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Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

1. Introduction
In this set of notes, we begin our mathematical treatment of discrete-time systems. As shown in Figure 1, a dis-
crete-time system operates or transforms some input sequence  to produce an output sequence . Exam-
ples of such systems include audio filters and feedback control systems. Unlike the off-line filtering example in
the previous set of notes, these systems produce an output in real-time (on-line) as input is fed into the system.

In their most general form, discrete-time systems produce an output  at time index  that is a function of
previous output values, as well as past, current and future values of the input:

, . (1)

Below, we first classify discrete-time systems by three important properties: (1) causality, (2) time-invariance
and (3) linearity. We then define an important class of discrete-time systems — namely, Linear, Time-Invariant
(LTI) systems. Next, we define the concept of the unit-impulse response of a system, and classify LTI systems
into Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) systems. Finally, we introduce the dis-
crete-time convolution operation, and show that a discrete-time system is completely characterized by its unit-
impulse response.

2. Important system characterizations

A. Causality

Definition: A system is said to be causal if and only if its output depends only on previous values of the out-
put and current and/or previous values of the input. If a system is not causal, it is said to be noncausal.

Examples: Consider the system below:

(2)

The system in equation (2) is noncausal because the output  depends on future values of the input .
For example, the output at  is dependent on the input for . In Figure 2, we plot a sample
output sequence corresponding to a sample input sequence for system (2). Note that for this noncausal sys-
tem, the output precedes the input. To compute the value of  for any specific  for the plotted input
sequence, we simply apply equation (2) above. For example,  is given by,

. (3)

Now, consider a second system below:

(4)

The system in equation (4) is causal because the output  depends only on present and past values of the
input . For example, the output at  is dependent on the input for . In Figure 3, we
plot a sample output sequence corresponding to a sample input sequence for system (4). Note that for this
causal system, the output follows the input. To compute the value of  for any specific  for the plotted
input sequence, we simply apply equation (4) above. For example,  is given by,
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In general, the class of causal discrete-time systems is given by,

, . (6)

B. Time invariance

Definition: A system is said to be time-invariant if and only if,

 implies . (7)

That is, if a system produces output  for input , a time-invariant system will produce the time-
delayed output  for the time-delayed input . If a system is not time-invariant, it is said to
be time-variant.

Another way to look at time-invariance is depicted in Figure 4 below. A time-invariant system will produce
the same output regardless of whether a time delay precedes or follows the system. In Figure 4, that means
that for a time-invariant system,

. (8)

Examples: Consider the system below:

(9)

The system in equation (9) is time-invariant. We will show this by applying the procedure depicted in Figure
4. First, we follow the top path in the diagram:
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(10)

Note that we simply replaced  with  in equation (9) to produce . Next, we follow the bot-
tom path in the diagram:

(11)

Note that in this case, we first compute  [equation (9)] and then replace  with . Since (10) and
(11) are equivalent, system (9) is time-invariant.

Next, consider the system below:

(12)

Let us again compute  and :

(13)

(14)

To generate , we substituted  for  in equation (12); to generate  we substituted
 for . Note that since  and  produce different results, system (12) is time-variant.

Next, consider the system below:

(15)

Let us again compute  and :

(16)

(17)

To generate , we substituted  for  in equation (15); to generate  we substi-
tuted  for . Note that since  and  produce different results, system (15) is time-vari-
ant.

Finally, consider the system below:

(18)

Let us again compute  and :

(19)
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Figure 4

w n[ ] x n n0–[ ]2=

x n[ ] x n n0–[ ] w n[ ]

y n n0–[ ] x n n0–[ ]2=

y n[ ] n n n0–

y n[ ] n x n[ ]=

w n[ ] y n n0–[ ]

w n[ ] n x n n0–[ ]=

y n n0–[ ] n n0–( )x n n0–[ ]=

w n[ ] x n n0–[ ] x n[ ] y n n0–[ ]
n n0– n w n[ ] y n n0–[ ]

y n[ ] x n–[ ]=

w n[ ] y n n0–[ ]

w n[ ] x n– n0–[ ]=

y n n0–[ ] x n n0–( )–[ ] x n– n0+[ ]= =

w n[ ] x n– n0–[ ] x n–[ ] y n n0–[ ]
n n0– n w n[ ] y n n0–[ ]

y n[ ] bkx n k–[ ]
k 0=

M

∑=

w n[ ] y n n0–[ ]

w n[ ] bkx n n0– k–[ ]
k 0=

M

∑=
- 3 -



 

EEL3135: Discrete-Time Signals and Systems Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

                                                                                                                                                                                                                                                                                                   
(20)

To generate , we substituted  for  in equation (18); to generate  we sub-
stituted  for . Note that since  and  produce the same outcome, system (18) is time-
invariant. The table below summarizes the above results and gives two more examples.

C. Linearity

Definition: A system is said to be linear if and only if,

 and  implies (21)

for arbitrary scalars  and .

That is, if a system produces output  for input , and output  for input , a linear sys-
tem will produce the output  for the input . If a system is not linear, it is
said to be nonlinear.

Another way to look at linearity is depicted in Figure 5 below. A linear system will produce the same output
regardless of whether the inputs or outputs are summed and scaled. In Figure 5, that means that for a linear
system,

. (22)

Examples: Below, we first consider the same systems as we did for time invariance and then show two addi-
tional examples. First, let us consider:

(23)

The system in equation (23) is nonlinear. We will show this by applying the procedure depicted in Figure 5.
First, we apply the top diagram in Figure 5:

, (24)

(25)

Next, we follow the bottom diagram in Figure 5:

(26)

(27)

Since the results in equations (25) and (27) are different, system (23) is nonlinear.
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w n[ ] αy1 n[ ] βy2 n[ ]+ αx1 n[ ]2 βx2 n[ ]2+= =

x n[ ] αx1 n[ ] βx2 n[ ]+=
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Next, consider the system below:

(28)

Let us follow the same procedures as in the previous example:

, (29)

(30)

Next:

(31)

(32)

Since the results in equations (30) and (32) are the same, system (28) is linear.

Next, consider the system below:

(33)

Let us follow the same procedures as in the previous example:

, (34)

(35)

Next:

(36)

(37)

Since the results in equations (35) and (37) are the same, system (33) is linear. 
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Figure 5
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Next, consider the system below:

(38)

Let us follow the same procedures as in the previous example:

, (39)

(40)

Next:

(41)

(42)

Since the results in equations (40) and (42) are the same, system (38) is linear.

Below, we consider two additional systems. First, let us consider:

(43)

Again, we follow the same procedure as before:

(44)

(45)

(46)

Next:

(47)

(48)

Since the results in equations (46) and (48) are the same, system (43) is linear. 

Finally, we consider the system below:

(49)

Again, we follow the same procedure as before:

(50)
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y1 n[ ] 2x1 n[ ] 1 2⁄( )nx1 n 1–[ ] 3x1 n 5–[ ]+ +=

y2 n[ ] 2x2 n[ ] 1 2⁄( )nx2 n 1–[ ] 3x2 n 5–[ ]+ +=

w n[ ] αy1 n[ ] βy2 n[ ]+=
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(51)

(52)

Next:

(53)

(54)

Since the results in equations (52) and (54) are different, system (49) is nonlinear. Note that in this case,
although the system looks linear, the constant term makes the system nonlinear. The table below summarizes
the above examples.

3. Linear, Time-Invariant systems
The class of causal discrete-time Linear, Time-Invariant (LTI) systems can be described by the following differ-
ence equation:

(55)

for constant coefficients  and .

In this course, we will confine our study to LTI systems. There are at least two important reasons for this. First,
LTI systems lend themselves to analysis that more general systems do not. We will see an extremely important
case of this in the next section, where we will characterize an LTI system entirely by its impulse response; this
same analysis is not possible, in general, for more general discrete-time systems. Second, all discrete-time sys-
tems can be approximated as LTI systems over short time constants. Nevertheless, it is important to realize that
many systems in real life may not be, strictly speaking, LTI systems, but can only be approximated as such.
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yes
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y n[ ] x n[ ]2=

y n[ ] n x n[ ]=
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y n[ ] aly n l–[ ]
l 1=

N

∑ bkx n k–[ ]
k 0=

M

∑+=

al bk
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4. Impulse response and discrete-time convolution

A. Impulse response

The unit impulse response of a system is defined as the output  of a system in response to a unit impulse
, where,

(56)

is plotted in Figure 6 below.

Note that for causal systems,

, . (57)

That is, a causal system is at rest prior to the arrival of an impulse at .

B. Classification of LTI systems by impulse response

Previously, we have classified causal discrete-time LTI systems into two broad categories: (1) non-recursive
and (2) recursive. Recall that non-recursive systems are given by the following difference equation:

. (58)

Note that non-recursive systems do not refer to previous values of the output, while recursive systems,

(59)

are not only a function of the input to the system, but previous outputs as well. Given our definition of the
unit-impulse response  above, we will now label these two categories of LTI systems by their impulse
response characteristics. Non-recursive systems in (58) are also known as Finite Impulse Response (FIR) sys-
tems, while recursive systems in (59) are also known as Infinite Impulse Response (IIR) systems. These
names indicate that non-recursive systems have an impulse response that is finite in length, while recursive
systems have an impulse response that is infinite in length. Let us consider one specific example of each type
of system. In Figure 7, we plot the impulse responses of the following two systems:

 (FIR example) (60)

 (IIR example). (61)
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δ n[ ]

δ n[ ]
1
0




=
n 0=
n 0≠

Figure 6
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M

∑=

y n[ ] aly n l–[ ]
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∑ bkx n k–[ ]
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∑+=

h n[ ]

y n[ ] 1
3
---x n[ ] 1

3
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3
---x n 2–[ ]+ +=
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Note that the FIR system’s impulse response  is limited in time, while the IIR system’s impulse response
 only goes to zero as ; that is the IIR system’s impulse response is infinite in length.

C. Discrete-time convolution

A truly remarkable fact that applies to LTI systems is that such systems can be completely characterized by
their impulse response. That is, once we know  for a given system, we can compute the output  for
that system for any input sequence . This extremely important fact follows from the fact that we can
express any input sequence  as the sum of weighted and time-shifted impulse functions:

(62)

For example, the discrete-time signal  in Figure 8 below can be written as:

. (63)

Now, let us assume that the response of an LTI system to a unit impulse  is given by :

(64)

By time-invariance of an LTI system, we know that:

. (65)

That is, a time-shifted impulse  at the input will result in a time-shifted impulse response .
By linearity of an LTI system, we know that:

(66)

That is, a weighted, time-shifted impulse results in a weighted, time-shifted impulse response. Finally, the
sum of weighted, time-shifted impulses results in the sum of weighted, time-shifted impulse responses:
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Figure 7
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n
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δ n[ ]

IIR example

n

h n[ ]
h n[ ] n ∞→

h n[ ] y n[ ]
x n[ ]

x n[ ]

x n[ ] x k[ ]δ n k–[ ]
k ∞–=

∞

∑=

x n[ ]

x n[ ] δ n 1+[ ] 2δ n[ ] 2δ n 1–[ ] δ n 2–[ ]–+ +=

Figure 8

2

n

δ n[ ]

2

1–

1

δ n[ ] h n[ ]

δ n[ ] h n[ ]⇒

δ n k–[ ] h n k–[ ]⇒

δ n k–[ ] h n k–[ ]

x k[ ]δ n k–[ ] x k[ ]h n k–[ ]⇒
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(67)

Hence, the output  corresponding to an input  for an LTI system can be written as:

(68)

(69)

Equation (69) represents the discrete-time convolution of the input sequence  with the impulse response
. Note that the discrete-time convolution is entirely defined by the impulse response of the system and

the input sequence to the system. The concept of discrete-time convolution is so important that we have a spe-
cial notation for it:

(70)

where the  operator denotes the convolution of  and . Note that equation (70) is short-hand nota-
tion for equation (69).

5. Important convolution properties

In this section, we list and prove some of the important properties of the convolution operator.

A. Commutative property

For any two discrete-time sequences  and ,1 the commutative property holds:

(71)

Proof:

(72)

(73)

In equation (73), let us make the substitution  and sum over the new variable 

(74)

Changing the index in equation (74) from  back to :

(75)

and hence the proof is complete.

1. Note that here we use  and  to denote any discrete-time sequences, not necessarily an input 
and output sequence, respectively.

x k[ ]δ n k–[ ]
k ∞–=

∞

∑ x k[ ]h n k–[ ]
k ∞–=

∞

∑⇒

y n[ ] x n[ ]

x n[ ] x k[ ]δ n k–[ ]
k ∞–=

∞

∑=

y n[ ] x k[ ]h n k–[ ]
k ∞–=

∞

∑=

x n[ ]
h n[ ]

y n[ ] x n[ ] * h n[ ]=

 * x n[ ] h n[ ]

x n[ ] y n[ ]

x n[ ] y n[ ]

x n[ ] * y n[ ] y n[ ] * x n[ ]=

x n[ ] * y n[ ] x k[ ]y n k–[ ]
k ∞–=

∞

∑=

y n[ ] * x n[ ] y k[ ]x n k–[ ]
k ∞–=

∞

∑=

k n l–= l

y n[ ] * x n[ ] y n l–[ ]x l[ ]
l ∞–=

∞

∑ x l[ ]y n l–[ ]
l ∞–=

∞

∑= =

l k

y n[ ] * x n[ ] x k[ ]y n k–[ ]
k ∞–=

∞

∑ x n[ ] * y n[ ]= =
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B. Associative property

For any three discrete-time sequences ,  and , the associative property holds:

(76)

Proof:

(77)

(78)

In equation (78), let us make the substitution  and sum over the new variable :

(79)

Changing the indices in equation (79) from  to , and from  to :

(80)

and hence the proof is complete.

C. Multiple systems

Here we consider the impulse response of two LTI systems connected in series, as depicted in Figure 9 below:

Note that the two LTI systems are assumed to have the impulse responses  and , respectively.
Using the associative property of the convolution operator,

(81)

(82)

Letting,

, (83)

x n[ ] y n[ ] z n[ ]

x n[ ] * y n[ ]( ) * z n[ ] x n[ ] * y n[ ] * z n[ ]( )=

x n[ ] * y n[ ]( ) * z n[ ] x k[ ]y l k–[ ]
k ∞–=

∞

∑
 
 
 

z n l–[ ]
l ∞–=

∞

∑=

x n[ ] * y n[ ] * z n[ ]( ) x l[ ] y k[ ]z n l– k–[ ]
k ∞–=

∞

∑
 
 
 

l ∞–=

∞

∑=

q l k+= q

x n[ ] * y n[ ] * z n[ ]( ) x l[ ] y q l–[ ]z n q–[ ]
q ∞–=

∞

∑
 
 
 

l ∞–=

∞

∑=

 x l[ ]y q l–[ ]z n q–[ ]
q ∞–=

∞

∑
l ∞–=

∞

∑=

 x l[ ]y q l–[ ]z n q–[ ]
l ∞–=

∞

∑
q ∞–=

∞

∑=

 x l[ ]y q l–[ ]
l ∞–=

∞

∑
 
 
 

z n q–[ ]
q ∞–=

∞

∑=

q l l k

x n[ ] * y n[ ] * z n[ ]( ) x k[ ]y l k–[ ]
k ∞–=

∞

∑
 
 
 

z n l–[ ]
l ∞–=

∞

∑ x n[ ] * y n[ ]( ) * z n[ ]= =

Figure 9

LTI system #2LTI system #1
x n[ ] w n[ ] y n[ ]h1 n[ ] h2 n[ ]

h1 n[ ] h2 n[ ]

w n[ ] x n[ ] * h1 n[ ]=

y n[ ] w n[ ] * h2 n[ ] x n[ ] * h1 n[ ]( ) * h2 n[ ] x n[ ] * h1 n[ ] * h2 n[ ]( )= = =

h n[ ] h1 n[ ] * h2 n[ ]=
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we can express the output  as,

. (84)

Thus, the impulse response of two LTI systems connected in series is given by the convolution of the individ-
ual impulse responses.

D. Convolution with an impulse

For any discrete-time sequence , the following property holds:

(85)

Proof:

(86)

Note that  is nonzero only for . Therefore, we can rewrite equation (86) as:

(87)

and hence the proof is complete.

6. Simple convolution example
Below we show two approaches to computing the convolution sum for the sample input sequence  and finite
impulse response function  plotted in Figure 10 below.

A. Approach #1

In this first approach, we use equation (69) to compute the output :

(88)

Let us denote  as the convolution mask (vector), consisting of the nonzero terms of the impulse
response. In order to compute , we first reverse the order of the convolution mask to give the vector

. We then slide this reversed convolution mask along the input sequence  and take the dot
product of the reversed convolution mask and that part of the input sequence  overlapping the reversed
convolution mask. This process is illustrated in Table 1 for .Note that the dot product of
two vectors  and  is given by,

(89)

y n[ ]

y n[ ] x n[ ] * h n[ ]=

x n[ ]

x n[ ] * δ n n0–[ ] x n n0–[ ]=

x n[ ] * δ n n0–[ ] x k[ ]δ n n0– k–[ ]
k ∞–=

∞

∑=

δ n n0– k–[ ] k n n0–=

x n[ ] * δ n n0–[ ] x n n0–[ ]=

x n[ ]
h n[ ]

-4 -2 0 2 4 6 8 10
0

1

2

3

4

5

6

-4 -2 0 2 4 6 8 10
-1

0

1

2

3

Figure 10
n

h n[ ]x n[ ]

n

y n[ ]

y n[ ] x k[ ]h n k–[ ]
k ∞–=

∞

∑=

3 1– 2 1, , ,[ ]
y n[ ]

1 2 1– 3, , ,[ ] x n[ ]
x n[ ]

n 0 1 … 7 8, , , ,{ }∈
a b

a a1 a2 … al, , ,[ ]=
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(90)

(91)

Figure 11below plots the convolution of  and  from Figure 10 above.

B. Approach #2

In the second approach, we use the commutative property of convolution to express the convolution sum as
follows:

(92)

Table 1

n
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8

0 0 0 0 2 4 6 4 2 0 0 0 0

0 1 2 -1 3

1 1 2 -1 3

2 1 2 -1 3

3 1 2 -1 3 a

a. Dot product terms not shown for space reasons ( ).

4 b

b. Dot product terms not shown for space reasons ( ).

1 2 -1 3

5 1 2 -1 3

6 1 2 -1 3

7 1 2 -1 3

8 1 2 -1 3

k

x k[ ]

h 0 k–[ ] y 0[ ] 0 0 0 2, , ,[ ] 1 2 1– 3, , ,[ ]⋅ 6= =

h 1 k–[ ] y 1[ ] 0 0 2 4, , ,[ ] 1 2 1– 3, , ,[ ]⋅ 10= =

h 2 k–[ ] y 2[ ] 0 2 4 6, , ,[ ] 1 2 1– 3, , ,[ ]⋅ 18= =

h 3 k–[ ] y 3[ ] 16=

2 4 6 4, , ,[ ] 1 2 1– 3, , ,[ ]⋅

h 4 k–[ ] y 4[ ] 18=

4 6 4 2, , ,[ ] 1 2 1– 3, , ,[ ]⋅

h 5 k–[ ] y 5[ ] 6 4 2 0, , ,[ ] 1 2 1– 3, , ,[ ]⋅ 12= =

h 6 k–[ ] y 6[ ] 4 2 0 0, , ,[ ] 1 2 1– 3, , ,[ ]⋅ 8= =

h 7 k–[ ] y 7[ ] 2 0 0 0, , ,[ ] 1 2 1– 3, , ,[ ]⋅ 2= =

h 8 k–[ ] y 8[ ] 0 0 0 0, , ,[ ] 1 2 1– 3, , ,[ ]⋅ 0= =

b b1 b2 … bl, , ,[ ]=

a b⋅ a1 a2 … al, , ,[ ] b1 b2 … bl, , ,[ ]⋅ akbk
k 1=

l

∑= =

x n[ ] h n[ ]

-4 -2 0 2 4 6 8 10
0

5

10

15

20

Figure 11

x n[ ] * h n[ ]

n

y n[ ] h n[ ] * x n[ ] h k[ ]x n k–[ ]
k ∞–=

∞

∑= =
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Table 2 below illustrates how we can use equation (92) to compute the convolution sum. We first write down
 and . Then, we multiply each nonzero element of  by , and shift the resulting vectors to

the right by  spaces. For example,  corresponds to a zero shift, while  corresponds to a shift of
two time units to the right. Finally, to compute , we add the resulting columns. Note that this procedure
results in exactly the same result as the previous approach.

7. Conclusion
In this set of notes, we first introduced important properties of discrete-time systems, including causality, time-
invariance and linearity. We then defined the class of Linear, Time-Invariant (LTI) systems, and showed how the
impulse response completely characterized such systems through the discrete-time convolution operator. Next,
we showed important properties of the convolution operator, such as the commutative and associative properties,
and illustrated two approaches for computing the convolution sum by hand for finite-impulse response systems.

x n[ ] h n[ ] h k[ ] x n[ ]
k k 0= k 2=

y n[ ]

Table 2

0 1 2 3 4 5 6 7 8

2 4 6 4 2

3 -1 2 1

6 12 18 12 6

-2 -4 -6 -4 -2

4 8 12 8 4

2 4 6 4 2

6 10 18 16 18 12 8 2 0

n

x n[ ]

h n[ ]

h 0[ ]x n 0–[ ]

h 1[ ]x n 1–[ ]

h 2[ ]x n 2–[ ]

h 3[ ]x n 3–[ ]

y n[ ]
- 14 -
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