GAROB

University of Aveiro
Department of Electronics and Telecommunications
Dr. Keith L. Doty

Scott Jantz

Tiago Oliveira

Alfredo Franca

July 1995

1. Introduction

The main objective of this course is to build a robot. The robot we built, GAROB
(GAROB stands for GArbage ROBot), isintended to collect garbage and pushsit to the
wall. The robot moves randomly and have to avoid obstacles that appear in his way.
Other feature of GAROB is the capacity to automatic recharging when the batteries are

low.

2. Mobile Platform

The mobile platform is a wood made, circular shaped platform, with three wheels. The

robot is pushed by the two front wheels and the third wheel serves to stand the robot.

Steering Wheel

Figure2.1 Down view of the GAROB.

3. Actuation

At the moment, we only have two DC-motors, which control the GAROB's movement.

4. Sensors

For detecting obstacles, we supplied GAROB with three infrared (IR) LED's and three
sensors. Each sensor is associated with one LED. The sensors are disposed as figure 4.1
shows. The sensors measure the signal level emited by the corresponding LED after
reflection by the obstacles. The LED's used are MLED81 by MOTOROLA. The sensors
used are SHARP sensors with a little modification to allow receiving an analog signal

instead of the origina digital signal.

Sensors

—/

Figure4.1 Sensor position.

5. Behaviors

At the moment, GAROB has two behaviors, which permit it to "walk" arround without
crashing. The distance sensors are placed in the front of GAROB and are adjusted for

three levels of proximity sengitivity: far, close and danger (see figure 5.1).

N \
\ \

Close"} Far |

Danger

Back

Figure5.1 Levelsof proximity sensitivity

5.1. Collision Avoidance Behavior

When the robot enters the Far zone, he slows down to allow more accuracy. When he
reaches the Close zone, he moves away from the obstacles. In the Danger zone, the

behavior is not yet defined.

5.2. Random Turn Behavior

This behavior is characterised by puting the robot turning arround in a random direction

during a random interval of time. GAROB swaps to this behavior when he detects an

obstacle in the Close zone with the front sensor.

7. Conclusion

GAROB was tested, with the current version of software, and he avoid obstacles

with accuracy, so at this moment we think that we are in the right way.

8. Appendices

8.1. Flow Chart

The next flow chart represents the combined behavior avoidance and random

turn.

Tes

Males distance== Closze

Tes

Eeduces the speed to half

Foes Forward at full speed

Next chart represents the “Makes the distance>=Close”.

Yes
efiter sefisor
L
Fotate random at
ratidom tithe
Yea
Turn Right
Tes
Tutn Left
8.2. Program Listing
/*
* July 1995
*
*/
/* DEFI N TIONS */
int RI GHT=0,
LEFT=1,;
i nt MtorRi ght=0, /* motor positions */
Mot or Lef t =1;

float SpeedRi ght =0. 0, /* motor speeds */
SpeedLeft =0. 0;

int EyeAddr ess=0x4000, /* eyes nenory address */

EyeMask=0x07, /* eyes data position */
EyeRi ght Bi t =0, /* right eye data position */
EyeCenterBi t =1, /* center eye data position */
EyelLeft Bi t =2; /* left eye data position */
int |IrDel ay=50; /* delay time for IR commutation */
float sO= 10.0, /* motor speeds */
s1l= 20.0,
s2= 40.0,
s3= 60.0,
s4= 80. 0,
s5=100. 0;
int ThresFront Far =95, /* 97 *//* threshold levels for IR sensors */

Thr esFront C ose=115, /* 112 */
Thr esFr ont Danger =132, /* 132 */
Thr esSi deFar =95, /* 95 */
Thr esSi deCl 0se=110, /* 110 */

Thr esSi deDanger =130; /* 130 */

/* GLOBAL VARI ABLES */

int eyeR ght=0,
eyeCent er =0,
eyeleft =0;

void wait(int msecond) {
I ong stopTine;

stopTime = nseconds() + (long)msecond;
whi | e(stopTinme > nmseconds()) defer();

}

voi d freeze() {
SpeedRi ght =0. 0;
SpeedLeft =0. 0;
}

voi d forward_full Speed() {
SpeedRi ght =s5;
SpeedLef t =s5;

}

voi d forward_hal f Speed() {
SpeedRi ght =s3;
SpeedLef t =s3;

}

voi d forward_sl owSpeed() {
SpeedRi ght =s1;
SpeedLef t =s1;

}

void turn_left() {
SpeedLeft =0. 0;
SpeedRi ght =s3;

}

void turn_right() {
SpeedRi ght =0. 0;
SpeedLeft =s3;

}

voi d rotate_clockw se() {
nmot or (Mot or Ri ght, 0.0);
nmot or (Mot or Left, 0.0);
SpeedRi ght =-s1;
SpeedLef t =s1;

}

void rotate_anticl ockwi se() {
nmot or (Mot or Ri ght, 0.0);
nmot or (Mot or Left, 0.0);
SpeedRi ght =s1;
SpeedLeft =-s1;

}

voi d sensor_read() {
while (1) {

poke(EyeAddr ess, EyeMask);
wai t (I rDel ay);
eyeRi ght =anal og(EyeRi ghtBit);
eyeCent er =anal og(EyeCenterBit);
eyeleft=anal og(EyeLeftBit);
poke(EyeAddress, 0);
wai t (I rDel ay);

wai t (50);
}
}

void motor_wite() {
while(1l) {
nmot or (Mot or Ri ght, SpeedRi ght);
nmot or (Mot or Left, SpeedLeft);
wai t (100);
}

}

voi d collision_avoi dance() {
int tineRotation,
di rRot ati on;

while (1) {
if((eyeRi ght > ThresSi deDanger) ||
(eyeLeft > ThresSideDanger) ||
(eyeCenter > ThresFrontDanger)) {
timeRotation = (int)nseconds() & OxO03FF;
dirRotation = (int)mseconds() & 0x0001;

freeze(); /* APAGAR */
wai t (1000); /* APAGAR */
if (dirRotation == LEFT) rotate_anticl ockwi se();

el se rotate_cl ockw se();
wai t (ti neRotation);

el se
if (eyeCenter > ThresFrontC ose) {
timeRotation = (int)nseconds() & OxO03FF;
dirRotation = (int)mseconds() & 0x0001;
if (dirRotation == LEFT) rotate_anticl ockwi se();
el se rotate_cl ockwi se();
wai t (ti neRotation);

}
else if ((eyeLeft > ThresSideCl ose) && (eyeLeft > eyeRight))
turn_right();
else if (eyeRi ght > ThresSi deC ose)
turn_left();
el se
if ((eyeRight > ThresSideFar) ||
(eyeLeft > ThresSideFar) ||
(eyeCenter > ThresFrontFar))
forward_sl owSpeed();
el se forward_full Speed();
}
}

voi d main()
int sensor_read_pid,
motor _write_pid,
col I'i si on_avoi dance_pi d;
sensor_read_pi d=start_process(sensor _read

()):
motor _write_pid=start_process(notor_wite());
col I'i si on_avoi dance_pi d=start_process(col lision_avoi dance());

8.3. Schematic Diagram

