EEL3135: Discrete-Time Signals and Systems Frequency Response of FIR Filters

1

Frequency Response of FIR Filters

Introduction

In this set of notes, we introduce the idea of the frequency response of LTI systems, and focus specifically on the
frequency response of FIR filters.

Steady-state frequency response of LTI systems
A. Introduction

Let us consider a discrete-time, LTI system with impulse response /[n] . One question of great significance
in analyzing systemsis how such a system will modify sinusoidal inputs of various frequencies. For example,
a low-pass filter might allow low-frequency components of a signal through relatively unchanged, while
dampening or attenuating higher frequencies.

In continuous time, we represent frequencies as cosine functions:
x(t) = cos(2mft) D

where /" denotes the frequency (in Hz) of x(¢) . The discrete-time equivalent is, of course, just a sampled ver-
sion of x(¢):

x[n] = x(n/f) = cos[2nf(n/f,)] 2

where f, denotes the sampling frequency in Hz. Note that in equation (2), we can group all the constant terms
inside the cosine function together:

0 = 2nf/f, ©)
such that,
x[n] = cos(nB), —o<n<eco, 4

Note that 6 denotes the normalized frequency variable that we have seen before in our discussion of the dis-
crete-time Fourier transform (DTFT), and if we know £, for aparticular discrete-time signal x[n] we can use
equation (3) to convert between the frequency variable 6 and corresponding real frequencies f.

So, for adiscrete-time LTI system with impulse response ~[n] , we will now derive the output y[#] for adis-
crete-time sinusoidal input x[#] asgiven by equation (4).

B. Derivation
Recall from the inverse Euler relations, that we can express equation (4) in terms of two complex exponen-
tials:

eln® 4 o—ind

: ©)

x[n] = cos(nb) =

Therefore, by linearity, we can compute the output y[#] by computing the outputs y,[#] and y,[n] for the
following two complex exponentials:

x,[n] = ein® and x,[n] = emind (6)
such that,
x[n] = %xl[n] + %xz[n] , and, @)
(1] = 3y, 1]+ 27,0n] ®
yinl = 5y,[nl+3y,ln].

For an LTI system the output corresponding to an input x[#] and impulse response /#[r] can be written as:
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ylnl = hin]* x[n] = Y hlklx[n—k]

k = —o

Hence,
yi[n]l = hln]* x| [n] = Y, hlklx[n—k]
k = —co
yilnl = Y hlkleln=00
k= —o
yiln] = ein® z hlk)e ko

k = —o

Now, recall our definition of the DTFT for a sequence x[#n] :

X9 = Y x[n]edn®

n = —o

Therefore, we can rewrite equation (12) as:

yi[n] = el"®H(el®)

©)

(10)

(11)

(12)

(13)

(14

where H(ei®) denotes the DTFT of the impulse response 4[n]. We can pursue a similar derivation for

x,[n]:

yoln] = hln]* x\[n] = Y, hlklx,[n—k]

k = —o

ylnl = Y hlkled (=R

k = —co

P L z h[k]ejke

k= —oo

»,lnl
Note that we can rewrite equation (17) as:
yyln] = edm0H ()

where,

H(ed®) = 3 hlk]lelk®.

k = —o

(15

(16)

17)

(18)

(19)

Using equation (18), we now can compute the output y[»] for the sinusoidal input x[#] :

1 1
yln] = §y1[”] + §y2[”]

ylnl = SenOH (eI + Lein0pi(e30)

(20)

(21)

Note from the definitions of H(el®) and H(e19), that the following relationships hold true:
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[H(e9)| = |H(el9)] (22)

ZH(e9) = —ZH(el9) (23
We now substitute,

H(el®) = |H(el®)]el <H() and H(eT19) = [H(eT19)]el <H () (24)

into equation (21), and then use properties (22) and (23) to simplify the expression for y[n] :

yInl = SelnO|H(el®)]e ) + e300 o H (T (25
ylnl = %[‘H(eie)\ei"*’*ié”(eje) +|H(el )| e=1n0 -1 £H(] (26)
. j[n0+ ZH(ei®)] 4 ,—j[n0 + LH(ei®)]

yinl = |9 = ) (27

yln] = |H(el®)| cos[n® + LH(el9)]. (28)
To summarize, the output of an LTI system with impulse response %[r] for asinusoidal input x[#],

x[n] = cos(nB),—o<n<oo, (29)
isgiven by,

yln] = |H(eI®) cos[n6 + LH(I®)], (30)
where,

H(el®) = Y h[k]led%® = DTFT of theimpulse response A[n] . (31)

k = —o

The function H(el®) is known as the frequency response function, and gives us the amplitude and phase at
the output of the system for sinusoids of different frequencies. That isfor all discrete-time frequencies 6 , we
can use equation (30) to compute how different frequency components at the input are modified (both in
amplitude and phase).

C. Generalization to arbitrary sinusoidal inputs

Now, we want the generalize the result in equations (29) through (31) for general sinusoidal inputs of the

form,

x[n] = Acos(nO+ ), —o<n<eco. (32
Due to linearity and time invariance, the output y[r] will just be a scaled and time-shifted version of equa-
tion (30):

yln] = |H(el®)|Adcos[nB + o+ ZH(el9)]. (33)

D. Frequency response of FIR filters

FIR LTI systems are given by the following general equation:

M
ylnl = Y, byx[n—kl (34)
k=0

Theimpulse response /[n] for such systemsis given by,
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b
h[n] = { " ne {0,1,...., M} (35)

0 elsewhere
Therefore, we can rewrite the frequency response function H(el®) in terms of the filter coefficients b i for
FIR systems:

M
H(el®) = ¥ be ko, (36)
k=0

Note that the limitsin the summation above are now no longer infinite. Below, we explore properties of asim-
ple FIR filter.

3. SimpleFIR filter example
A. Introduction
Consider the following simple FIR system:
yln] = 1/2x[n] + 1/2x[n—1] (37)

In a previous lecture, we have already seen that the filter in equation (37) is an example of a low-pass filter
(see 1/16 lecture notes). Intuitively, we can see thisis the case if we consider the output of the system for two
different inputs x,[»#] and x,[n] :

x,[n] cos(ne)\ezo =1, —o0<n<oo, (38)

1
x,[n] = cos(ne)\ezfC = cos(nm) = {_1 Z _ Z:;n, —o<n< oo, (39)

Note that the first input sequence corresponds to zero frequency (6 = 0), while the second input sequence
corresponds to the highest possible normalized frequency (6 = m). For these inputs, the corresponding out-
puts are given by,

yilnl = 172(1)+1/2(1) = 1 and (40)
yylnl = 1/2(=1)+1/2(1) = 0. (41)

These input and output sequences are plotted in Figure 1 below. Thus, it appears that thisfilter passes through
the lowest frequency unchanged, while completely zeroing out the highest possible discrete-time frequency;
that’s why we would call thisfilter alow-passfilter. In the next section, we will derive the frequency response
function H(el®) for thefilter in equation (37), and explore some of its properties.

B. Frequency response function
From the definition in equation (36), H(el®) for thefilter in equation (37) is given by,

1
H(ei®) = 3 %e‘jke - %+%e—19. (42)
k=0

We can rewrite equation (42) as:

H(el®) = e-19/2(%e19/2+%e—19/2) = ¢19/2¢0s(0/2) (43)

From equation (43), |H(el9)| and ZH(el®) are straightforward to compute:

|H(el®)] = |ed92¢0s(8/2) = |e1972|cos(0/2)] = |cos(8/2)| (44)
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NI 1
_1 T
I

-0/2 cos(6/2)>0

(45)
—0/2+m c0s(8/2)<0

ZH(el®) = £e719/2¢05(0/2) = {

In Figure 2, we plot |[H(el®)| and £H(el®) asafunctionof 6 e [, m] (recall that outside the plotted inter-
val, H(el®) (i.e. the DTFT) is periodic).
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0.8 1
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0
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Figure2

Note that the magnitude plot of the frequency response function confirms our specific resultsfor 6 = 0 and
6 = m.Also, notethat |H(el®)| gives usthe scaled output magnitudes for input frequencies between 6 = 0
and 6 = t, while the phase plot ZH(el®) tells us the phase delay for every frequency. Note that the phase
profilein Figure 2 is known as alinear phase response, because the phase ZH(el®) isalinear function of @
intheinterval 6 € [—r, =] . It might seem strange that different frequencies appear to get shifted by different
amounts; however, the linear phase property of this system is exactly what is desirable if we don’t want to
create phase distortion in asignal. This concept of phase distortion is considered in greater detail in the fol-
lowing section.
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C. Linear phase and phase distortion
Let us see how the linear phase characteristic of the filter in equation (37) affects the output of the system for
different frequencies. From eguation (33), we can write the output y[»] as afunction of the frequency vari-
able 6:

yln] = |H(el®)| cos[n6 + £H(el?)]
= |cos(8/2)|cos[n®—6/2] (46)
= |cos(0/2)|cos[0(n—1/2)]

Note that the linear phase characteristic of the filter resultsin exactly the same shift of —1/2 for al normal-
ized frequencies 6 . Therefore, an idea filter should have a phase response of the following form:

ZH(el®) = a8 (47)

For thefilter in equation (37) a = —1/2; infact, causal filterswill aways have the property that a <0 . Also
note that more negative values of « introduce a greater time delay into the overall system response.

Let us now compare two hypothetical filters with the following frequency response functions:

H,(el®) = ¢159 and H,(el®) = 5.1 (48)
Both filters have the same magnitude responses,

|[H,(e1®)] = [H,(el®)] = 1 (49)
but different phase responses:

ZH,(el®) = =56 and ZH,(el®) = 5. (50)

Note that the first filter has a linear-phase response, while the second filter has a constant phase response. We
now test this system with the following input sequence:

= Z_TC 4_75 —o0 [<S)
x[n] = cos(son)+2005(50n), <n<eo, (51)

The corresponding outputs of the two systems will be given by,

yin] = x[n-10] = cos@—g(n—S))+2cos(‘;—g(n—5)) (52)

V,ln] cos@—gn - 5) + 2005(2—371 - 5) . (53)
Theinput and two output sequences are plotted in Figure 3 below. Note that the first system resultsin an out-
put that isidentical to the input except for a shift to the right of five time units; the second system, however,
resultsin an output that is a distortion of the input, because the two input frequencies get shifted by constant
amounts, not amounts proportional to each frequency component. Thus, y,[#] exhibits phase distortion; that
is although both frequenciesin the input signal are present at the output with the same amplitude as the input,
the signal becomes distorted by constant phase shifts to each frequency component.

1. Notethat H, correspondsto the system y[n] = x[n—5], while the second corresponds to a filter
with complex filter coefficients.
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D. Comparison to time-domain convolution

For an FIR system, we now have two ways of computing the output y[»] for agiven sinusoidal input. We can
either apply equation (33) above, or compute y[x] in the time-domain directly through the convolution sum.
Consider, for example, the following sinusoidal input x[»n] applied to the system in equation (37):

x[n] = cos(0n), —~<n<e,0e [-m n]. (54)

Using the convolution sum, the output y[#] isgiven by,

ylnl = hln]* x[n] = Y, hlklx[n—k] (55)
k = —o
: I I
ylnl = Y, bxln—k] = ix[n] +§x[n—1] (56)
k=0
y[n] = %cos(en)+%cos(9(n—l)) (57)

From equation (46), we can also compute the output y[»] from the frequency response function:
y[n] = |cos(0/2)|cos[0(n—1/2)] (58)

We can show that the outputsin (57) and (58) are equivalent by applying the following trigonometric identity:
cos(a)cos(B) = %cos(a—B)+%cos(a+B) (59

Since cos(6/2) >0, 6 € [-r&, ], we can first rewrite equation (58) as:
y[n] = cos(0/2)cos[O(n—1/2)] (60)
Now we apply trigonometric identity (59) to equation (60) by letting:
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o =6/2adB = B(n—1/2) (61)
y[n] = %005(6/2—9(11—1/2)) +%cos(9/2 +0(n—1/2)) (62)
yn] = %cos(— on+0)+ %cos(en) (63)
yln] = %cos(en)+%cos(9(n—1)). (64)

Note that equation (64) isidentical to the output derived directly from the convolution sum [equation (57)]. In
the next section, we will extend our result for sinusoidal inputs (i.e. relationship between time-domain convo-
lution and the frequency response function) to arbitrary input sequences x[#n] .

4. Time-domain convolution in the frequency domain
A. Introduction

So far, we have shown that the analytic output y[#] of an LTI system to asinusoidal input x[#],

x[n] = Acos(nO+ ), —o<n<e,0ec [-xw n], (65)
isgiven by,
y[n] = |[H(el®)|Adcos[nB + o+ LH(e9)] (66)

where H(el®) isthe frequency response of the system (i.e. the DTFT of the impulse response /[#]). Below
we devel op the system response of an LTI system for arbitrary input sequences x[#] in the frequency domain
and derive an important result that relates convolution in the time domain with multiplication in the frequency
domain.

B. Frequency-domain computation of system output

Let us consider the output of a system for an arbitrary input sequence x[#] . The DTFT X(el9),

oo

X(eje) = 2 x[n]e_j”e (67)

n = —oco

gives us the frequency content of x[»] asafunction of the normalized frequency variable 8 . That is, X(el®)

tells us the magnitude and phase of each frequency 6 that makes up the time-domain signal x[»] . The fre-
quency response function H(el®) , on the other hand, tells us how each frequency component of x[#] will be
modified by the system. Therefore, the frequency representation of the output Y(el®) is given by,

Y(el®) = X(el®)H(el®) (68)

where Y(el9) representsthe DTFT of the output y[#] . If we compare equation (68) to the convolution repre-
sentation of the output in the time domain,

yln] = x[n] * h(n] (69)

we see that convolution in the time domain corresponds to multiplication in the frequency domain. Thisisan
extremely important result, that applies not just to discrete-time systems, but to continuous-time systems as
well. Below, we show analytically that equations (68) and (69) are equivalent. The right-hand side of equation
(68) can be written as:

Y(el®) = X(el®)H(el®) = [ > x[m]e_jme]( 3 h[p]e_jpeJ (70)
=

m = —oo = —oc0
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Y(el®) = Z Z x[m]e 1mOn[pleir® (71)

m = —oop = —oo

Y(el® = ¥ ¥ x[m]h[pled(m*p)O (72)

m = —oop = —oo

From equation (69) and the definition of the DTFT, we can write the following:

n = —oco n = —o

Y(e® = Y ylnledn® = ¥ ( 3 x[k]h[n—k])e‘j”e (73)

k = —o

Y(e® = Y Y x[klh[n—k]ed"® (74)
Nn=—cok=—0
We now have to show that equations (72) [derived from (68)] and (74) [derived from (69)] are equivalent. To
do this, let us make the substitutions,

=m (75
n—k=p (76)
into equation (74):

Y(® = ¥ Y x[mlh[pled(m*r?® (77)

p = —om = —oo

Note that equation (77) is equivalent to (72) (except for the order of summation, which can readily be inter-
changed). Thus, we have shown the following important correspondence:

yln] = x[n]* h[n] & Y(9) = X(J®)H(eI?). (78)

5. Conclusion

The Mathematica notebook “fir_frequency_response.nb” was used to generate the example on phase distortion,
and shows the equivalence of time-domain convolution with frequency-domain multiplication for a ssimple FIR
system. In this set of notes, we introduced the concept of frequency response for LTI systems, gave the formula
for the frequency response of an FIR LTI system in terms of the coefficients of the system’s difference equation
[equation (36)], and explored some of the properties of the frequency response function through asimple FIR fil -
ter example. Finally, we showed that convolution in the time domain corresponds to multiplication in the fre-
guency domain.
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