FIR Filter Design: Part II

1. Introduction

In this set of notes, we consider how we might go about designing FIR filters with arbitrary frequency responses, through composition of multiple single-peak general filters.

2. General FIR filter

A. Introduction

Consider the frequency response $H_{g}\left(e^{\mathbf{j} \theta}\right)$ plotted in Figure 1 below. This filter passes through all normalized frequencies θ without modification, but amplifies $(a>1)$ or attenuates $(a<1)$ frequencies in the range $\theta \in\left[\theta_{c_{1}}, \theta_{c_{2}}\right]$; also, there is a finite-width transition region of width Δ from $H_{g}\left(e^{\mathbf{j} \theta}\right)=1$ to $H_{g}\left(e^{\mathbf{j} \theta}\right)=a$. As we will show below, assuming that we know the impulse response $h_{g}[n]$ of this filter in terms of $a, \theta_{c_{1}}$, $\theta_{c_{2}}$ and Δ, we can easily construct filters that have more complex frequency responses.

B. Derivation of infinite impulse response

Below, we will use the inverse DTFT to determine the time-domain impulse response $h[n]$ of the above filter, assuming no delay. For this filter, the inverse DTFT is given by,

$$
\begin{align*}
h_{g}[n]= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} H_{g}\left(e^{\mathbf{j} \theta}\right) e^{\mathbf{j} n \theta} d \theta \tag{1}\\
h_{g}[n]= & \frac{1}{2 \pi} \int_{-\pi}^{-\left(\theta_{c_{2}}+\Delta\right)} e^{\mathbf{j} n \theta} d \theta+\frac{1}{2 \pi} \int_{-\left(\theta_{c_{2}}+\Delta\right)}^{-\theta_{c_{2}}}\left[\frac{a-1}{\Delta}\left(\theta+\theta_{c_{2}}\right)+a\right] e^{\mathbf{j} n \theta} d \theta+ \\
& \frac{1}{2 \pi} \int_{-\theta_{c_{2}}}^{-\theta_{c_{1}}} a e^{\mathbf{j} n \theta} d \theta+\frac{1}{2 \pi} \int_{-\theta_{c_{1}}}^{-\left(\theta_{\left.c_{1}-\Delta\right)}\right.}\left[\frac{1-a}{\Delta}\left(\theta+\theta_{c_{1}}\right)+a\right] e^{\mathbf{j} n \theta} d \theta+ \\
& \frac{1}{2 \pi} \int_{-\left(\theta_{c_{1}}-\Delta\right)}^{\left(\theta_{\left.c_{1}-\Delta\right)}\right.} e^{\mathbf{j} n \theta} d \theta+ \tag{2}\\
& \frac{1}{2 \pi} \int_{\left(\theta_{c_{1}}-\Delta\right)}^{\theta_{c_{1}}}\left[\frac{a-1}{\Delta}\left(\theta-\theta_{c_{1}}\right)+a\right] e^{\mathbf{j} n \theta} d \theta+\frac{1}{2 \pi} \int_{\theta_{c_{1}}}^{\theta_{c_{2}}} a e^{\mathbf{j} n \theta} d \theta+ \\
& \frac{1}{2 \pi} \int_{\theta_{c_{2}}}^{\left(\theta_{c_{2}}+\Delta\right)}\left[\frac{1-a}{\Delta}\left(\theta-\theta_{c_{2}}\right)+a\right] e^{\mathbf{j} n \theta} d \theta+\frac{1}{2 \pi} \int_{\left(\theta_{c_{2}}+\Delta\right)}^{\pi} \mathbf{e}^{\mathbf{j} n \theta} d \theta
\end{align*}
$$

The integral in equation (2) is tedious to compute and simplify; therefore, we solve the integration using Mathematica (see "fir_filter_design_part2.nb") and arrive at the following expression for $h[n]$:

$$
\begin{align*}
h_{g}[n] & =(1-a)\left[\frac{\cos \left(n\left(\theta_{c_{1}}-\Delta\right)\right)+\cos \left(n\left(\theta_{c_{2}}+\Delta\right)\right)-\cos \left(n \theta_{c_{1}}\right)-\cos \left(n \theta_{c_{2}}\right)}{n^{2} \pi \Delta}\right]+\frac{\sin (n \pi)}{n \pi} \\
-\infty & <n<\infty \tag{3}
\end{align*}
$$

Note that equation (3) can be further simplified, since,

$$
\begin{equation*}
\frac{\sin (n \pi)}{n \pi}=\delta[n] \tag{4}
\end{equation*}
$$

for integer n. Therefore,

$$
\begin{equation*}
h_{g}[n]=(1-a)\left[\frac{\cos \left(n\left(\theta_{c_{1}}-\Delta\right)\right)+\cos \left(n\left(\theta_{c_{2}}+\Delta\right)\right)-\cos \left(n \theta_{c_{1}}\right)-\cos \left(n \theta_{c_{2}}\right)}{n^{2} \pi \Delta}\right]+\delta[n],-\infty<n<\infty . \tag{5}
\end{equation*}
$$

Note that, although $h_{g}[n]$ is infinite in length, both forwards and backwards in time, the impulse response does decay to zero as $|n| \rightarrow \infty$. Figure 2 below, for example, plots $h_{g}[n],-50 \leq n \leq 50$, for $\theta_{c_{1}}=1$, $\theta_{c_{2}}=3 / 2, \Delta=1 / 10$ and $a=2$.

Figure 2

C. Approximating of infinite impulse response with a causal FIR filter

Now, we will try to approximate the infinite impulse response in equation (5) with a causal FIR filter using the same procedure as we have used before: First, we will retain values for $h_{g}[n]$ only for a limited range of n,

$$
\begin{equation*}
-n_{\max } \leq n \leq n_{\max } \tag{6}
\end{equation*}
$$

since values of $h_{g}[n]$ approach zero as $|n| \rightarrow \infty$. Let us denote this finite impulse response as $h_{g 1}[n]$, such that,

$$
h_{g 1}[n]= \begin{cases}h_{g}[n] & -n_{\max } \leq n \leq n_{\max } \tag{7}\\ 0 & \text { elsewhere }\end{cases}
$$

Second, we will shift $h_{g 1}[n]$ to be causal; let us denote the resulting impulse response as $\hat{h}_{g}[n]$ such that,

$$
\begin{equation*}
\hat{h}_{g}[n]=h_{g_{1}}\left[n-n_{\max }\right] \tag{8}
\end{equation*}
$$

Note that this shift will not change the steady-state frequency response of the resulting system, except to introduce a delay at the output. Thus, the difference equation corresponding to $h_{g}[n]$ can be written as:

$$
\begin{equation*}
y[n]=\sum_{k=0}^{2 n_{\max }} b_{k} x[n-k] \tag{9}
\end{equation*}
$$

where,

$$
\begin{equation*}
b_{k}=\hat{h}_{g}[n]=h_{g}\left[-n_{\max }+k\right], k \in\left\{0,1, \ldots, 2 n_{\max }\right\} \tag{10}
\end{equation*}
$$

3. Composite filter example

A. Introduction

Given that we have computed the impulse response $h_{g}[n]$ for the filter in Figure 1, we are now in position to construct filters with more complex frequency responses. Suppose, for example, we wanted to construct a filter with the idealized frequency response $H_{c}\left(e^{\mathbf{j} \theta}\right)$ plotted in Figure 3 below for $\theta \in[0, \pi]$. (Since $H\left(e^{\mathbf{j} \theta}\right)$ is an even function, we do not need to explicitly plot it for $\theta=[-\pi, 0)$.)

We could, of course, derive the impulse response $h_{c}[n]$ of this filter by breaking up the inverse DTFT into piecewise-continuous integrals (as we did, for example, in equation (2) above) and solving the resulting expression. Given that we have already compute $h_{g}[n]$ [equation (5)], this difficult and tedious procedure is not necessary, however. Instead, we can treat $H_{c}^{g}\left(e^{j \theta}\right)$ as a composite filter consisting of two different $H_{g}\left(e^{\mathbf{j} \theta}\right)$ filters connected in series.

Figure 3

Let,

$$
\begin{equation*}
H_{1}\left(e^{\mathbf{j} \theta}\right)=\left.H_{g}\left(e^{\mathbf{j} \theta}\right)\right|_{a \rightarrow a_{1}, \theta_{c 1} \rightarrow \theta_{1}, \theta_{c 2} \rightarrow \theta_{2}, \Delta \rightarrow \Delta_{1}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{2}\left(e^{\mathbf{j} \theta}\right)=\left.H_{g}\left(e^{\mathbf{j} \theta}\right)\right|_{a \rightarrow a_{2}, \theta_{c 1} \rightarrow \theta_{3}, \theta_{c 2} \rightarrow \theta_{4}, \Delta \rightarrow \Delta_{2}} \tag{12}
\end{equation*}
$$

where $H_{g}\left(e^{\mathbf{j} \theta}\right)$ denotes the filter in Figure 1. Then, we can represent $H_{c}\left(e^{\mathbf{j} \theta}\right)$ in Figure 3 as,

$$
\begin{equation*}
H_{c}\left(e^{\mathbf{j} \theta}\right)=H_{1}\left(e^{\mathbf{j} \theta}\right) H_{2}\left(e^{\mathbf{j} \theta}\right) \tag{13}
\end{equation*}
$$

or, in the time domain as,

$$
\begin{equation*}
h_{c}[n] \approx \hat{h}_{1}[n] * \hat{h}_{2}[n] \tag{14}
\end{equation*}
$$

where $\hat{h}_{1}[n]$ and $\hat{h}_{2}[n]$ denote the causal FIR approximations of the infinite impulse response of filters $H_{1}\left(e^{\mathbf{j} \theta}\right)$ and $H_{2}\left(e^{\mathbf{j \theta} \theta}\right)$, respectively. Below, we give one example of such a composite filter.

B. Example

Let us assume that we want to filter a piece of music, sampled at $f_{s}=32 \mathrm{kHz}$, with the composite filter shown in Figure 3 and the following numeric values:

$$
\begin{align*}
& a_{1}=10^{(12 / 20)} \approx 3.981 \cdot f_{1}=375 \mathrm{~Hz}, f_{2}=1500 \mathrm{~Hz} \tag{15}\\
& a_{2}=10^{(-12 / 20)} \approx 0.2512, f_{3}=6 \mathrm{kHz}, f_{4}=15 \mathrm{kHz} \tag{16}
\end{align*}
$$

and $\Delta_{f}=100 \mathrm{~Hz}$ for both segments. Note that the value of a_{1} corresponds to +12 dB (decibels), while the value of a_{2} corresponds to $-12 \mathrm{~dB} .{ }^{1}$ First, we need to convert the frequency values above to normalized frequency values using the conversion formula:

$$
\begin{equation*}
\theta=\frac{2 \pi f}{f_{s}} \tag{17}
\end{equation*}
$$

Applying equation (17), we get the following values in terms of normalized frequency for $f_{s}=32 \mathrm{kHz}$:

$$
\begin{equation*}
\theta_{1}=3 \pi / 128, \theta_{2}=3 \pi / 32, \theta_{3}=3 \pi / 8, \theta_{4}=15 \pi / 16 \text { and } \Delta_{1}=\Delta_{2}=2 \pi \Delta_{f} / f_{s}=\pi / 160 \tag{18}
\end{equation*}
$$

The composite filter transfer function $H_{c}\left(e^{\mathbf{j} \theta}\right)$ for the numeric values in (18) is plotted in Figure 4 below, in terms of normal amplitude, and decibel amplitude.

Figure 4
The FIR impulse-function approximations $\hat{h}_{1}[n]$ and $\hat{h}_{2}[n]$, corresponding to the filters defined by (11) and (12), respectively, are plotted in Figure 5 below for $n_{\max }=500$. Note that $n_{\max }$ was chosen such that the $h[n]$ coefficients near $n=0$ and $n=2 n_{\max }$ are very close to zero in value. Now, we compute $h_{c}[n]$, the composite-filter FIR impulse-function approximation, by convolving $h_{1}[n]$ and $h_{2}[n]$ [see equation (14) above]; $h_{c}[n]$ is plotted in Figure 6.
Observe from Figure 6, that $h_{c}[n]$ is approximately twice as long as $\hat{h}_{1}[n]^{\prime}$ and $\hat{h}_{2}[n]$ (2001 vs. 1001) as should be expected from the convolution operator. Also note that many of the $h_{c}[n]$ coefficients are very close to zero in value; hence, we can derive a shorter FIR filter by retaining only $h_{c}[n]$ values in the range $n \in\left[1001-n_{2}, 1001+n_{2}\right]$, and shifting the resulting impulse response to start at $n=0$. From Figure 6, we suggest that a value of $n_{2}=300$ seems appropriate since $h_{c}[n]$ values for $n<700$ and $n>1300$ appear negligibly small. Let us denote the shortened FIR filter as $\hat{h}_{c}[n]$:

$$
\begin{equation*}
\hat{h}_{c}[n]=h_{c}\left[n+1001-n_{2}\right], n \in\left\{0,1, \ldots, 2 n_{2}\right\}, n_{2}=300 \tag{19}
\end{equation*}
$$

1. For an amplitude A, the corresponding $d B$ value is given by $20 \log _{10} A$.

Figure 5

Figure 6

This impulse response ($\hat{h}_{c}[n]$) is plotted in Figure 7 below. Therefore, the difference equation corresponding to this impulse function is given by,

$$
\begin{equation*}
y[n]=\sum_{k=0}^{2 n_{2}} b_{k} x[n-k] \tag{20}
\end{equation*}
$$

where,

$$
\begin{equation*}
b_{k}=\hat{h}_{c}[k], \quad k \in\left\{0,1, \ldots, 2 n_{2}\right\}, n_{2}=300 \tag{21}
\end{equation*}
$$

In Figure 8, we plot the magnitude frequency response $\hat{H}_{c}\left(e^{\mathbf{j} \theta}\right)$ of system (20) given by,

Figure 7

$$
\begin{equation*}
\hat{H}_{c}\left(e^{\mathbf{j} \theta}\right)=\sum_{n=0}^{600} \hat{h}_{c}[n] e^{-\mathbf{j} n \theta} \tag{22}
\end{equation*}
$$

both as a function of normalized frequency θ and real frequency f. Note how closely we are able to approximate our desired frequency response (see Figure 4) with this FIR filter of length 601; also note that we never had to compute $h_{c}[n]$ using the inverse DTFT, but rather computed it through time-domain convolution of $\hat{h}_{1}[n]$ and $\hat{h}_{2}[n]$.

Figure 8

To see this filter in action, we convolve $\hat{h}_{c}[n]$ with a sampled music file $x_{m}[n]{ }^{1}$, and compare the frequency content of the original music file $x_{m}[n]$ and the filtered music file $y_{m}[n]$ where,

$$
\begin{equation*}
y_{m}[n]=x_{m}[n] * \hat{h}_{c}[n] . \tag{23}
\end{equation*}
$$

In Figure 9 below, we plot the spectrograms ${ }^{2}$ of $x_{m}[n]$ and $y_{m}[n]$, where we analyze frequency content in one-second long segments with a 50% overlap. We also plot one column of both spectrograms (the magnitude FFT for one of the one-second segments of $x_{m}[n]$ and $\left.y_{m}[n]\right)$ in Figure 10 below. Note, how the frequency content in the range $f \in[375 \mathrm{~Hz}, 1500 \mathrm{~Hz}]$ has been amplified, while the frequency content in the range $f_{A} \in[6 \mathrm{kHz}, 15 \mathrm{kHz}]$ has been significantly attenuated, as we should expect from the frequency response of $h_{c}[n]$.

1. See the web page for this music file - a 23.06 second segment of Kenny Roger's "The Gambler," sampled at $f_{s}=32 \mathrm{kHz}$.
2. Recall from previous notes that the spectrogram gives us the magnitude frequency content of a signal for short segments of a long discrete-time sequence.

Figure 9

Figure 10

4. Conclusion

The Mathematica notebook "fir_filter_design_part2.nb" was used to generate the detailed filtering example in this set of notes; that notebook also contains a second composite filter example for the same piece of music, where all the design values (i.e. $\theta_{1}, \theta_{2}, \Delta_{1}, \theta_{3}, \theta_{4}$ and Δ_{2}) are the same, except the values for a_{1} and a_{2} are reversed; that is,

$$
\begin{equation*}
a_{1}=10^{(-12 / 20)} \text { and } a_{2}=10^{(12 / 20)} \tag{24}
\end{equation*}
$$

The filtered and unfiltered music segments referred to in these notes is available in mp 3 and wav formats on the course web site.

