;
vertigoBack=1;
vertigoRight=0;
vertigoLeft=1;

 }
 else if (rDownSensor < SensorSec)
 {

vertigoFlag=1;
vertigoBack=1;
vertigoLeft=0;
vertigoRight=1;

 }
 else vertigoFlag=0;
 }
}

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

24

/*bump behaviour's process*/ /*$$$$$$$$*/
void bump()
{
 while(1)
 {

if (!lBumpSensor && !rBumpSensor)
 {
 bumpFlag=1;
 bumpBack=1;
 bumpRight=(random() & 1);
 bumpLeft=(random() & 1);
 }
else if (!lBumpSensor)
 {
 bumpFlag=1;
 bumpBack=1;
 bumpRight=0;
 bumpLeft=1;
 }
else if (!rBumpSensor)
 {
 bumpFlag=1;
 bumpBack=1;
 bumpLeft=0;
 bumpRight=1;
 }
else if (!cBumpSensor)
 {
 bumpFlag=1;
 bumpBack=1;
 bumpRight=(random() & 1);
 bumpLeft=(random() & 1);
 }
else bumpFlag=0;

 }
}

/*Arbitration/integration process*/
void arbitration()
{
 while(1)
 {
 if (vertigoFlag) /*######*/

{
 if (vertigoBack==1)
 {
 turn_back(30.0);
 random_turn(30.0);
 }
 if (vertigoLeft==1)
 {
 turn_left(30.0);
 random_turn(30.0);
 }

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

25

 if (vertigoRight==1)
 {
 turn_right(30.0);
 random_turn(30.0);
 }

/* sound(1000.,.2);*/
}
if (bumpFlag)
{
 if (bumpBack) turn_back(25.0);
 if (bumpLeft) turn_left(25.0);
 if (bumpRight) turn_right(25.0);

/* sound(1500.,.2);*/
}
if (avoidFlag)
{
 speed=Speed_dSpeed;

 if (speed<26.0 && abs(lMotorObavoid-rMotorObavoid)<1.0)
random_turn(40.0);

 else
 {

motor(1,lMotorObavoid);
motor(0,MOTOR_COMPENS*rMotorObavoid);

 }
}

 }
}

/*MAIN FUNCTION*/
void main()
{
 poke(0x4000,0x37);

 start_process(sensing());
 start_process(vertigo());
 start_process(bump());
 start_process(dSpeed());
 start_process(obavoid());
 start_process(arbitration());
}

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

26

File “cyclop.c”: source code for obstacle avoidance and bump behaviors for the
rotating sensor processes

/*CONSTANTS*/

/*synchronizing led's thresholds*/
int SYNCHRO_IR_HI=150;
int SYNCHRO_IR_LOW=135;

/*Rotating IR sensor readings when there are no obstacles*/
int rSensor0=117;

/*Rotating IR Sensor saturation readings*/
int rSensorSat=160;

int MAX_CELLS=16;/*Number of visual cells*/
float INV_MAX_CELLS = 1./((float) MAX_CELLS);

/*Thus we define a matrix of a greater size than we really
need (prevent from getting out of its range*/
int MAX_INDEX=4*MAX_CELLS;

/*Motor Compensation (one of our motor is slower than the other)*/
float MOTOR_COMPENS = 0.81;

float OBSTACLE_WEIGHT = 0.008;

/*Speed dynamics parameter (slope)*/
float rm = 1.0/((float) (rSensorSat-rSensor0));

/*GLOBAL VARIABLES*/

/*Auxiliary flag to 1st peak synchronization*/
int FirstVision=1;

long IrMotorPeriod= (long) 2000;

/* "MAX_INDEX", to prevent array out of range error*/
int retina[64];

long time[64];/* Instants of the retina samples*/

int weights[64];/* Obstacle Weights*/

int index;

/*Motor power obstacle avoidance behaviors' output from rotating sensor*/
float lMotorObavoidRot, rMotorObavoidRot;

float speed = 55.0;

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

27

/*Speed dynamics' output*/
float Speed_dSpeed;

int lBumpSensor,
 cBumpSensor,
 rBumpSensor;

/*AUXILIARY FUNCTIONS*/

int abs(int x)
{
 if (x<0) return(-x);
 else return x;
}

float fabs(float x)
{
 if (x<0.) return(-x);
 else return x;
}

int random()
{
 return (int) mseconds() & 0x3FF;
}

void wait(int milisec)
{
 long timer_a;

 timer_a = mseconds()+ (long) milisec;

 while(timer_a > mseconds())
 {
 defer();
 }
}

void turn_back(float rSpeed, float lSpeed)
{
 motor(0, -rSpeed);
 motor(1, -lSpeed);
 wait(random()+500);
}

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

28

void random_turn(float rSpeed, float lSpeed)
{
 if (random() & 1)
 {
 motor(0, -rSpeed);
 motor(1, lSpeed);
 wait(random()+500);
 }
 else
 {
 motor(0, rSpeed);
 motor(1, -lSpeed);
 wait(random()+500);
 }
}

/*”PROCESSES”*/

/*Sensing process*/
void sensing()
{
 lBumpSensor=digital(2);
 cBumpSensor=digital(1);
 rBumpSensor=digital(0);

}

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

29

 long tf,t0,t;
 long deltaT; /*Rotating IR sensor's sample period*/
 int indy, ReadingRot;
void vision()
{
 /*
 The following processing is based on the synchronizing LED's signal.
 It gives a narrow pulse when the mirror passes by the back of the
 robot.
 */

 deltaT = (long) (((float) IrMotorPeriod)*INV_MAX_CELLS);
 /*Determining the rotating IR sensor's sample period*/

 while(analog(4) > SYNCHRO_IR_LOW);
 /*Waits for negative transition*/

 t0=mseconds();
 /*Negative transition instant determination*/
 t= t0;
 indy=0;

 while(SYNCHRO_IR_HI > (ReadingRot=analog(4)))
 /*Processing until positive transition */
 {
 tf=mseconds();

 if (tf>=t && indy<MAX_INDEX)
 {
 retina[indy] = ReadingRot;
 t += deltaT;
 time[indy] = tf;
 indy++;
 }

 }/*while(SYNCHRO_IR_HI > analog(4))*/

 indy--;
 index = indy;

 IrMotorPeriod = tf-t0;
 /*Updating IR Motor Period*/

}/*void vision()*/

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

30

/*Speed dynamics process*/
int maximum,i;

void dSpeed()
{

 maximum = retina[IMIN];

 for(i = IMIN+1;i < IMAX; i++)
 {
 if (retina[i] > maximum)
 maximum = retina[i];
 }

 Speed_dSpeed = speed*(1.0-rm*((float) (maximum-rSensor0)));
 /*Dynamics driven by sensorial input*/

 Speed_dSpeed += 0.01*speed;
 /*Adding attractor to infinity...*/

 if (Speed_dSpeed < 15.0) Speed_dSpeed = 15.0;
}/*void dSpeed()*/

/* obstacle avoidance*/
 int IMIN = MAX_CELLS/4,
 IMAX = 3*MAX_CELLS/4;
 int left, right;

void obavoid()
{
 left = 0;
 for (i=IMIN; i<2*IMIN; i++)
 {
 if (retina[i] < rSensor0) break;
 left = left + (retina[i]-rSensor0)*weights[i];
 }

 right = 0;
 for (i=2*IMIN; i<IMAX; i++)
 {
 if (retina[i] < rSensor0) break;
 right = right + (retina[i]-rSensor0)*weights[i];
 }

 lMotorObavoidRot = speed*(1.0+OBSTACLE_WEIGHT*((float) (left-right)));
 rMotorObavoidRot = speed*(1.0-OBSTACLE_WEIGHT*((float) (left-right)));

}/*void obavoid()*/

University of Aveiro 21st July, 1995
Electronics and Telecommunications’ Department

31

/*Arbitration/integration process*/
void arbitration()
{
/*bump behaviour's process*/
 if (!lBumpSensor && !rBumpSensor)
 {
 turn_back(27.,27.);
 random_turn(27.,27.);
 }
 else if (!lBumpSensor)
 turn_back(30.,15.);

 else if (!rBumpSensor)
 turn_back(15.,30.);

 else if (!cBumpSensor)
 {
 turn_back(27., 27.);
 random_turn(27.,27.);
 }

 else /*Do simple obstacle avoidance*/
 {
 speed=Speed_dSpeed;

 /*motor(1,lMotorObavoidRot);
 motor(0,MOTOR_COMPENS*rMotorObavoidRot);*/

 }/*simple obstacle avoidance*/

}/*Arbitration*/

void main()
{

 for(i = IMIN;i < 2*IMIN; i++)
 weights[i] = 2*(IMIN-abs(i-2*IMIN+1));

 for(i = 2*IMIN ;i < IMAX; i++)
 weights[i] = 2*(IMIN-abs(i-2*IMIN));

 /*Let's turn on the lights...*/
 poke(0x4000, 120);

 while(1)
 {
 sensing();
 vision();
 dSpeed();
 obavoid();
 arbitration();
 }
}

