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Fourier Series Examples

1. Introduction

In these notes, we derive in detail the Fourier series representation of several continuous-time periodic wave-
forms. Recall that we can write almost any periodic, continuous-time signal x(¢) as an infinite sum of harmoni-
cally related complex exponentials:

Xy =Y x (1)
k= —o
where,
_ 1+ Ty —2nkfyr o] = . -
X, T Dﬁo x(t)e dt} kth Fourier coefficient, )]
T,, = period of x(¢) (fundamental period), and, (©)]
fo = 1/T, =fundamental frequency of x(¢) . 4

For three different examples (triangle wave, sawtooth wave and square wave), we will compute the Fourier coef-
ficients X, asdefined by equation (2), plot the resulting truncated Fourier series,

n
NOEED NP el (5)
k=-n
and the frequency-domain representation of each time-domain signal.
2. Example#1: triangle wave

Here, we compute the Fourier series coefficients X, for the triangle wave x(¢) plotted in Figure 1 below. The
functional representation of one period xp(t) of thetrianglewave t € [-1/2, 1/2] isgiven by,

2+ 1 te [-1/2,0]
t) = 6
xp() {—2t+1 te [0,1/2] ©)
The fundamental period 7|, and frequency f,, are given by,
To=1.fy=1/Ty =1 v
Therefore, equation (2) for this problem is given by,
X, = [ x(tyed2mhiay 8
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X, = ﬁ1/2(2t+ l)e_jznk’dt+_[(l)/2(—2t+ 1)e1 2Tkt gt (9)

First, we compute X, :

_ 1/2
X, = ﬁl/z(ztﬂ)dﬁjo (=2t + 1)dt

S (=0 S =172
(B+0[ o], t (=2+D] (10)

—(1/4=1/2)+ (= 1/4+1/2)
=1/2

Note that X, is simply the average of the function x(¢) for one period. Next, we compute X , k # 0 . Using the
following integral identity,

at at
[tetdr = ti——e—z— (11)
a a

we will compute each term in equation (9) separately and then combine the results:

t=0

. —j2mkt —j 2Tkt —j 2mkt
ﬁ1/2(2t+ 1)ei2mktgy = (2te _ 2e )+(e )

—i2nk  (2mk)? —j2nk

t=-1/2

2 1 J_
L (H2mk)?  —2mk
r2(=1/2)e2mk(=1/2) 2 =j2mk(=1/2) . e—j2nk(—1/2)}

L —j2mk (—2mk)? —j2nk (12)
_T 2 + 1 J [—ej“k 2elmk + ej“k}
L (H2mk)? —2mk) LH2mk (-j2nk)? —2mk
jk
2 1 2dr
(Hj2rmk)? —I2nk  (—2mk)?
ik
R S Y
2(mk)2 21k 2(mk)?
. t=1/2
. D te-i2mkt 52Tk —j2mk
_[1/2(—2t+1)e‘12”k’dt - ( 2@1 mkt 2_61 T f)+(e_l T z)
0 —j2nk (H2mk)? —j2mk Zo
 T=2(1/2)ei2mk(1/2) _26—j21tk(1/2)+e—j2nk(1/2)}
L —j2mk (- 2mk)? —j2mk
=2 _,_1 J (13)
L (H2mk)?2 —i2mk
: re—i Tk DTk e—jnlj [ -2 . 1 }
Li2mk  (oj2mk)? 2wk (H2mk)? —J2mk

_ e Tk N 1 j
2(mk)?  2(mk)? 2mk

Combining the results of equations (12) and (13),
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% :[ L I L }*[— edrk 1 _J_}
= Lo 2k 2(mk)2 2(nk)2  2(mk)? 2mk
_ 1 [ ejﬂ?k + e—jnk}

T (k)2 L2(mh)? 2(mh)?
_ 1 _ 1 ej Tk 4 e‘j Tk 14)
 (mk)2 [(nkﬂ( 2 H (

1 1

02 - k2 cos(mk)

1
(mk)?

[1—cos(mk)]

Note that since,

cos(mk) = {_1 = odd (15

1 k = even

we can summarize the values of the Fourier coefficients as follows:

2/ (nk)? k = odd
X, =140 k = even, k20 (16)
1/2 k=0

Now that we have computed the Fourier series coefficients, we can express x(¢) asthe sum of sinusoids:

K= S Xl 1
o

x(1) = 1/z+%(2(iz;”+(2;(_i:)‘;‘;) ke (13,5} (18)

x(t) = 1/2+§(ni)2[ei“k’+e—12“kf], ke {1,3,5, ...} (19)

X(1) = 1/2+ k (n‘l‘c){ejznk’ze_jznkt]ke (1,3,5...} (20)

(1) = 1/2+%(n1)2cos(2nkt), ke {1,3,5, ...} (1)

To see how well equation (21) approximates x(¢) we plot the truncated Fourier seriesfor ke {1, 3,5},

1.4 4
X(1) =3+ eos(2m) + cos (10mr) (22)

4
n)zcos(6m) + T

n)2
in Figure 2 below.

Here we make afew comments about our result in equation (21). First note that the Fourier series consists only of
aconstant offset (1/2) and cosine terms. This should be expected, since both the triangle wave, as defined, and
the cosine function are examples of even functions, which obey the following property:

x(t) = x(=) (23)
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Second, we can view the Fourier series representation of x(z) in the frequency domain by plotting \Xk\ and
arg(X;) asafunction of 1" = kf,,. For this example, al the Fourier coefficients are strictly real (i.e. not com-
plex), so that we can completely represent the frequency spectrum of the triangle wave by plotting X, , asis done
in Figure 3 below, instead of plotting |X;| and arg(.X}) separately.
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We can relate the frequency plot in Figure 3 to the Fourier transform X(f) of the signal x(¢) using the Fourier
transform pair,

Acos2tfy) & 58(/+ 1) + 58(/~1y) (24)

which we have previously shown. Combining (24) with the Fourier seriesin (21), we get that:
X(f) = (1/2)80)+2(—7-t%5[5(f+kf0)+6(f—kfo)] ke {1,3,5,..}. (25)
k

3. Example#2: sawtooth wave

Here, we compute the Fourier series coefficients X, for the sawtooth wave x(¢) plotted in Figure 4 below. The
functional representation of one period xp(t) of the sawtooth wave t € [—-1/2, 1/2] isgiven by,

x,(t) =t,te[-1/2,1/2] (26)
The fundamental period 7|, and frequency f,, are given by,
Ty =1,fy=1/Ty=1 @71

Therefore, equation (2) for this problem is given by,
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— (172

- —j 2Tkt
_l/zx(t)e dt

Xy

1/2 i
= j 2kt
X, _1ote dt

First, we compute X, :

- (172
Xy = |, tdt

t=1/2
2

2

1=-1/2
1/4-1/4 =0

(28)

(29)

(30)

Note that X, is simply the average of the function x(¢) for one period. Next, we compute X, , k # 0, where we

will again make use of the following integral identity:

rg = Lt e
[teatdr = PR (31)
V2 oty = (1e32__ed2m 1
_1/2%¢ r= J2mk (j2mh)?
(H2m) |~y 2
_[(1/2)e"2mk(1/2)  o~j2mk(1/2) (=1/2)e 1 2mk(=1/2)  o=j2mk(~1/2)
- [ —j2nk (—jznk)J [ —2nk (—j2mk)? J
_ (I/2)edm™ (1/2)em™h  edmk Tk (32)
—2mnk —2nk  (H2mk)?  (H2mk)?
= 5 ;nkcos(nk) + (_jiﬁ)zsin(nk)
| |-
= ——cos(mk) — sin(mk
77 08 (1) = 5 sin(ek)
Note that since,
-1 k = odd
cos(mk) = ? (33)
1 k = even
sin(nk) = 0,ke {...,-2,-1,1,2,...} (39

we can summarize the values of the Fourier coefficients as follows:

1

x(1)

Figure4
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_ |
X, = 2chos(nk)—z(nk)zsm(nk) (35)
i(=1)* k#0
X, = ((=D%)/(2mk) # (36)
0 k=0
Now that we have computed the Fourier series coefficients, we can express x(¢) asthe sum of sinusoids:
x(t) = Y Xel2mkt (37
k = —o
x(t) = i (j(__l)keﬁnkt.,.me—ﬂnkt) (38)
~ 2nk 2n(—k)
(1) = i J(—l)k(ejznkz_e—jznkt) (39)
2nk
k=1
_ -~ (j2)j(—1)k ej27'ckt_e—j2nkt
w0 = ¥ S ] “o)
k=1
o DR
x(t) = Y, _y sin(2mkt) (41)
k=1
To see how well equation (41) approximates x(¢) we plot the truncated Fourier seriesfor ke {1, 2,3,4,5},
N 1 1. 1 1.
x'(t) = ns1n(2m) 27ts1n(41tt) + 37rsm(6nt) 4nsm(8nt) + 5nsm(107ct) (42)
in Figure 5 below.
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Here we make a few comments about our result in equation (41). First note that this Fourier series consists only
of sineterms. This should be expected, since both the sawtooth wave, as defined, and the sine function are exam-
ples of odd functions, which obey the following property:

x(t) = =x(-1) 43)

Second, the approximation in (42) does not seem nearly as accurate as was the approximation for the triangle
wave in the previous section. Thisis so, because unlike the continuous triangle wave, the sawtooth wave has dis-
continuities at discrete intervals. It should not be surprising that it is significantly more difficult to model a dis-
continuous periodic signal with a sum of smooth, continuous sine waves, than it is to model a continuous
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periodic signal. To see what the truncated Fourier series approximation looks like with more terms, we plot the
truncated Fourier series with the first 10 and 100 termsin Figures 6 and 7, respectively.

Note that while the Fourier series approximation does seem to improve almost everywhere as we add more terms,
there remains a stubborn (approximately 9%) visible error at the discontinuities of the sawtooth wave. This over-
shoot is known as Gibbs phenomenon, and will occur for any truncated Fourier series representation of discontin-
uous, periodic waveforms. We will see this again for the square wave in the next section.

Finally, we can view the Fourier series representation of x(z) in the frequency domain by plotting |Xk| and
arg(X,) asafunction of /' = kf,,. These two plots are shown in Figure 8 below. Note how the phase alternates
between nt/2 and —/2 , which is expected given the (—1)¥* 1 term in the Fourier coefficients X, .
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4. Example #3: square wave

Here, we compute the Fourier series coefficients X, for the square wave x(¢) plotted in Figure 9 below. The

functional representation of one period xp(t) of the squarewave t € [-1/2, 1/2] isgiven by,

-1/2 te [-1/2,0]
x (1) =
P 1/2 te [0,1/2]

The fundamental period 7|, and frequency f,, are given by,
Ty=1,f,=1/T,=1
Therefore, equation (2) for this problem is given by,

1/2 -
= 2wkt
X, _l/zx(t)e dt

X, = [0, (=1/2)e ke + 172 (1/2)e 27k

First, we compute X, :

1/2
Xy = [0, (1/2)de+ [ (1/2)ar

=0 =1/2
= (172027, + (17202
= —(1/4) +(1/4)

=0

(44)

(45)

(46)

(47)

(48)

Note that X, is simply the average of the function x(¢#) for one period. Next, we compute X, , k# 0 ; we will
compute each term in equation (48) separately and then combine the results.

t:
_ Sonke g = (E1/2) ionke
El/z( 172)e dt Jomk ¢ e

- (_1/2)_(—1/2)ejnk
—j2nk —2mk

1 .
= 147((1 —eJ”k)

x(1)

t

-2 -1 0

Figure9

(49)
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t=1/2

Jl/z(l/Z)e_Jznktdt = (1/2) ]27'th
—j2Ttk f=0

(1/2) Jnk_(l/Z)
—jZTCk —j2nk

_ Tk
jan k(l e

Combining the results of equations (49) and (50),

X = [14 k(l_enk)} [mlnk(l_e_jnk)}

_ 1 ejTCk+e—jTEk
_j2nk_[ jamk }

_ 1 1 relmk + o=imk
- j2nk_j2nk[ 2 }
1

_ 1
= 2wk 2rEcos (R

= JZ—[I —cos(mk)]

Note that since,

-1 = odd

1 k = even

cos(mk) = {

we can summarize the values of the Fourier coefficients as follows:

X, = {1/(jnk) k = odd

0 k = even

(50)

(51)

(52)

(53)

Now that we have computed the Fourier series coefficients, we can express x(¢) asthe sum of sinusoids:

x(t) = z Xejznk’

JTE( —k)

jZTckt e JZTtkt

x(t) = ( Jznkt Jznkt) ke {1,3,5,...}
x(t) = (

) ke {1,3,5,...}

j2mkt _ ,— 2wkt
x(t) = 2—2—(?——7%—-——), ke {1,3,5,...}

knk

x(1) zl sin(2nkt), ke {1,3,5,...}
k

?—l

(54)

(55)

(56)

(57)

(58)

To see how well equation (50) approximates x(¢) we plot the truncated Fourier seriesfor ke {1,3,5},

2 2
= + = + =
x'(t) = sm(2nt) 3nsm(6nt) 5nsm(lOnt)

(59)
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in Figure 10 above.

Here we make a few comments about our result in equation (58). As with the sawtooth wave, this Fourier series
consists only of sine terms. Again, this should be expected, since both the square wave and the sine function are
both examples of odd functions as defined in equation (43). Second, the approximation in (59) does not seem
very accurate. To see what the truncated Fourier series approximation looks like with more terms, we plot the
truncated Fourier series with the first 10 and 100 terms in Figures 11 and 12, respectively. As with the sawtooth
wave, notice the overshoot at the discontinuities of the square wave (Gibbs phenomenon).

Finally, aswe did for the previous two examples, we can view the Fourier series representation of x(¢) inthefre-
guency domain by plotting |X k| and arg(X,) asafunctionof /' = kf, . These two plots are shown in Figure 13
below. Note that for k<0, the phase for nonzero X, is —t/2, while for k>0, the phase for nonzero X, is
/2 . Thisiseasily seen if we rewrite (53) as,

X, = 1/(jnk) = —j/(nk), k = odd. (60)
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5. Conclusion

J =Tk
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Figure 13

arg(Xp)
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I =1k

See the Mathematica notebook “fourier_series.nb” for all the examples in this set of notes. Next, time we will
finish up with the Fourier series representation and show how the Fourier transform can be viewed as a limiting
case of the Fourier serieswith Ty — oo

-11-
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