
Autonomous Mobile Robots

Final Report

Vacuum Cleaning Robot

Nuno Gomes
Joaquim Ferreira

Instructors:
Professor Keith L. Doty

Professor Scott Jantz

21 July 1995

Dept. of Electronics and Telecommunications
University of Aveiro

Index

ABSTRACT 3

1 - INTRODUCTION 3

1 - INTEGRATED SYSTEM 4

2 - MOBILE PLATFORM 5

3 - SENSORS 6

4 - BEHAVIOURS 7

5 - CONCLUSIONS 9

APPENDIX A - ADD-ON ELECTRONICS 10

APPENDIX B - COMMENTED PROGRAM CODE 11

APPENDIX C - PHOTOGRAPHS 16

Abstract

This report describes the work done on the development of a vacuum cleaner robot prototype,
both on hardware and software point of view. The basic assumptions made about the robot are
that it has to transport the vacuum tool and a dust bag on a mobile platform driven by sensors and
controlled by a set of behaviours that enable it to randomly navigate through a room or a house
with the minimum human assistance. The features of the robot includes obstacle avoidance,
collision detection, self detection of anomalies (fan motor overload, either due to bag full of dust
or fan stuck, and low power on the batteries) with the consequent heading through a maintenance
station.
The mechanical platform on which the hardware lies is a circle of wood with a diameter of 25 cm,
with a hole in the middle where the vacuum cleaner fan motor is attached.

1 - Introduction

The research and development of an autonomous mobile robot prototype able to vacuum cleaning

a room or even an entire house is not a trivial challenge. In order to tackle such a task, so that it

could be completed in six weeks (the duration of the course), some simplifications and

assumptions were made to the designers initial idea of an “ideal” autonomous vacuum cleaner. In

this way, some functional requirements that would improve the robot performance were not

taking into account due either to their inherent complexity or to their mechanical implications.

Probably the decision that most affects the robot complexity is the ability of mapping the

environment so that it would exhibit a much better efficiency (area coverage) when compared

with the minimalist approach as the one followed (random navigation).

With the aim of keeping our robot as simple as possible, while able to perform the initial goals, i.e.

an autonomous vacuum cleaner robot able to randomly navigate through a room or a house with

the minimum human assistance, the following specifications were found:

• Obstacle avoidance.

• Floor detection.

• Collision detection.

• Battery monitoring.

• Autonomous battery charging.

• Fan motor current monitoring.

• Autonomous dust bag dump.

These specifications correspond to some of the expected behaviors that will be programmed into

the robot. Other behaviors that will increase the overall performance of the robot, such as self

calibration of the sensors and navigation with some memory (not completely random) were also

considered.

1 - Integrated System

We will not spend much report space describing the background hardware that constitutes our

robot, since most of it was presented to us as a “final” product by Scott Jantz, namely all the

hardware interconnections, IR sensors hacking, etc. We only present the add-on electronics

schematics designed by us in Appendix A.

We can resume the functionality of our robot as a programmer will see them:

• Eight analog inputs (Address 0x4000) for the IR sensors.

• Eight digital inputs (Address 0x5000) for the bumpers & control switches.

2 - Mobile Platform

In the design process of our vacuum cleaning robot we assumed that it has to transport the

vacuum tool and a dust bag on a mobile platform driven by sensors and controlled by a set of

behaviours. The vacuum tool includes the fan motor and a strip overture a few millimeters from

the ground (underneath the platform) and almost as long as the diameter of the platform, so the

efficiency of the fan could be maximized. The dust bag is attached to the fan and is situated on the

top of the platform (figure 2).

Bottom view

Front view

Side view

Figure 1 - Mechanical platform.

One of the most difficult problem we had to face on the design process was the relatively high

weight the platform had to support. This is due to large batteries that we use (8*NiCd 1,2V and

4Ah), so we could have enough energy to drive both the robot itself (µP board, sensors, motors)

and the fan motor (12V - 0,14 A) for at least a couple of hours. As a consequence of this extra

weight the plastic glue that was used to attach the wheels to the motors keep on cracking. We

choose not to substitute this glue by a stronger one because with this glue if we made a mistake

we could always repair it easily.

3 - Sensors

The vacuum cleaner robot has a suite of sensors that enable it to perform the tasks described on

the Introduction.

Table 1 - Vacuum cleaner sensor suite

Sensor Type Function Location Number

Infrared (IR) Obstacle avoidance Front 3

Infrared (IR) Floor detection Near the wheels
(bottom)

2

Infrared (IR) Beacon detection Top front 3

Contact Switches Collision detection Periphery 4

Switch Fan current high (overload) µP Board 1

Switch Battery power low (hungry) µP Board 1

The IR sensors used for obstacle avoidance and floor detection are shown in figure 2.

Bottom view Top View

0 1

2

3

4

Figure 2 - Bottom & Top view of the robot and IR sensor distribution.

In the previous figure, IR sensor 3 is facing front, IR sensor 2 and 4 are also facing front but they

are rotated by 45 degrees. IR sensors 0 and 1 are aimed at the floor near the wheels, to prevent

the robot to fall in stairs (or even a single wheel of it), independently of the angle on which the

robot forward approaches the stairs.

Another three IR sensors are used for beacon heading behaviour. These three IR sensors are

placed on the top of a 30 cm plastic mast (white tube). One of these IR sensors was designed to

distinguish between polarized IR and not polarized IR, unfortunately the polarized glasses lens

that we bought were unable to polarize the IR radiation. If the polarization had work as we

expected then the robot could discriminate two beacons. Since this approach was unsuccessful,

we chose to include in our specifications only one beacon that identifies both the charging and the

maintenance stations of our robot. We call the neighbourhood of the beacon the docking area.

We choose not to implement the electronics associated with the fan motor current monitoring and

the one related with the battery power sensing, for two main reasons. First, we would have to

multiplex the µP analog inputs, since we were already using all the eight available (for the eight

IR). Second we think that is more important to develop the respective behaviours than to spend

time doing the electronics and since we did not have enough time to do it we decided not to.

Instead of using real analog measurements for these two parameters we decide to input them to

our control program as digital inputs, so two extra switches were added to the µP board.

4 - Behaviours

The behaviours exhibit by our robot are the following:

• Obstacle avoidance.& Floor detection - This reactive behaviour is driven by five IR sensors

distributed by the front (three) and the bottom (two) of the robot.

• Collision detection - The collision detection behaviour processes the sensory data provided by

the four contact switches bumpers placed along the periphery of the robot, three in the front

and one in the back. This capability is needed because the IR sensors are quite directive and,

thus, they cannot detect sharp obstacles as chair legs, for example.

The previous behaviours are integrated in the same software function called avoid_obstacles()

since the latter extends the concept of the former.

• Overload - The robot only processes this behaviour when the correspondent switch is

activated. In this way we fake that the fan motor current is high. When this situation occurs

two reasons can be behind it, either the dust entrance is blocked or the dust bag is full. The

robot reaction to this digital input will be stopping the fan motor for a while, trying to remove

a possible blocking material. Then, the fan motor will is turn on again and if the its current

keeps the same value as before (digital input still activated) the robot knows that the dust bag

is full or the fan motor is being blocked. In either case the fan motor is stopped and the robot

looks for the docking area (maintenance station in this case). If the fan motor current decreases

to its normal value (digital input deactivated), it means that an object was blocking the fan

motor and it dropped when the fan motor was stopped. In this situation, the robot proceeds its

normal activity.

• Hungry - On this behaviour, as on the previous one, the robot only processes this behaviour

when the correspondent switch is activated. The robot is hungry when the battery charge drops

bellow a certain level. In this case (switch activated), the fan motor is stopped and the robot

looks for a charging station. If meanwhile the robot looses the beacon heading because it

bumped into some object or avoided some object, then it goes to a random behaviour and tries

to look for the beacon again. Hopefully it will succeed and it will find the heading again.

• IR sensor self calibration. A continuous self calibration mechanism for the IR sensors was

devised. Basically we read the five analog inputs from the sensor_module() when the robot is

not seeing any obstacle and he is seeing the floor. If the sum of these measurements, taken on

these conditions, is not in the vicinity of the sum of the current thresholds, then those

measurements will become the new threshold values. In this way, the robot should be able to

adapt itself to the light intensity changes of the environment.

A detailed explanation of the last behaviours can be found on Appendix B, Commented Program

Code.

5 - Conclusions

Throughout the development of the robot several problems arisen due, mainly, to time constrains.

Nevertheless, we were able to set up a basic platform, including a sensorial suite, that can be used

in the future as a tool to develop more sophisticated algorithms. The basic obstacle avoidance and

collision detection behaviours has been accomplished and it provides reasonable performance.

However, if we have to start over again, we would use non-linear dynamics based algorithms for

obstacle avoidance behaviour.

There was not enough time to fully test the performance and limitations of our robot, so we do

not have a clear idea about some fundamental parameters as the area coverage and its efficiency.

These parameters are fundamental in our design because they should be the emergent functionality

of a vacuum cleaning robot.

Appendix A - Add-on Electronics

Date: July 21, 1995 Sheet of

Size Document Number REV

A

Title

ADD ON ELECTRONICS

JOAQUIM FERREIRA & NUNO GOMES

DATA BUS

VCC

1A1
 2

1Y1
18

1A2
 4

1Y2
16

1A3
 6

1Y3
14

1A4 8 1Y4 12

2A1 11 2Y1 9

2A2 13 2Y2 7

2A3
 15

2Y3
 5

2A4
 17

2Y4
 3

1G 1

2G 19

U?

74HC244

STATION (OFF BOARD)

VCC

555 based oscilator

40KHz

H
U
N
G
R
Y

O
V
E
R
L
O
A
D

F
R
O
N
T

R
I
G
H
T

L
E
F
T

B
A
C
K

IR LED's

D0 3 Q0 2

D1 4 Q1 5

D2
 7

Q2
 6

D3
 8

Q3
 9

D4
 13

Q4
12

D5 14 Q5 15

D6 17 Q6 16

D7 18 Q7 19

OC
 1

CLK
 11

U?

74HC374

40KHz

ADDRESS 0X4000A 1

B 2

C
 3

G1 6

G2A 4

G2B 5

Y0 15

Y1 14

Y2
13

Y3
12

Y4
11

Y5 10

Y6 9

Y7 7

U?

74HC138

BUMPER SENSOR2

R/W*
A12
A13

A14*
A15

E

ADDRESS 0X5000

Appendix B - Commented Program Code

/* program fi le : robot.c (pre release version 1.0) */
/* programers : Joaquim Ferreira and Numo Gomes */
/* date : 1995, July 21 s t

/* Global declarat ions and ini t ia l isat ions */
int p id1,pid2,pid3,pid4,
 Left , Right ,Center , FloorRight , FloorLeft ,Floor0,Floor1,
 FloorMissing=0,
 ObjectRight,ObjectLeft ,
 ObjectFront,NoObject=1,
 SUM_M=500,SUM_T=500,TS=100,T0=95,T1=105,T2=95,T3=115,T4=105,
 s_r ight ,s_lef t ,s_front ,
 d igi ta l_in ,
 bumper_front ,
 bumper_right ,
 bumper_left ,
 bumper_back,
 hungry,overload,
 docking_area,
 motor_r ight=1,
 motor_left=0;

f loat wtime=0.2,spin_time=0.25;

/* Self cal ibrat ion module */
void get_thresholds()
{
if (!(FloorMissing) && (NoObject)) /* I’m running cool */
 if ((SUM_M > SUM_T+15) | | (SUM_M < SUM_T-15)) /* Ops! Suddenly there is too much
*/
 { /* or not enougth l ight * /
 poke(0x4000,0xff);
 s leep(wtime);
 T0=analog(0); /* These wil l become the new thresholds for */
 T1=analog(1); /* obstacles and floor detection */
 T2=analog(2);
 T3=analog(3);
 T4=analog(4);
 poke(0x4000,0x00);
 SUM_T=T0+T1+T2+T3+T4; /* This wil l become the new perception of environmental
*/

/* br ightness */
 }
}

void sensor_module()
{
 while(1)
 {
 /* Avoidance readings */
 poke(0x4000,0xff); /* Turn on the LED’s */
 s leep(wtime); /* Wait for the t ransients to die */
 Floor0=analog(0); /* Take the readings */
 Right=analog(1);

 Center=analog(2);
 Left=analog(3);
 Floor1=analog(4);

 /* Beacon searching readings */
 s_front=analog(5);
 s_r ight=analog(6) ;
 s_left =analog(7);

 poke(0x4000,0x00); /* Turn off the LED’s */

 /* Bump readings */
 digi tal_in=peek(0x5000); /* Take the readings (negative logic) */
 d igi ta l_in = ~digi ta l_in; /* Invert the readings and go to posi t ive logic */
 bumper_front = digi tal_in & 0x01; /* Mask the individual bump switches */
 bumper_right = digi ta l_in & 0x02;
 bumper_left = digi tal_in & 0x04;
 bumper_back = digi tal_in & 0x08;

 /* Hungry and overload readings */
 overload = digi tal_in & 0x10;
 hungry = digi ta l_in & 0x20;
 docking_area=(s_front >= 130) && hungry; /* If the beacon is bl inding me and */

/* I’m hungry then I reach the docking area */
 SUM_M=Floor0+Floor1+Right+Left+Center; /* How much I see from every where?

 */
 ObjectRight=(Right > T1); /* Is there an obstacle by my.. .*/
 ObjectLeft=(Left > T3);
 ObjectFront=(Center > T2);
 FloorRight=(Floor0 > T0); /* Is there floor by my.. . */
 FloorLeft=(Floor1 > T4);

 FloorMissing=(!(FloorRight) | | ! (FloorLeft)) ;
 NoObject=(!(ObjectRight) && !(ObjectLeft) && !(ObjectFront));
 }
}

void avoid_obstacles()
{
 while(1)
 {
 i f (bumper_front)
 {
 motor(motor_right , -75.0);
 motor(motor_left , -75.0);
 s leep(spin_time);
 motor(motor_left ,75.0);
 s leep(spin_time);
 }
 else if (bumper_left)
 {
 motor(motor_left , -40.0);
 motor(motor_right , -40.0);
 s leep(spin_time);
 motor(motor_right ,75.0);
 s leep(spin_time);
 }
 e lse i f (bumper_right)

 {
 motor(motor_left , -40.0);
 motor(motor_right , -40.0);
 s leep(spin_time);
 motor(motor_left ,75.0);
 s leep(spin_time);
 }
 else if (bumper_back)
 {
 motor(motor_right ,75.0);
 motor(motor_left ,75.0);
 s leep(spin_time);
 motor(motor_left , -75.0);
 s leep(spin_time);
 }
 else if (!(FloorRight) && (FloorLeft))
 {
 motor(motor_right , -75.0);
 motor(motor_left ,0.0);
 }
 else if ((FloorRight) && !(FloorLeft))
 {
 motor(motor_left , -75.0);
 motor(motor_right ,0 .0) ;
 }
 else if (!(FloorRight) && !(FloorLeft))
 {
 motor(motor_right , -75.0);
 motor(motor_left , -25.0);
 }
 else if((NoObject) && !(FloorMissing))
 {
 motor(motor_left ,75.0);
 motor(motor_right ,75.0);
 }

 else if ((ObjectFront) && !(FloorMissing))
 {
 motor(motor_right ,75.0);
 motor(motor_left , -75.0);
 s leep(spin_time);
 }
 else if ((ObjectRight) && !(ObjectLeft | | ObjectFront) && !(FloorMissing))
 {
 motor(motor_left ,75.0);
 motor(motor_right ,0 .0) ;
 }

 else if ((ObjectLeft) && (!(ObjectRight | | ObjectFront)) && !(FloorMissing))
 {
 motor(motor_left ,0.0);
 motor(motor_right ,75.0);
 }
}
}

void search_stat ion(void)
{
while(1)

{
if (!hungry) defer() ; /* If I’m not hungry then I wil l do something else */
if ((s_front > TS) && (!docking_area)) /* I found the beacon but I’m not in the docking
*/

/* area . Then. . . * /
{
 i f ((s_left > s_right) && (s_left >= s_front))
 {
 motor(motor_left , -20.0);
 motor(motor_right ,40.0);
 s leep(spin_time);
 }
 e lse i f ((s_left < s_right) && (s_right >= s_front))
 {
 motor(motor_left ,40.0);
 motor(motor_right , -20.0);
 s leep(spin_time);
 }
 else if ((s_front > s_right) && (s_front > s_left))
 {
 motor(motor_left ,40.0);
 motor(motor_right ,40.0);
 }
}
}
}

/* This is the fan control module! */
void fan_control(void)
{
while(1)
{
 i f (overload | | hungry) poke(0x1000,0); /* Too simple to comment! */
 else poke(0x1000,0xff);
}
}

void main()
{
pid1=start_process(sensor_module()) ;
pid4=start_process(fan_control()) ;
pid2=start_process(avoid_obstacles()) ;
pid3=start_process(search_stat ion() ,200);

while(1)
{
if (docking_area) /* I was looking for the maintenance s tat ion */

/* because I was hungry or overloaded an I */
/* have just found i t . Then. . . * /

{
 motor(motor_right ,0 .0) ; /* Stop the motors . . . */
 motor(motor_left ,0.0);
 ki l l_process(pid4); /* . . .and have some peaceful rest!! */
 ki l l_process(pid1);
 ki l l_process(pid2);
 ki l l_process(pid3);
}
}
}

Appendix C - Photographs

Photograph 1

Photograph 2

 -

Photograph 3

Photograph 4

Photograph 5

Photograph 6

