
University de Aveiro

Electronics and Telecommunications Department

MOBILE ROBOTICS

“WHISPER - A mobile robot platform for
surveillance purposes”

Students: António Branco & Pedro Kulzer
Course: Mobile Robotics
Professors:Keith Doty & Scott Jantz

21rd July, 1995

2

CONTENTS

ABSTRACT...4

EXECUTIVE SUMMARY ...5

INTRODUCTION...7

INTEGRATED SYSTEM...8

MOBILE PLATFORM...9

SENSORS..10

INFRARED SHARP SENSORS..10

BUMPER CONTACT SWITCHES...10

IR PHOTOTRANSISTOR - SPINNING RETINA...11

First Approach - IR synchronism ..11

Electronics ...12

Second Approach (actually used)- Shaft Encoder synchronism ...13

Interrupt Driven Sampling Subroutines...14

Image Sampling Process...15

ACTUATION ..16

BEHAVIORS ..17

ADAPTIVE THRESHOLD...17

OBSTACLE AVOIDANCE BEHAVIOR..20

COLLISION BUMPER...22

FOLLOW LIGHT ...23

FOLLOW MOVEMENT...24

USING SEVERAL BEHAVIORS - PROCESS STRUCTURE...26

EXPERIMENTAL LAYOUT AND RESULTS ...27

AVOID OBSTACLE BEHAVIOUR EXPERIMENTAL RESULTS ..27

FOLLOW LIGHT BEHAVIOUR EXPERIMENTAL RESULTS...28

FOLLOW MOVEMENT BEHAVIOUR EXPERIMENTAL RESULTS ..28

CONCLUSIONS ...29

3

DOCUMENTATION ..30

APPENDIX A - MISCELLANEOUS ...31

RANDOM FUNCTION ..31

MATH FUNCTIONS..31

APPENDICE B - SOURCE CODE...32

OBSTACLE.C MODULE ...32

FLOW.ASM MODULE ...35

FOLLOW.C MODULE...37

FLOW.C MODULE...42

AUTHORS ..48

4

ABSTRACT

The robot discussed in this report is intended to be used as a surveillance robot and programmed to

avoid obstacles, follow light or follow movement using basic optic flow concepts. An adaptive obstacle

avoidance behavior, allows the robot to adapt to new environments, as well as enabling it to explore into

large or small rooms. It is not intended that the robot covers the entire room when passing through it; it is

only needed that it can wander about the rooms freely and in a coarse manner.

Using both the avoidance and follow light behavior, allows the robot to move into brighter areas,

enabling it to detect rooms with light. This presents some problems concerning unforeseen reflections.

Using both the avoidance and follow movement behavior, allows the robot to move into non static

bright areas, enabling it to detect dynamic bright areas where a possible intruder may be present.

5

EXECUTIVE SUMMARY

The robot described in this report, intends to serve as a surveillance robot only. Its main behaviors

are following light, following movement and avoiding obstacles. The robot uses IR sensors to avoid

obstacles, together with an adaptive algorithm for adjusting each sensor’s threshold. There are three

contact switches (bumpers) at the front of the robot, which are used for collision detection. This happens

due to blind spots or to behavioral responses relative to the adaptive behavioral algorithm approach which

allows the robot to get bolder when it finds itself almost trapped. It’s intended that the robot, wanders

around the rooms and adapts to new environments, because doing so it can monitor any movement or light

source and sound the alarm for an intruder. We do not want at all to have the robot covering the entire

room or anything like it, we just want it to “search intruders from the distance”, efficiently. The light

sensing is done by using a spinning motor’s retina, which gives a light image of the surrounding

environment. The movement detection is done using very basic optic flow concepts like detecting simple

brightness changes above a certain threshold, by comparing two consecutive images from the robot’s

image retina. The obstacle avoidance behavior, does well when changing from one environment to a

different one, for example when going from a highly reflective environment to a less reflective one or the

opposite, or when going through doors and narrow passages in general. Nevertheless the robot can get

“claustrophobic”, when it is put in a very confined environment, but because this is a particular

environment, not likely to happen in a surveillance patrol, we find this emergent functionality

understandable. All that would happen is that the robot gets quite confused and keeps bumping on the

walls, eventually getting out of the situation after some time. Nevertheless, it is extremely difficult get this

robot trapped because its adaptive threshold tends to keep it away from narrow passages.

It was essential to add noise to the decision of the direction to turn to, when the robot had an

obstacle right in front of it, because without it the robot sometimes got locked in closed paths. It was also

essential to maintain this direction until the situation changes, or else it would not ever decide where to

turn to.

We accomplished smooth changes in the motors speed, using dynamics (attractors) for desired

speed for both motors, as well as adding up the contributions of the several sensors instead of using a

winner-takes-all method. Furthermore, this addition depends on the relative strengths of each sensor’s

contribution. For the threshold adaptation we used a similar dynamics as well.

Using both the avoidance and follow light behavior, allows the robot to move into brighter areas,

enabling to detect rooms with light. This way the robot can go to areas where there may be intruders, fire

or forgotten lights on. The robot functions well with these two behaviors, going from darker areas to

brighter ones and keeping itself there. Nevertheless, we had to put ourselves in the robot’s place, because

6

it sees unforeseen reflections on walls and many light sources, which may lead us to think that the robot is

not behaving well, when in fact it’s only behaving according to its own sensing. We tend to see what is on

our level of vision and forget these things quite easily.

 Using both the avoidance and follow movement behavior, allows the robot to move into non

static bright areas, enabling it to detect dynamic bright areas, for example enabling the robot to detect

moving shadows, moving light sources, opening of doors, etc. To combine these two behaviors, we had to

use them one at a time. This had to be done because the optic flow algorithm didn’t compensate for the

robot’s movement, so we had to stop the robot in intervals of 5 seconds (disabling the avoidance

behavior), in order to compute a correct optic flow and acting accordingly.

As for the report itself, we describe in a very superficial way all the details that are not very

important for the project itself (e.g. microcontroller hardware and setup, wiring for Sharp sensors, etc.)

since it would be redundant, whereas we give a detailed description about the extra work and circuits made

to get the robot to do what it was supposed to.

7

INTRODUCTION

For this surveillance robot, the main purpose is only to wander around the corridors, in order to

detect intruders, using a light or movement following behavior. It is not desired to have the robot

following walls too closely or having all the space covered, since the main purpose is just to “look around”

for motion or light sources, keeping as far as possible from all walls. The robot keeps itself faraway from

walls by having the capability of adapting its behaviors, in order to be able to enter and explore narrow

spaces and to adapt easily to differently reflective environments.

Earlier work done with Dr. Gregor Schöner [1], in the field of target acquisition and obstacle

avoidance through optic flow of the retina image, inspired us to use some of the basic dynamic equations

techniques for the motor speed control and adaptive threshold process. The adaptive threshold was also

strongly inspired through another work in neural networks [2], where we studied the mechanisms and

dynamics of single neuron learning and habituation.

In surveillance robots, we expect to get an overall behavior which permits an efficient coverage and

exploration of the entire space where it should wander about, without the problems of getting indefinitely

stuck in particular confusing situations that may occur seldomly.

8

INTEGRATED SYSTEM

Fig. 1 - Block diagram of the complete system. The
batteries feeds the power supply electronics which in turn will give
a stabilized voltage to all the microcontroller, actuator and sensor
circuitry. Only the motors are directly fed by the batteries.

The IR emitters emit light which is reflected by the surrounding obstacle surfaces. The amount of

reflection is received by the IR receivers which communicate it to the microcontroller. With this

information, the program can decide what behavior to acquire in order to avoid those obstacles.

In case of collisions against the obstacles due to blind spots or specific behavioral responses, the

bumpers transmit this information to the microcontroller which will take the appropriate actions.

There is also a spinning retina, i.e. a motor driven mirror that reflects all directions of an horizontal

plane into a phototransistor. This way, we get a linear representation of the surrounding light levels on that

plane. This is also used to calculate a very simple optic flow. The corresponding DC motor is controlled by

external electronics in a simple fashion.

The microcontroller actuates the motor drivers which in turn will drive the appropriate power to

the motors.

The heart of the whole system is the MC68HC11 microcontroller platform. This controller has an

external 32Kbyte SRAM mapped into the upper half memory area. The robot is powered by 8 AA NiCd

batteries. All the memory, drivers, decoders, etc. circuits were done using classic schematics already

available. This is the simpler part of the whole project and does not require further comments. For more

details, please refer to the 68HC11 data manuals and technical references [3], [4], aswell the 6.270 robot

builder’s guide [5].

9

MOBILE PLATFORM

Fig. 2 - Upper view of the wooden mobile platform of the robot. On the left, we can clearly see the two
wheels and the caster wheel which support the platform. The shape is round for perfect adaptation to the overall
wheels motion and to avoid getting stuck on a sharp edge. This also allows the robot to spin over itself without
getting stuck on nearby obstacles. The wheels are inside the outer circle of the structure, to avoid getting stuck by the
outstanding wheels. The batteries are put on the rear to exert weight on the caster wheel, leaving at the same time a
free front part for sensor applications. The microcontroller board and all the additional electronics are supported by
four screws in the center of the platform. All the normal components were used: battery holders, board distance
screws, hot glue, etc.

10

SENSORS

The following table shows all the available sensors and their properties. We have installed three IR

sensors at the front of the robot (at the left, center and right) to provide proximity detection so that the

robot can avoid obstacles. We have also installed three contact switches (bumpers) on the front which

enable the robot to successful recover from collisions due to blind spots or specific behavioral responses

(like boldness increase). There is also a spinning mirror which allows the robot to take sampled retinal

images from all the way round itself, for optic flow and light source detection purposes.

 Sensor Type Function Location Count
Infrared (IR) Sharp
sensors

Proximity detection
of obstacles

Front 3

Bumper Contact
Switches

Collision Detection
against obstacles

Front 3

IR Photo Transistor Optic Flow Front 1 (with a motorized
spinning mirror)

Tab. 1 - Sensor suite.

INFRARED SHARP SENSORS

There are three IR sensors (left, center and right). These sensors are completed by corresponding

IR LED’s which are mounted on top of them to illuminate the front of the robot. These 3 IR LED’s, each

one in the same direction as the corresponding sensor, allow the IR sensors to receive their reflected light

due to obstacles in the different directions.

BUMPER CONTACT SWITCHES

Fig. 3 - This is the mechanical layout of the bumpers. On the
front of the platform, we have a strip of aluminum foil which is
connected to the common electrical ground. On the inside part, we
have three separate aluminum foils which connect each to an analog
input of the 68HC11. All these three bumper switches have pull/up
resistors which allow two levels of voltage: 5V (logic 1) if no bump
and 0V (logic 0) if a bump occurs.

These bumper contacts are intended to aid the obstacle

avoidance algorithm in the case where one or more thresholds

become too large, which causes the robot to collide against

obstacles.

11

IR PHOTOTRANSISTOR - SPINNING RETINA

This is an IR phototransistor which receives reflected light from a fixed speed rotating mirror. This

mirror reflects the light coming from all directions within an horizontal plane at the robot’s level of vision,

which allows the robot to record a retinal image just like a linear 360º CCD array camera.

FIRST APPROACH - IR SYNCHRONISM

Fig. 4 - Here we can see the details of the linear CCD-like
image capturing retina mechanism. The motor spins with a feedback
controlled fixed velocity value, which allows then to sample the
mirror reflected light onto the phototransistor by means of software.
The IR emitter serves for giving a reference high-intensity light spot
for the sampling program. Whenever the mirror reflects the IR emitter
light directly into the phototransistor, a saturating output voltage is
obtained, indicating the corresponding “zero-angle” reference passing
point. From this point forth, the sampling program can start to record
light values at even spaced angular displacements. Note that the
mirror is two-sided, i.e. the resulting retinal image pixels will be
“rotating” at twice the speed of that of the motor. Each half-rotation
will originate one synchronism pulse and will trigger one complete
retinal sampling process. This approach didn’t show up to be a very
good choice, because the synchronism peak spread over the retina
samples inducing false peaks, and creating a distorted images.
Nevertheless, it was a good starting point to test the implemented
sampling interrupt routines.

The motor must have a constant velocity below the maximum allowable value of the CPU’s

processing speed, which will be actively controlled by the appropriate electronics. We must also have some

circuitry to extract the synchronism impulses and to generate corresponding sample instant pulses. The

electronics and the corresponding process and interrupts code needed for this part, is as follows:

12

ELECTRONICS

Fig. 5 - Block diagram of the spinning mirror
sensor’s associated electronic circuitry. This circuitry
intends to amplify the IR signal (with automatic gain
control to adapt the gain to different mean values of the
ambient light), extract the synchronism pulses and to
generate the multiple sample instant pulses between those
synchronism ones. This last job is well done by a simple
digital PLL. The negative voltage generator feeds the
amplifiers and the AGE control circuit.

Fig. 6 - This is the circuit that
corresponds to the diagram shown before.
The IR phototransistor feeds a simple
transcondutance amplifier (OA1) to allow
a very small input impedance (lower
sensitivity to external noise), which has a
big resistance value in parallel with a
FET transistor. This FET maintains a
smaller resistance value, in order to allow
an automatic gain control mechanism
which holds the output values in some
non-saturating range. This enhanced the
total dynamic range of the IR light levels
on the spinning mirror. The AGE control
voltage is obtained at the output of a
voltage amplifier (OA2 - an increase on
this voltage will permit the FET to
conduct more, hence have a smaller
resistance, which leads to a smaller
transcondutance gain and the output will
be lower, and vice-versa). This output is

the analog voltage applied to one of the ADC’s of the 68HC11. Since this voltage contains the synchronism pulses,
we extract those pulses by comparing (OA3) the analog output with a sufficiently big voltage reference. These pulses
are going to trigger the non-maskable interrupt XIRQ each time the mirror sweeps 180o around (360o of the image).
A PLL will multiply the frequency of these pulses by 40, which will give the interruption rate at the IRQ of the
68HC11, where a software routine samples an ADC value at each one. Hence, we will have 40 samples around 360o

of the retinal image which showed to be sufficient for our purposes. Furthermore, Schmitt-Trigger comparator C1
“compares” the incoming frame pulses (one at each 360o retinal image frame) with its own RC delay (120K*1µ ⇒
100ms) and gives correctional pulses whenever the mirror is spinning slower. It is easy to see that these very narrow
correctional pulses will always be present since this circuit forms a closed loop with the motor and those correctional
pulses will be the constant “error signal”. A heavy low-pass filter feeds a power voltage follower which in turn feeds
the motor. Experimental results showed that this circuit holds the motor speed at a constant and very stable value.

Fig. 7 - This simple circuit generates a -10V (negative) voltage
of the 10V battery pack voltage. It is intended to feed the operational
amplifiers and the AGE circuit shown in the previous figure. It can only
draw a very small current which showed to be more than sufficient to
get at least about 7-8V to the circuits which load this circuit.

13

Fig. 8 - Here we can observe the waveforms present at the points of the main circuitry above. (A)-Ambient
light signal. (B)-AGE FET gate voltage. (C) & (D)-synchronism pulses. (E)-Pulse width comparison Schmitt-Trigger
input. (F)-Correctional motor pulses (“error signal”). (G)-Motor drive voltage. (H)-Sample instants pulses.

SECOND APPROACH (ACTUALLY USED)- SHAFT ENCODER SYNCHRONISM

Fig. 9 - In this second approach, a shaft encoder was used to
obtain the synchronism pulses independently from the ambient light
retinal image. In other words, the synchronism circuit is independent
of the acquisition one, enabling a good image of the surrounding
environment without any interference from the other circuit. A quick
view at the oscilloscope signal showed that the retinal image was
much different than the one obtained with the first approach. Now, the
signal was clean of false peaks and noise and showed a nice and
sensitive relation to the outside light levels and directions. This was
the final and chosen approach. Further experimental results
(behavioral responses) showed that this approach gave much better
and expected responses of the robot, whereas there were major
problems with this aspect. Another problem that the first approach
had, was that the synchronism extraction circuit would fail at too high
levels of ambient light aswell for strong peaks of concentrated light.
This was because the AGE either tries to compensate the high level of
ambient light, therefore lowering the synchronism IR below threshold
levels, or tries to enhance low ambient light level, therefore saturating
at concentrated light beams.

Fig. 10 - To use the new shaft-encoder synchronism source, we must
cut the previous wire that fed the synchronism extracting circuit and attach a
wire to the shaft-encoder IR photo-transistor. This way, a very small change
in the circuitry allows us to finally use a virtually failure-free synchronism
mechanism. The only drawback of this, is the fact that we have now an
increased mechanical complexity at the mirror level, but it sure was worth
the effort.

14

INTERRUPT DRIVEN SAMPLING SUBROUTINES

Now we are going to present and explain the code associated with the synchronizing and sampling

processes which achieve the goal of recording an array of samples of the retinal image. The code was

100% written in assembly language to achieve maximum speed of execution and minimize interference.

Cod. 1 - This is the part of constant definitions. These constants are
needed to make the following assembly code more readable. PORT is the port
number we want to read samples from. ADR1 is the address where we are going
to read the ADC sample values from. ADCTL is an ADC control register to
enable and program it. OPTION is the option register of the 68HC11. INDEX is
where the count of read samples is stored. ARRAY is where the maximum 40
retinal samples are stored. IRQ_VECT and XIRQ_VECT are the addresses of
the vector table of the 68HC11 in the expanded mode.

Cod. 2 - This is the initialize subroutine, it first disables further IRQ until
the RTI, using the instruction SEI. It updates the interrupt vector table with a null
IRQ and XIRQ subroutine which consist only of an RTI. Finally it enables XIRQ
interrupts clearing the X bit to zero in the condition code register, with a TAP
instruction.

Cod. 3 - This is the IRQ subroutine,
which is responsible for sampling the ADC
values. It first disables new IRQ until the
RTI using the SEI instruction. It then checks
if the number of samples are greater than 40.
If the index is less than 39 it reads the ADC
only after the result is valid. Finally it stores
the result in the image array.

*A/D Converter Addresses
PORT EQU $6
ADR1 EQU $1031
ADCTL EQU $1030
OPTION EQU $1039

*Array Addresses
INDEX EQU $A800
ARRAY EQU $A801

*Interrupt vectors
IRQ_VECT EQU $FFF2
XIRQ_VECT EQU $FFF4

ORG $9000

IRQ_INTR SEI
LDD #NULL_IRQ
STD IRQ_VECT
LDD #NULL_XIRQ
STD XIRQ_VECT
LDAA #$10
TAP

NULL_IRQ RTI

 ORG $9800

IRQ_INTR SEI Disable maskable interrupts
 LDAA INDEX If INDEX>39 then exit
 LDAB #39
 CBA
 BGT NULL_IRQ

*Get analog from port 6 and store in acumulator A
 LDAA #$80 enable ADC converter in OPTION
 STAA OPTION
 LDAA #PORT Load ADC PORT number
 STAA ADCTL Store PORT in A/D Control/Status register

READADCTL LDAA ADCTL Read ADCTL
 ANDA #128
 BEQ READADCTL Test if result Valid
 LDAA ADR1 Get ADC result

*Get Array Index and store in B, final address in X
 LDX #ARRAY X=ARRAY
 LDAB INDEX B=(INDEX)
 ABX X=X+B
 STAA 0,X (X)=A

 INC INDEX Increment (INDEX)
NULL_IRQ RTI

15

Cod. 4 - This is the XIRQ
subroutine, which is responsible for starting
and ending the sampling of the ADC. It starts
sampling after the first synchronism signal
induces a call to the XIRQ subroutine
($A000), it clears the index and updates the
vector table with the address for the IRQ
sampling subroutine. In other words, it
enables the IRQ interrupt. If IRQ subroutine
was already enabled, it stops this sampling
interrupt IRQ by updating the vector table
with the null subroutine for the IRQ and
XIRQ, which again consist only of the
instruction RTI. To start another sampling,

one must update the vector table with the address for the XIRQ subroutine from a outside process (this is
accomplished by the retina sensing process which runs in IC and will be further shown in the next section).

IMAGE SAMPLING PROCESS

Cod. 5 - First, all processes except this
one are killed to avoid highly undesirable
interruptions of the interrupt routines which
sample the retina image one complete mirror
turn (180o) each time. After a whole turn of the
motorized mirror (disable IC command-line
process by means of sleeping for 200ms), the
retinal image is normalized in length (if the
retinal image has less than 40 samples due to
some error of the PLL, the retinal image is
stretched to 40 samples where the holes are
filled with neighboring sample values) and
transferred to an array called retina. At last, all
processes are restarted in the same order as the
initial start (this particular order will be further
explained later). Just after 800ms will this
process sample the retina again, to allow motion
detection with optic flow. Note that the whole
interruption process is triggered by a pokeword
which changes the null XIRQ interrupt
subroutine to the real one. At the end, this
process waits for some time before starting with
the next sampling turn, to get different retinal
images for optic flow processing.

 ORG $A000

XIRQ_INTR LDD IRQ_VECT Is IRQ already enabled?
 CPD #IRQ_INTR
 BEQ DISAB_INTR If yes, disable IRQ and XIRQ
 LDAA #0 If no, enable IRQ and reset INDEX=0
 STAA INDEX
 LDD #IRQ_INTR
 STD IRQ_VECT
 RTI
DISAB_INTR LDD #NULL_IRQ Disable IRQ and XIRQ
 STD IRQ_VECT
 LDD #NULL_XIRQ
 STD XIRQ_VECT
NULL_XIRQ RTI

void RetinaSense()
{
 int I,Count;
 float Slope;

 while(1)
 {
 kill_process(PIDs[0]); Kill all killable processes
 kill_process(PIDs[1]);
 kill_process(PIDs[2]);
 kill_process(PIDs[3]);
 kill_process(PIDs[4]);
 pokeword(0xFFF4,0xA000); Enable XIRQ main interrupt
 msleep(250L); Wait sampling to complete
 Count=peek(0xA800); Get actual samples read
 Slope=(float)Count/40.0; Normalization line
 for (I=0;I<40;I++) Normalize samples length to 40
 Retina[I]=peek(0xA801+Floor(Slope*(float)I));
 PIDs[0]=start_process(NosesSense()); Restart processes
 PIDs[1]=start_process(BumpersSense());
 PIDs[2]=start_process(AvoidObstacles(),50);
 PIDs[3]=start_process(FollowLight(),50);
 PIDs[4]=start_process(MotorActivation(),50);
 Wait(500); Wait some time until next sampling turn
 defer();
 };
}

16

ACTUATION

There is only one type of actuation, namely the motor speeds. There are two bi-directional DC

motor drivers which feed the desired power into the motors independently according to the commands

given by the microcontroller. Each motor has a speed range of -100.0% to 100.0%, where these values

correspond to the maximum backward and forward speeds yielded by the motors. The power dosage

mechanism is achieved by a classic PWM modulation technique usually used for DC motor drives.

Grf. 1 - General form of the dynamics used for controlling each motor’s
speed. We set the attractor to have the desired final speed for the motor and the
dynamics forces slowly the real speed to achieve that value. This guarantees
some controlled smoothness in motion changes.

The corresponding equation that yields this dynamic behavior is the following:

dV
dt

V V Vdesired=
⋅

= − Eq. 1

Grf. 2 - This is the resulting temporal response for the motor’s speed,
due to the dynamics shown previously. The speed approaches the desired
attractor value describing an exponential curve.

17

This type of dynamics will be further emphasized when we reach the adaptive threshold mechanism

yet to be described, where we also derive the programmable way of doing these things.

Cod. 6 - This process is the last one of the process
order of execution, as it will be further explained later. The
global variables suffixed by OA come from the Obstacle
Avoidance process whereas the LF ones come from the Light
Following process (or the alternative motion following one). As
it will be emphasized in the next section, only one of the above
behaviors are given to the motors. If there is no obstacle
avoidance currently happening (DV_Left_OA=0.0 and
DV_Right_OA=0.0), then the motors receive speed changes
produced by the light following behavior. Otherwise, only the
obstacle avoidance takes action. Since the robot is only going
to wander about large spaces for a high percentage of the time,
it is expected that the light following or motion following
behaviors have a sufficient share of time to act. Mixing all
together didn’t show up to work satisfactorily.

BEHAVIORS

ADAPTIVE THRESHOLD

To achieve a more efficient operation of these sensors, we introduced an automatic calibration

mechanism, included in the program code which retrieves the sensed values. This corrects different

illumination conditions as well eventual device tolerances between sensors. The most simple mechanism

(the one we implemented) consists in always driving each sensor’s threshold to the mean values of the

corresponding sensor. So we will have 3 thresholds, one for each Sharp sensor. This enables the

mechanism to adapt each threshold to its corresponding sensor. The adaptation mechanism consists of a

very simple dynamics which can be effectively seen as a weighted mean.

Grf. 3 - This is the dynamics used for the adaptive threshold
calculation, being of the same form as the one used for motor speeds. The
desired value for the final threshold is always the nose’s received value.

void MotorActivation()
{
 while (1)
 {
 if ((DV_Left_OA!=0.0) || (DV_Right_OA!=0.0))
 {
 V_Left=V_Left+(0.1*DV_Left_OA);
 V_Right=V_Right+(0.1*DV_Right_OA);
 }
 else
 {
 V_Left=V_Left+(0.1*DV_Left_LF);
 V_Right=V_Right+(0.1*DV_Right_LF);
 };
 motor(0,V_Left);
 motor(1,V_Right);
 defer();
 };
}

18

Grf. 4 - This is the resulting temporal response for a particular
threshold’s value, due to the dynamics shown previously. This value
approaches the desired attractor value describing an exponential curve.

This dynamics can be programmed with a simple weighted average, which can be shown as

follows. We want the following dynamics:

TH
dTH
dt

Nose TH
⋅

= = − Eq. 2

To achieve this, we must make approximations to get an incremental programmable solution to the

differential equation:

dTH TH THnew old≈ − Eq. 3

()TH TH Nose TH dtnew old old− ≈ − Eq. 4

()TH dt TH dt Nosenew old≈ − ⋅ + ⋅1 Eq. 5

Admitting that dt is a finite time increment (say 0.01), we’ll have the following approximation:

TH TH Nose= +0 99 0 01. . Eq. 6

This is a weighted average of the previous threshold and the present sensor value, whose final value leads

obviously to the sensor. The largest the value of the chosen time step, the fastest the threshold will be

attracted towards its final value. The value of 0.015 showed to be a good experimental choice, which

balances somehow the trade-off between fast adaptation (for fast get-through among crowding obstacles)

and slow adaptation (for not forgetting so fast the present obstacle density).

The code needed for the periodic record of the sensors’ values and for the threshold adaptation

mechanism, is implemented as a process in IC1:

1 Interactive C

19

Cod. 7 - The array Noses receives the
current Sharp nose sensors’ values while the
corresponding threshold array positions are updated
accordingly by means of an average (97% last
value + 3% new value). Note the last defer() call
which immediately passes control to the next
process without any further time consumption and
loop repetition.

Fig. 11 - On the left side, we observe the theoretic roughly
approximated threshold values’ adaptations for an example robot path.
As long as the robot remains along a tunnel, the lateral thresholds are
very high and the robot drives ahead. The center threshold is very low
since this sensor does not see anything in front of it yet. As soon as the
robot approaches the obstacle in the middle of the room and goes into it,
the left threshold remains high but the right one begins to lower. Since
the right threshold lowered, the robot sees the rights walls sooner and
avoids them adequately soon enough. This is the important feature we
talked about earlier, provided by this adaptation scheme: it allows the
robot to wander efficiently through a room without having to get

unnecessary close to walls which would increase the path length and time consumption (at least its better than using a
fixed threshold). On the other hand, it allows the robot to enter small openings as well.

Although this is not a strictly a behavior, it is a useful mechanism that actively influences the

obstacle avoidance behavior. When the robot finds itself free of obstacles, or if it has enough space to

wander freely, the threshold will decrease to a minimum value. When this happens, the robot will stay far

away from walls, moving itself through the middle of the room. Remember that this is a surveillance robot,

with visual sensing mechanism, so it doesn’t need to cover all the space in the room, it just needs to have

overall view, in order to detect movement.

When a robot faces a narrowing space it will increase the threshold, in order to see less obstacles

and try to go through. For example, when passing through doors, after period of indecision, the robot will

pass through the middle.

If the robot finds itself too enclosed by obstacles, it will further try to go through them, by

increasing the threshold. If the robot is really trapped by obstacles, it will continue to increase the threshold

trying to find a way through the obstacles, eventually leading to a collision.

There is an independent threshold for each sensor direction, which equally independent behavioral

adaptation.

void NosesSense()
{ int I;
 while(1)
 {
 for (I=0;I<=2;I++)
 {
 Noses[I]=analog(I);
 Thresholds[I]=(0.97*Thresholds[I])+(0.03*(float)Noses[I]);
 }; defer();
 };
}

20

Fig. 12 - Illustration of the better
surveillance performance of the approach in A.
Here, we use the adaptive threshold where the
robot sees far walls and corrects its path
accordingly sooner. The path in B is the normally
taken one for the “myope” robot. The key to the
desired behavior is to let the robot always in the
most sensitive state possible in each moment,
desensitizing just when needed (this is
accomplished by the adaptive threshold).

OBSTACLE AVOIDANCE BEHAVIOR

We implemented a low level obstacle avoidance mechanism, which consists simply in inspecting

regularly, if the reflections due to distance in certain direction is above a threshold. The action taken

depends directly on the direction on which the obstacle proximity was detected.

The code was again implemented as an independent IC process:

21

Cod. 8 - Each direction contributes with a weight that depends on the relative strength of each direction’s
sensed reflections. The sum of these weighted and normalized contributions will set the correctional speed differences
for the motor speeds by means of global variables that are used by the motor actuation process.

void AvoidObstacles()
{
 while(1)
 {
 float DV_Left_L=0.0,DV_Left_R=0.0,DV_Left_C=0.0; Initialize all speed differences to zero
 float DV_Right_L=0.0,DV_Right_R=0.0,DV_Right_C=0.0;
 float Weight_L=0.0,Weight_C=0.0,Weight_R=0.0; Initialize all direction weghts to zero

 if ((float)Noses[0]>(Thresholds[0]+5.0)) /* If left nose senses major reflections, then set speed corrections */
 {
 DV_Left_L=0.0-V_Left;
 DV_Right_L=-40.0-V_Right;
 Weight_L=(float)Noses[0]-Thresholds[0];
 };
 if ((float)Noses[1]>(Thresholds[1]+5.0)) /* Centre nose */
 {
 if (TurningCenter==0) /* Turn with a constant random value */
 {
 Rand=Random();
 TurningCenter=1;
 };
 DV_Left_C=((40.0*Rand)-V_Left);
 DV_Right_C=((-40.0*Rand)-V_Right);
 Weight_C=(float)Noses[1]-Thresholds[1];
 }
 else
 TurningCenter=0;
 if ((float)Noses[2]>(Thresholds[2]+5.0)) /* Right nose */
 {
 DV_Left_R=-40.0-V_Left;
 DV_Right_R=0.0-V_Right;
 Weight_R=(float)Noses[2]-Thresholds[2];
 };

 /*Obstacle Avoidance*/
 if ((Weight_L+Weight_C+Weight_R)>0.0) /* If some obstacle sensed, then actuate on the global motor variables by
 means of an average of the different directions sensed*/
 {
 DV_Left_OA=((DV_Left_L*Weight_L)+(DV_Left_C*Weight_C)+(DV_Left_R*Weight_R))

/(Weight_L+Weight_C+Weight_R);
 DV_Right_OA=((DV_Right_L*Weight_L)+(DV_Right_C*Weight_C)+(DV_Right_R*Weight_R))
 /(Weight_L+Weight_C+Weight_R);
 }
 else /* If no obstacle, then signal it with zeroes */
 {
 DV_Left_OA=0.0;
 DV_Right_OA=0.0;
 };
 defer();
 };
}

22

COLLISION BUMPER

If the robot collides against an obstacle, due to blind spots or the attempt to pass through too

closely standing objects, it will sense the contact switches and it will behave in conformity.

It can be readily seen that, if the robot is being hassled too much (too many and too near

surrounding obstacles, which somehow trap the robot), it is obviously seeing obstacles very frequently,

which causes one or more thresholds to go beyond the maximum value where the obstacle avoidance

algorithm no longer reacts. This is seen as a “try to get out of here” at any cost, where the robot gets

closer and closer to obstacles, trying to find an opening where it may pass through, since it has nowhere

else to go. An extreme case happens exactly at the very moment when the algorithm no longer tells the

robot to stay away from obstacles, which causes the robot to collide with them (the robot can only know

how close it can get to an obstacle until it collides with it). At this point, the contact switches are actuated

and the algorithm receives this extra information. The action taken is very simple and straightforward: the

corresponding threshold(s) is(are) reduced by a fixed amount.

The code needed for the periodic inspection of the bumpers’ states and for the thresholds

corrections, is implemented as a process in IC:

Cod. 9 - As it can readily be seen, whenever there is a bump
against an obstacle, the corresponding threshold (on the same side as
the bump) will be immediately reduced somewhat below the
corresponding nose sensor’s value. This way, we guarantee that, for
almost all the cases, the robot will be instantly able to see the obstacle
it collided with due to a high threshold which leaded to a temporary
blindness. Note the last defer() call which immediately exits as in the
noses process shown earlier.

void BumpersSense()
{
 int I;

 while(1)
 {
 Bumpers[0]=analog(4);
 Bumpers[1]=analog(5);
 Bumpers[2]=analog(3);
 for (I=0;I<=2;I++)
 if (Bumpers[I]==0)
 Thresholds[I]=(float)Noses[I]-10.0;
 defer();
 };
}

23

Fig. 13 - This is what happens when the robot tries to get through an
opening that is too small. It gets closer and closer (“Lets see what the limits are”...)
until it eventually collides against the edge (“Ooops! Definitely too small for me”).
It’s never too much when we emphasize again the fact that the robot is not able to
know the limits on how close it can get to an obstacle without touching it. At the
robot’s level of “thinking”, it just sees reflections, hence it can never know if the
magnitude of those reflections is due to a close obstacle or due to a highly reflective
but far one. It is inevitable to allow the robot to try out its limits, if we want it to
pass certain situations like the one in this picture successfully.

FOLLOW LIGHT

We implemented a follow light behavior, which consist in turning the robot towards the direction

which exhibits the highest light value. In order to do so, we divided to robot’s retinal image in three parts,

front (≈30%), right (≈35%) and left side (≈35%). If the maximum light source is at the front, the robot

goes forward. If it is at the left it turns left and if it is at the right it turns right. To combine the avoid

obstacle and follow light behavior without getting interference’s which could seriously trash each one’s

task, we decided to give a higher priority to the avoid obstacle behavior. So, when there is an obstacle to

be avoided, the robot behaves first by just avoiding it and not sensing any light, and only when there is no

obstacle in sight the robot will behave to following the light.

We used an adaptive threshold for filtering light noise and the front blind spot, because in the

absence of light sources, the robot would turn into any small light. This way, the threshold keeps the robot

going in front into the light source for some time even if it does not see it (blind spot due to the IR photo-

transistor) before it starts to be attracted to other smaller lights.

Fig. 14 - Here we
can see the behavior of the
robot when it encounters an
obstacle and a light source.
It first surrounds the
obstacle, ignoring any light
sources. After it does not see
the obstacle any more, it
starts heading towards the
light source. In average,
when there are many
obstacles, we found out that
the robot achieves almost
always its goal (if it is not
too much trapped).

24

Cod. 10 - This function returns the maximum light direction as a
sample index in the retina array data structure.

Cod. 11 - This process first sets a default forward
speed for both motors. After that, if there is a light source at
either one of the left and right zones, the speed dynamics
force the robot to turn towards it. We had to make small
corrections to the sample index values which make the
frontiers between zones, due to the inaccurateness of the
centering of the mechanical mirror+shaft-encoder structure.

FOLLOW MOVEMENT

We implemented a follow movement behavior, which consist in turning the robot towards the

direction which exhibits the highest light changing value between to retinal images. In order to do so, we

divided to robot’s retinal image in three parts, front, right and left side. If the maximum light changing is at

the front the robot goes forward, if it is at the left it turns left, if it is at the right it turns right. To combine

the avoid obstacle and follow movement behavior we used them separate in time, disabling the avoid

obstacle and enabling the follow movement with a 5 seconds interval. So every 5 seconds the robot stops,

int GetMax()
{
 int I,MaxLight=0,LightDirection=0;

 for (I=0;I<40;I++)
 if (Retina[I]>MaxLight)
 {
 MaxLight=Retina[I];
 LightDirection=I;
 };
 return(LightDirection);
}

void FollowLight()
{
 while (1)
 {
 int LightDirection=GetMax();

 DV_Left_LF=80.0-V_Left;
 DV_Right_LF=80.0-V_Right;
 if ((LightDirection>=2) && (LightDirection<15))
 {
 DV_Left_LF=-10.0-V_Left;
 DV_Right_LF=30.0-V_Right;
 }
 else
 if (LightDirection<=28)
 {
 DV_Left_LF=30.0-V_Left;
 DV_Right_LF=-10.0-V_Right;
 };
 defer();
 }
}

25

computes the optic flow, turns into the highest movement direction and switches back to the avoid

obstacle behavior.

Fig. 15 - In this
example we can see how the
robot avoids obstacles in the
usual way, stops after some
time, rotates towards the
movement of a light source
and restarts the normal
obstacle avoidance. Again,
on the average, the robot will
successfully achieve the
motion’s location.

Cod. 12 - The only
changes necessary to the retina
sensing process is to stop the robot
each time 5 retinal image where
recorded and record two images for
optic flow computation.

void RetinaSense()
{
 int I;

 while(1)
 {
 kill_process(PIDs[0]);
 kill_process(PIDs[1]);
 kill_process(PIDs[2]);
 kill_process(PIDs[4]);
 if (ImageNumber>5)
 {
 ImageNumber=0;
 FlowReady=1;
 for (I=1;I<30;I++) /* Stop motors smoothly */
 {
 V_Left=V_Left+0.1*(0.0-V_Left);
 V_Right=V_Right+0.1*(0.0-V_Right);
 motor(0,V_Left);
 motor(1,V_Right);
 Wait(10);
 };
 motor(0,0.0);
 motor(1,0.0);
 Wait(200);
 GetRetina(LastRetina); /* Get first retinal image */
 Wait(800); /* Wait for a moment */
 GetRetina(Retina); /* Get second retinal image */
 OpticFlow(); /* Compute optic flow */
 FollowMovement(); /* Follow movement if any */
 }
 else
 ImageNumber++;
 PIDs[0]=start_process(NosesSense());
 PIDs[1]=start_process(BumpersSense());
 PIDs[2]=start_process(AvoidObstacles(),50);
 PIDs[4]=start_process(MotorActivation(),50);
 Wait(500);
 defer();
 };
}

26

Cod. 13 - The code for maximum flow detection is similar to the
one used to get the maximum light direction.

Cod. 14 - If the maximum motion is at the left, the robot
turns left by the exact amount necessary to get itself facing the
movement source. After some experiments, we found out the
value 73 that sets the necessary sleep time for the motors to
rotate the robot by the desired angle.

USING SEVERAL BEHAVIORS - PROCESS STRUCTURE

The whole robot program was implemented in IC (Interactive C v2.850) in a process structure.

Since IC possesses a multitasking kernel which executes processes with a Round-Robin priority strategy,

we must sequence the different processes in an adequate manner, as follows:

int GetMaxFlow()
{
 int I,MaxFlow=0,MotionDirection=0;

 for (I=0;I<40;I++)
 if (FlowRetina[I]>MaxFlow)
 {
 MaxFlow=FlowRetina[I];
 MotionDirection=I;
 };
 if (MaxFlow<20)
 return(0);
 MotionDirection+=5;
 if (MotionDirection>39)
 MotionDirection-=40;
 return(MotionDirection);
}
void FollowMovement()
{
 int MotionDirection;
 MotionDirection=GetMaxFlow();
 if(MotionDirection<20)
 {
 motor(0,-50.0);
 motor(1,50.0);
 msleep((long)MotionDirection*73L);
 }
 else
 {
 motor(0,50.0);
 motor(1,-50.0);
 msleep((40L-(long)MotionDirection)*73L);
 };
}

27

Fig. 16 - The first processes to start are the sensors’ ones. Then we have the
behaviors’ ones. The last process being started is the one which activates the motors.
Hence, the logic of this sequence is: sensors-behaviors-activations, which allows a correct
sequence of operation where the next group of processes depends always on the data
collected by the previous one, which are in this manner readily provided (actualized).

The code that firstly starts all processes is the following:

PIDs[0]=start_process(NosesSense());
PIDs[1]=start_process(BumpersSense());
PIDs[2]=start_process(AvoidObstacles(),50);
PIDs[3]=start_process(FollowLight());
PIDs[4]=start_process(MotorActivation());
start_process(RetinaSense());

EXPERIMENTAL LAYOUT AND RESULTS

AVOID OBSTACLE BEHAVIOUR EXPERIMENTAL RESULTS

If the robot is wandering through an highly reflective environment, and suddenly the environment

changes to a less reflective one, the robot will approximate more to the obstacles. This sometimes leads

robot to collide to dark objects, when in the highly reflective environment he was highly adapted to the

enclosing objects. The bumpers correct this kind of temporary “blindness”. This is what happens to human

sight, when for example, going into a dark room after being exposed to bright light.

When going through doors, the robot “sniffs” around for a while, adapting its thresholds to the new

situation, passing through it successfully.

When we tried leaving the robot in a small spaced environment, we observed many times that the

robot got stuck on cyclic path, which was highly undesired for a surveillance robot. To solve this we

introduced random noise in the choice of the direction to take when the center nose is activated. This in

turn, caused a initial problem of indecision, because the robot couldn’t decide between different successive

28

choices. We solved this simply by forcing it to take only one decision while the center nose was being

activated.

The robot doesn’t behave well in a maze or in a permanent too enclosing environment, since it

starts feeling trapped and starts trying to get out bumping into the walls, we call this the claustrophobia

emergent functionality.

FOLLOW LIGHT BEHAVIOUR EXPERIMENTAL RESULTS

If the robot is left in a dark room, the robot seeks light sources or reflections in walls, eventually

coming out from this room and going into the bright rooms. It’s interesting to notice that the avoid

obstacle keeps working well, when adding-up a new BEHAVIOUR with a lower priority, because the

robot keeps avoiding obstacles well and also being able to go into lighter areas.

The reflections in walls sometimes help the robot to go into the light spots, because they function

like signs into the light source.

In an experiment we did, we left the robot in a dark room on it’s own, relatively trapped among

obstacles (bathroom). After a while, the robot was able to get out and wander about into the corridor and

finally he found the window that was the main light source but in a completely different room.

We had to be very careful with the timing of the processes, because the processor was used to its

limits. We also had to stop all processes and give the needed time for the analog conversion and sampling

of the retinal image, which was impossible to do if the IRQ’s kept being interrupted by the multitasking

environment if the processes were still running at the same time.

FOLLOW MOVEMENT BEHAVIOUR EXPERIMENTAL RESULTS

When exposed to light movement, during the follow movement BEHAVIOUR the robot goes

towards it. Nevertheless we found that the retinal values varied to much even though there was no

apparent motion in the scenery, so it detects false movements. It behaves well when using an intense light

source moving, a moving shadow or a moving reflection of an intense light at sheet of paper or a wall.

We had to stop the robot when computing the optic flow, because we didn’t compensate the

robot’s movement in the calculus of the optic flow.

29

CONCLUSIONS

The adaptive bumper-aided obstacle avoidance behavior seemed to operate in a desired fashion.

The robot does get claustrophobia in confined spaces such as labyrinths, which is explained by the

behavioral tendency of the robot getting out or through these situations and as it can’t get out easily he

gets confused. This is not a fundamental problem, because the surveillance robot is not intended to work in

such environment.

The main goal we intended was to have the robot adapting to new environments easily, which

worked well, with the help from the bumpers for extreme cases.

The robot works well combining obstacle avoidance and follow light behaviors at the same time,

going from darker to brighter areas avoiding the obstacles

The follow movement behavior and obstacle avoidance one were implemented by stopping the

robot for computing the optic flow, switching from one behavior to the other, because we didn’t

implement a compensation for the robot’s movement when computing the optic flow. Although this is a

constraint, the robot follows movements of light or shadows quite effectively when the robot switched to

the follow movement behavior.

For future work it would be interesting to study the possibility of combining both avoiding obstacle

and follow movement, but without the switching between them.This would mean having a compensation

30

for the robot’s movement when computing the optic flow. Another solution would be some kind of an

adaptive algorithm for movement which would mean that the robot would adapt to the robot’s movement.

DOCUMENTATION

[1] A.Branco, R.Costa, P.Kulzer; “Robot obstacle avoidance using a behavioural approach”, Non-

linear dynamical systems course, University of Aveiro 1995.

[2] P.Kulzer, A.Branco; “Character recognition using neural networks”, Final project, University of

Aveiro 1994.

[3] “M68HC11 Reference Manual”, Motorola

[4] “M68HC11 E series Technical Data”, Motorola

[5] “The 6.270 Robot Builder’s Guide”, MIT

31

APPENDIX A - MISCELLANEOUS

RANDOM FUNCTION

For the random component added for the central sensor motor speeds selection, we implemented a

function returning a random value. This function can only take the following values: -1.0 and 1.0. It

consists of a simple inspection on an unused analog input which receives noise from the outside. Extracting

only the LSB, we get a 1 or a 0, which can be easely converted to the values specified above.

float Random()
{
 return(((float)(analog(7) & 0b00000001)*2.0)-1.0);
}

MATH FUNCTIONS

We needed two additional mathematical functions where their names say everything they do:

32

int Floor(float Value)
{
 return (int)Value;
}

int Round(float Value)
{
 if (Value - (float)Floor(Value)>=0.5)
 return (int)Value+1;
 else
 return (int)Value;
}

APPENDICE B - SOURCE CODE

OBSTACLE.C MODULE

This module was first developed as a standalone test for the obstacle avoidance mechanism. It does

not follow at 100% all the process and other directives written down in this report.

float Noses[3]; /* Left, Center and Right nose values */
float Bumpers[3]; /* Left, Center and Right bumper values */
float Thresholds[3]; /* Left, Center and Right threshold values */
float DV_Right, DV_Left; /* Left and Right speed corrections */
float V_Right,V_Left; /* Current Left and Right speed values */
float Rand; /* Random value for center turning */
int TurningCenter; /* Flag to hold random value when dynamics turning on center */

/* Random value function that returns either 1.0 or -1.0 */
float Random()
{
 return(((float)(analog(7) & 0b00000001)*2.0)-1.0);
}

33

/* Bumpers sensing process */
void BumpersSense()
{
 int I;

 while(1)
 {
 Bumpers[0]=(float)analog(4); /* Left bumper status */
 Bumpers[1]=(float)analog(5); /* Center bumper status */
 Bumpers[2]=(float)analog(3); /* Right bumper status */
 for (I=0;I<=2;I++)
 if (Bumpers[I]==0.0) /* If bumper activated, then lower corresponding direction’s threshold value */
 Thresholds[I]=Noses[I]-10.0;
 };
}

/* Noses sensing process */
void NosesSense()
{
 int I;

 while(1)
 for (I=0;I<=2;I++)
 {
 Noses[I]=(float)analog(I); /* Nose value */
 Thresholds[I]=(0.985*Thresholds[I])+(0.015*Noses[I]); /* Threshold adaptation through weighted average */
 };
}

/* Obstacle avoidance process */
void AvoidObstacles()
{
 float DV_Left_L,DV_Left_R,DV_Left_C; /* Left motor contributions from all three directions */
 float DV_Right_L,DV_Right_R,DV_Right_C; /* Right motor contributions from all three directions */
 float Weight_L,Weight_C,Weight_R; /* Intensity contributions from all three directions */

 while(1)
 {
 DV_Left_L=0.0; /* Initialize all contributions to zero */
 DV_Left_C=0.0;
 DV_Left_R=0.0;
 DV_Right_L=0.0;
 DV_Right_C=0.0;
 DV_Right_R=0.0;
 Weight_L=0.0;
 Weight_C=0.0;
 Weight_R=0.0;
 if (Noses[0]>(Thresholds[0]+5.0)) /* If left nose value higher than threshold, then activate avoidance */
 {
 DV_Left_L=0.0-V_Left; /* Left motor speed tends to zero */
 DV_Right_L=-40.0-V_Right; /* Right motor speed tends to 40% reverse */
 Weight_L=Noses[0]-Thresholds[0]; /* Contribution intensity */
 };
 if (Noses[1]>(Thresholds[1]+5.0)) /* If center nose value higher than threshold, then activate avoidance */
 {
 if (TurningCenter==0) /* If not already turning on center, then flag the starting of behavior */
 {
 Rand=Random(); /* Get random direction */
 TurningCenter=1;

34

 };
 DV_Left_C=((30.0*Rand)-V_Left); /* Left motor speed tends to 30% or -30% */
 DV_Right_C=((-30.0*Rand)-V_Right); /* Right motor speed tends to -30% or 30% */
 Weight_C=Noses[1]-Thresholds[1]; /* Contribution intensity */
 }
 else
 TurningCenter=0; /* Stopped center avoidance behavior, then clear flag */
 if (Noses[2]>(Thresholds[2]+5.0)) /* If right nose value higher than threshold, then activate avoidance */
 {
 DV_Left_R=-40.0-V_Left; /* Left motor speed tands to -40% */
 DV_Right_R=0.0-V_Right; /* Right motor speed tends to 0% */
 Weight_R=Noses[2]-Thresholds[2]; /* Contribution intensity */
 };
 if ((Weight_L+Weight_C+Weight_R)>0.0) /* If any avoidance activated at all, then compute speed correstions */
 {
DV_Left=((DV_Left_L*Weight_L)+(DV_Left_C*Weight_C)+(DV_Left_R*Weight_R))/(Weight_L+Weight_C+Weight_R);
DV_Right=((DV_Right_L*Weight_L)+(DV_Right_C*Weight_C)+(DV_Right_R*Weight_R))/(Weight_L+Weight_C+Weig
ht_R);
 }
 else
 {
 DV_Left=100.0-V_Left; /* No avoidance triggered, then go straight ahead */
 DV_Right=100.0-V_Right;
 };
 V_Left=V_Left+(0.2*DV_Left); /* Update motor speeds and actuate motors */
 V_Right=V_Right+(0.2*DV_Right);
 motor(0,V_Left);
 motor(1,V_Right);
 };
}

/* Initialization function */
void Initialize()
{
 V_Left=0.0; /* Initialize motor speeds to 0% */
 V_Right=0.0;
 DV_Left=0.0; /* Initialize motor speed corrections to zero */
 DV_Right=0.0;
 Thresholds[0]=100.0; /* Initialize threshold values to an empiric mean ambient value of 100.0 */
 Thresholds[1]=100.0;
 Thresholds[2]=100.0;
 TurningCenter=0; /* Reset center turning flag */
}

/* Main function */
void main()
{
 Initialize(); /* Initialize global variables */
 poke(0x4000,255); /* Turn noses IR LED’s on */
 start_process(NosesSense()); /* Start processes */
 start_process(BumpersSense());
 start_process(AvoidObstacles());
}

35

FLOW.ASM MODULE

This very important module allows a retinal image sampling cycle to take place, which is started

through software from IC as explained in the text.

*A/D Converter Addresses
PORT EQU $6 Analog Port Number
ADR1 EQU $1031 Result of Analog reading
ADCTL EQU $1030 A/D Control Status
OPTION EQU $1039 OPTION register

*Array Addresses
INDEX EQU $A800 Retina sample count
ARRAY EQU $A801 Retina samples

*Interrupt vectors
IRQ_VECT EQU $FFF2
XIRQ_VECT EQU $FFF4

*IRQ - Interrupt SubRotine initialization

36

 ORG $9000

 SEI Disable maskable interrupts
 LDD #NULL_IRQ Initialize interrupt vectors to NULL
 STD IRQ_VECT
 LDD #NULL_XIRQ
 STD XIRQ_VECT
 LDAA #$10 Enable XIRQ interrupt
 TAP
 RTI

*IRQ - Interrupt SubRotine to fill the array
*array index in INDEX
*array starts at ARRAY

 ORG $9800

IRQ_INTR SEI Disable maskable interrupts
 LDAA INDEX If INDEX>39 then exit
 LDAB #39
 CBA
 BGT NULL_IRQ

*Get analog from port 6 and store in acumulator A
 LDAA #$80 Enable ADC converter in OPTION
 STAA OPTION
 LDAA #PORT Load ADC PORT number
 STAA ADCTL Store PORT in A/D Control/Status register
READADCTL LDAA ADCTL Read ADCTL
 ANDA #128
 BEQ READADCTL Test if result Valid
 LDAA ADR1 Get ADC result

*Get Array Index and store in B, final address in X
 LDX #ARRAY X=ARRAY
 LDAB INDEX B=(INDEX)
 ABX X=X+B
 STAA 0,X (X)=A

37

 INC INDEX Increment (INDEX)
NULL_IRQ RTI

*XIRQ - Interrupt SubRotine to reset array index at $A000

 ORG $A000

XIRQ_INTR LDD IRQ_VECT Is IRQ already enabled?
 CPD #IRQ_INTR
 BEQ DISAB_INTR If yes, then disable IRQ and XIRQ
 LDAA #0 If no, then enable IRQ and reset INDEX=0
 STAA INDEX
 LDD #IRQ_INTR
 STD IRQ_VECT
 RTI
DISAB_INTR LDD #NULL_IRQ Disable IRQ and XIRQ
 STD IRQ_VECT
 LDD #NULL_XIRQ
 STD XIRQ_VECT
NULL_XIRQ RTI

FOLLOW.C MODULE

Now we are going to expose the code for the light following processes and functions, which obey

to the directives given in the text. There is an extra function called EnableLED() and which allows us to

turn on three LED’s on the robot: RED-Obstacle avoidance behavior currently taking over, YELLOW-

Light following behavior, GREEN-Going straight ahead. This debug information was very valuable

because it allowed us to observe what the robot was doing at every moment, even in those moments where

it showed some strange or confusing behaviors.

int Bumpers[3];
int Noses[3];
int Retina[40]; /* Retinal image pixels */
float Thresholds[3]={100.0,100.0,100.0};
float DV_Left_OA=0.0, DV_Right_OA=0.0; /* Obstacle avoidance Left and Right dynamic speed corrections */
float DV_Left_LF=0.0,DV_Right_LF=0.0; /* Light following Left and Right dynamic speed corrections */
float V_Right=0.0,V_Left=0.0;
int PIDs[5]; /* Process ID's */
float Rand;
int TurningCenter=0;
int LED_Flag;

38

/* Function which waits for m_second miliseconds before returning */
/* Does not stop other multitasking processes */
void Wait(int m_second)
{

long stop_time;
stop_time = mseconds() + (long)m_second;
while(stop_time > mseconds())

defer();
}

/* Down round */
int Floor(float Value)
{
 return (int)Value;
}

int Round(float Value)
{
 if (Value - (float)Floor(Value)>=0.5)
 return (int)Value+1;
 else
 return (int)Value;
}

/* Random value got from analog varying input */
float Random()
{
 return(((float)(analog(7) & 0b00000001)*2.0)-1.0);
}
int GREEN_LED=8;
int RED_LED=2;
int YELLOW_LED=4;
/* Enable zero-indexed light */
void EnableLED(int Index)
{
 poke(0x4000,0b11100000+Index);
}

void BumpersSense()
{
 int I;

 while(1)
 {
 Bumpers[0]=analog(4);
 Bumpers[1]=analog(5);
 Bumpers[2]=analog(3);
 for (I=0;I<=2;I++)
 if (Bumpers[I]==0)
 Thresholds[I]=(float)Noses[I]-10.0;
 defer();
 };
}

void NosesSense()

39

{
 int I;

 while(1)
 {
 for (I=0;I<=2;I++)
 {
 Noses[I]=analog(I);
 Thresholds[I]=(0.85*Thresholds[I])+(0.15*(float)Noses[I]);
 };
 defer();
 };
}

/* Retina sensing process */
void RetinaSense()
{
 int I,Count;
 float Slope;

 while(1)
 {
 kill_process(PIDs[0]); /* Kill all killable processes, except this one */
 kill_process(PIDs[1]);
 kill_process(PIDs[2]);
 kill_process(PIDs[3]);
 kill_process(PIDs[4]);
 pokeword(0xFFF4,0xA000); /* Enable XIRQ interrupt routine which starts the retinal image sampling cycle */
 msleep(250L); /* Wait for a whole turn of the motorized mirror to prevent */
 /* the interrupts of being interrupted by IC processes */
 Count=peek(0xA800); /* Get real sample count made */
 Slope=(float)Count/40.0; /* Normalizing line */
 for (I=0;I<40;I++) /* Normalize samples to length of 40 */
 Retina[I]=peek(0xA801+Floor(Slope*(float)I));
 PIDs[0]=start_process(NosesSense()); /* Restart all killed processes */
 PIDs[1]=start_process(BumpersSense());
 PIDs[2]=start_process(AvoidObstacles(),50);
 PIDs[3]=start_process(FollowLight(),50);
 PIDs[4]=start_process(MotorActivation(),50);
 Wait(500); /* Wait for some time before engaging the next sampling cycle */
 defer();
 };
}

void AvoidObstacles()
{
 while(1)
 {
 float DV_Left_L=0.0,DV_Left_R=0.0,DV_Left_C=0.0;
 float DV_Right_L=0.0,DV_Right_R=0.0,DV_Right_C=0.0;
 float Weight_L=0.0,Weight_C=0.0,Weight_R=0.0;

 if ((float)Noses[0]>(Thresholds[0]+5.0))
 {
 DV_Left_L=0.0-V_Left;
 DV_Right_L=-40.0-V_Right;
 Weight_L=(float)Noses[0]-Thresholds[0];
 };
 if ((float)Noses[1]>(Thresholds[1]+5.0))

40

 {
 if (TurningCenter==0)
 {
 Rand=Random();
 TurningCenter=1;
 };
 DV_Left_C=((40.0*Rand)-V_Left);
 DV_Right_C=((-40.0*Rand)-V_Right);
 Weight_C=(float)Noses[1]-Thresholds[1];
 }
 else
 TurningCenter=0;
 if ((float)Noses[2]>(Thresholds[2]+5.0))
 {
 DV_Left_R=-40.0-V_Left;
 DV_Right_R=0.0-V_Right;
 Weight_R=(float)Noses[2]-Thresholds[2];
 };
 if ((Weight_L+Weight_C+Weight_R)>0.0)
 {
 DV_Left_OA=((DV_Left_L*Weight_L)+(DV_Left_C*Weight_C)+(DV_Left_R*Weight_R))
 /(Weight_L+Weight_C+Weight_R);
 DV_Right_OA=((DV_Right_L*Weight_L)+(DV_Right_C*Weight_C)+(DV_Right_R*Weight_R))
 /(Weight_L+Weight_C+Weight_R);
 }
 else
 {
 DV_Left_OA=0.0;
 DV_Right_OA=0.0;
 };
 defer();
 };
}
/* Function that returns the maximum light pointing direction */
int GetMax()
{
 int I,MaxLight=0,LightDirection=0;

 for (I=0;I<40;I++)
 if (Retina[I]>MaxLight)
 {
 MaxLight=Retina[I];
 LightDirection=I;
 };
 return(LightDirection);
}

/* Light following process */
void FollowLight()
{
 while (1)
 {
 int LightDirection=GetMax(); /* Get brightest light direction */

 DV_Left_LF=80.0-V_Left; /* Default corrections to straight ahead */
 DV_Right_LF=80.0-V_Right;
 LED_Flag=GREEN_LED;
 if ((LightDirection>=2) && (LightDirection<15)) /* If light direction on the left side, then turn left */
 {
 LED_Flag=YELLOW_LED;

41

 DV_Left_LF=-10.0-V_Left;
 DV_Right_LF=30.0-V_Right;
 }
 else
 if (LightDirection<=28) /* If light direction on the right side, the turn right */
 {
 LED_Flag=YELLOW_LED;
 DV_Left_LF=30.0-V_Left;
 DV_Right_LF=-10.0-V_Right;
 }; /* Else, go straight ahead */
 defer();
 }
}

/* Motor actuation function */
void MotorActivation()
{
 while (1)
 {
 if ((DV_Left_OA!=0.0) || (DV_Right_OA!=0.0)) /* If any obstacle avoidance in progress, use its corrections */
 {
 LED_Flag=RED_LED;
 V_Left=V_Left+(0.1*DV_Left_OA);
 V_Right=V_Right+(0.1*DV_Right_OA);
 }
 else /* Else, use the light following corrections */
 {
 V_Left=V_Left+(0.1*DV_Left_LF);
 V_Right=V_Right+(0.1*DV_Right_LF);
 };
 EnableLED(LED_Flag);
 motor(0,V_Left); /* Actuate motors */
 motor(1,V_Right);
 defer();
 };
}

void Initialize()
{
 poke(0x4000,0b11111110); /* Turn on LED's and motorized mirror */
 pokeword(0xFFF2,0x9000); /* IRQ Interrupt vector */
}

void main()
{
 Initialize();
 PIDs[0]=start_process(NosesSense());
 PIDs[1]=start_process(BumpersSense());
 PIDs[2]=start_process(AvoidObstacles(),50);
 PIDs[3]=start_process(FollowLight(),50);
 PIDs[4]=start_process(MotorActivation(),50);
 start_process(RetinaSense());
}

42

FLOW.C MODULE

This module is very similar to the previous one, having the only major difference on the motion

following function. Since this was the most commented module in the report text, it does not require

further comments on its code.

int Bumpers[3];
int Noses[3];
int Retina[40];
int LastRetina[40]; /* Previous Retinal Image*/
int FlowRetina[40]; /* Retinal Optic Flow*/
float Thresholds[3]={100.0,100.0,100.0};
float DV_Left_OA=0.0, DV_Right_OA=0.0;
float DV_Left_LF=0.0,DV_Right_LF=0.0;
float V_Right=0.0,V_Left=0.0;
int PIDs[5];
float Rand;
int TurningCenter=0;
int ImageNumber; /* Image Number*/
int FlowReady; /* Flow Ready for behaviour*/

void Wait(int m_second)

43

{
long stop_time;

stop_time = mseconds() + (long)m_second;
while(stop_time > mseconds())

defer();
}

int Floor(float Value)
{
 return (int)Value;
}

int abs(int Value)
{
 if (Value>0)
 return Value;
 else
 return -Value;
}

int Round(float Value)
{
 if (Value - (float)Floor(Value)>=0.5)
 return (int)Value+1;
 else
 return (int)Value;
}

float Random()
{
 return(((float)(analog(7) & 0b00000001)*2.0)-1.0);
}

int GREEN_LED=8;
int RED_LED=2;
int YELLOW_LED=4;
/* Enable zero-indexed light */
void EnableLED(int Index)
{
 poke(0x4000,0b11100000+Index);
}

void BumpersSense()
{
 int I;

 while(1)
 {
 Bumpers[0]=analog(4);
 Bumpers[1]=analog(5);
 Bumpers[2]=analog(3);
 for (I=0;I<=2;I++)
 if (Bumpers[I]==0)

44

 Thresholds[I]=(float)Noses[I]-10.0;
 defer();
 };
}

void NosesSense()
{
 int I;

 while(1)
 {
 for (I=0;I<=2;I++)
 {
 Noses[I]=analog(I);
 Thresholds[I]=(0.8*Thresholds[I])+(0.2*(float)Noses[I]);
 };
 defer();
 };
}

void GetRetina(int TempRetina[])
{
 int I,Count;
 float Slope;

 pokeword(0xFFF4,0xA000);
 msleep(250L);
 Count=peek(0xA800);
 Slope=(float)Count/40.0;
 for (I=0;I<40;I++)
 TempRetina[I]=peek(0xA801+Floor(Slope*(float)I));
}
void RetinaSense()
{
 int I;

 while(1)
 {
 kill_process(PIDs[0]);
 kill_process(PIDs[1]);
 kill_process(PIDs[2]);
 kill_process(PIDs[4]);
 if (ImageNumber>5) /* If time elapsed, then initiate one motion following cycle */
 {
 ImageNumber=0;
 FlowReady=1;
 for (I=1;I<30;I++)
 {
 V_Left=V_Left+0.1*(0.0-V_Left);
 V_Right=V_Right+0.1*(0.0-V_Right);
 motor(0,V_Left);
 motor(1,V_Right);
 Wait(10);
 };
 motor(0,0.0);
 motor(1,0.0);
 Wait(200);
 GetRetina(LastRetina);
 Wait(800);

45

 GetRetina(Retina);
 OpticFlow();
 FollowMovement();
 }
 else
 ImageNumber++;
 PIDs[0]=start_process(NosesSense());
 PIDs[1]=start_process(BumpersSense());
 PIDs[2]=start_process(AvoidObstacles(),50);
 PIDs[4]=start_process(MotorActivation(),50);
 Wait(500);
 defer();
 };
}

/* Very simple optic flow computation */
void OpticFlow()
{
 int I;
 int Flow;

 for (I=0;I<40;I++)
 {
 Flow=Retina[I]-LastRetina[I];
 if (Flow<0)
 Flow=0;
 FlowRetina[I]=Flow;
 };
}

void AvoidObstacles()
{
 while(1)
 {
 float DV_Left_L=0.0,DV_Left_R=0.0,DV_Left_C=0.0;
 float DV_Right_L=0.0,DV_Right_R=0.0,DV_Right_C=0.0;
 float Weight_L=0.0,Weight_C=0.0,Weight_R=0.0;

 if ((float)Noses[0]>(Thresholds[0]+5.0))
 {
 DV_Left_L=0.0-V_Left;
 DV_Right_L=-40.0-V_Right;
 Weight_L=(float)Noses[0]-Thresholds[0];
 };
 if ((float)Noses[1]>(Thresholds[1]+5.0))
 {
 if (TurningCenter==0)
 {
 Rand=Random();
 TurningCenter=1;
 };
 DV_Left_C=((40.0*Rand)-V_Left);
 DV_Right_C=((-40.0*Rand)-V_Right);
 Weight_C=(float)Noses[1]-Thresholds[1];
 }
 else
 TurningCenter=0;

46

 if ((float)Noses[2]>(Thresholds[2]+5.0))
 {
 DV_Left_R=-40.0-V_Left;
 DV_Right_R=0.0-V_Right;
 Weight_R=(float)Noses[2]-Thresholds[2];
 };

 /*Obstacle Avoidance*/
 if ((Weight_L+Weight_C+Weight_R)>0.0)
 {
 EnableLED(RED_LED);
 DV_Left_OA=((DV_Left_L*Weight_L)+(DV_Left_C*Weight_C)+(DV_Left_R*Weight_R))

/(Weight_L+Weight_C+Weight_R);
 DV_Right_OA=((DV_Right_L*Weight_L)+(DV_Right_C*Weight_C)+(DV_Right_R*Weight_R))

/(Weight_L+Weight_C+Weight_R);
 }
 else
 {
 EnableLED(GREEN_LED);
 DV_Left_OA=100.0-V_Left;
 DV_Right_OA=100.0-V_Right;
 };
 defer();
 };
}

int GetMaxFlow()
{
 int I,MaxFlow=0,MotionDirection=0;

 for (I=0;I<40;I++)
 if (FlowRetina[I]>MaxFlow)
 {
 MaxFlow=FlowRetina[I];
 MotionDirection=I;
 };
 if (MaxFlow<20)
 return(0);
 MotionDirection+=5;
 if (MotionDirection>39)
 MotionDirection-=40;
 return(MotionDirection);
}

void FollowMovement()
{
 int MotionDirection;
 MotionDirection=GetMaxFlow();
 EnableLED(YELLOW_LED);
 if(MotionDirection<20)
 {
 motor(0,-50.0);

47

 motor(1,50.0);
 msleep((long)MotionDirection*73L);
 }
 else
 {
 motor(0,50.0);
 motor(1,-50.0);
 msleep((40L-(long)MotionDirection)*73L);
 };
}

void MotorActivation()
{
 while (1)
 {
 if ((DV_Left_OA!=0.0) || (DV_Right_OA!=0.0))
 {
 V_Left=V_Left+(0.1*DV_Left_OA);
 V_Right=V_Right+(0.1*DV_Right_OA);
 }
 else
 {
 V_Left=V_Left+(0.1*DV_Left_LF);
 V_Right=V_Right+(0.1*DV_Right_LF);
 };
 motor(0,V_Left);
 motor(1,V_Right);
 defer();
 };
}

void Initialize()
{
 poke(0x4000,0b11100000); /* Turn on LED's and motorized mirror */
 pokeword(0xFFF2,0x9000); /* IRQ Interrupt vector */
 FlowReady=0;
}

void main()
{
 Initialize();
 PIDs[0]=start_process(NosesSense());
 PIDs[1]=start_process(BumpersSense());
 PIDs[2]=start_process(AvoidObstacles(),50);
 PIDs[4]=start_process(MotorActivation(),50);
 start_process(RetinaSense());
}

48

AUTHORS

Pedro Kulzer António Branco

