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Fourier Series to Fourier Transform

1. Introduction

In these notes, we continue our discussion of the Fourier series and relate it to the continuous-time Fourier trans-
form through a specific example. We then conclude by looking at the frequency representation (Fourier trans-
form) of several time-limited signals of different duration to observe an important property of the Fourier
transform and the frequency spectrum of continuous-time signals.

2. Complex exponential to sinusoidal representation

A. Introduction

Previously, we have computed the Fourier coefficients  for some periodic waveforms, and then explicitly
derived a real representation (in terms of cosines and sines) for  from the complex exponential form of
the Fourier series:

(1)

For example, in the lecture #13 notes, we derived the following Fourier coefficients for a triangle wave (sym-
metric about the vertical axis),

(2)

and converted the complex exponential series,

(3)

to the following sinusoidal representation:

, . (4)

Here, we will show that once we have computed the Fourier coefficients, we can directly represent real-valued
periodic signals  in sinusoidal form using the following relationship:

(5)

B. Proof

To show that equation (5) follows from equation (1), we will use the following property of the Fourier coeffi-
cients:

(6)

That is,  is the complex conjugate of . We begin with equation (1) and use Euler’s equation:

(7)
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(8)

(9)

Now we use equation (6) and the even/odd property of the cosine/sine functions, respectively:

(10)

(11)

Simplifying equation (9):

(12)

(13)

Note the following simplifications:

(14)

(15)

so that equation (13) simplifies to:

(16)

(17)

We will now show that for any complex number , the following relationship is true:

(18)

Let , so that:

(19)

(20)

(21)

. (22)

Plugging (19) through (21) into (18):

(23)

(24)

Equation (24) is a well known trigonometric identity that we showed to be true (using complex exponentials)
in the lecture #12 notes. Having verified equation (18), we can now simplify (17) to the following form:
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(25)

C. Examples

In previous notes, we derived the following Fourier coefficients for an odd square wave with period 
( ):

(26)

for which we have that:

, (27)

, . (28)

Combining (27) and (28) with (25) we get:

(29)

. (30)

In the previous notes, we also derived the following Fourier coefficients for an odd sawtooth wave with
period  ( ):

(31)

for which we have that:

, (32)

. (33)

Combining (32) and (33) with (25) we get:

(34)

(35)

. (36)

Note that in both cases, the results agree with those arrived at explicitly in the lecture #13 notes.
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3. Fourier series to Fourier transform

A. Introduction

Here we motivate the continuous Fourier transform as a limiting case of the Fourier series for . We
will do this by computing the Fourier series representation of a pulse train waveform  centered at 
and varying the period of . In Figure 1, for example, we plot a pulse train waveform for various periods
of increasing width. As , the pulse train waveform approaches a single pulse centered at  with
width equal to one.

B. Fourier series representation

Here, we compute the Fourier series coefficients  for the pulse train wave  which is plotted in Figure 1
above for different periods . Recall that the Fourier coefficient  is given by,

(37)

For our problem, the integral in (37) reduces to:

(38)

First, we compute :

(39)

Next, we compute , :
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(40)

Thus, the Fourier coefficients  are given by,

, , (41)

. (42)

Since  is strictly real, we can now plot  as a function of frequency  for different values
of . In Figure 2 below, we plot the Fourier coefficients as a function of frequency for the pulse train wave-
forms in Figure 1.

C. Fourier transform

We now compute the Fourier transform of a rectangular pulse centered at , as plotted in Figure 3
below, which corresponds to a pulse train waveform with .

Recall that the Fourier transform of a continuous-time signal  is given by,
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(43)

For the pulse in Figure 3, this integral is relatively easy to evaluate:

(44)

(45)

(46)

(47)

This function is plotted in Figure 4 below. Note that the frequency spectrum of the single rectangular pulse
closely resembles that of the pulse train waveform for large . In fact, it is possible to compute the Fourier
coefficients  of a periodic waveform from the Fourier transform  of a single period of that waveform,
using the following relationship:

(48)
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4. An interesting property of the Fourier transform

In this course, we will not delve deeply into the continuous-time Fourier transform and its properties (for much
more details on the continuous Fourier transform see, for example, Contemporary Linear Systems: Chapter 5 by
R. D. Strum and D. E. Kirk). However, there is one interesting property of the time/frequency representation of
signals that is worth exploring further here.

In Figure 5 we plot the Fourier transform  (frequency spectrum) of rectangular pulses  with varying
widths. Note that the more spread out the signal is in the time domain, the more compressed it appears in the fre-
quency domain, and vis versa. As a general rule, continuous-time signals that have finite duration in time will
have nonzero frequency content throughout the frequency range from positive to negative infinity. Conversely,
continuous-time signals that are band-limited in the frequency domain, will have infinite duration throughout
time from positive to negative infinity.

5. Conclusion

The Mathematica notebook “ctft.nb” was used to generate the examples in this set of notes. Next time, we will
wrap up our discussion of the continuous-time Fourier transform and then transition to our exploration of the dis-
crete-time Fourier transforms.
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