EEL3135: Discrete-Time Sgnals and Systems Introduction to IR systems

1.

Intr oduction to IIR systems

Intr oduction

So far, we hae etensvely explored the analysis and design of FIRefis. In this set of notes, we consider the
analysis of IIR (infiite-impulse response)ltérs. Specifially, we will address the folleing three important
guestions concerning IIRIti&rs:

1. How do we compute the impulse response of IHer§?
2. How do we analyze the stability of lIRtérs, something we did notVeato consider for FIRIfers?
3. How do we compute the frequenesponse of an IIRIfer?

All of the abave questions will be sobd with a ner transform, namely the-transform As we will see shortly
the z-transform is a generalization of the DTRRd is analogous to the Laplace transform fdeihtial equa-
tions.

Given that we heae to worry about the stability of IIR systems and that such systems are nforaltdid ana-
lyze, we might vonder wly we bother with these systems at all. IR systems aréhyof study for at least three
important reasons: (1) as discrete-time approximations fefreliftial equations for computer simulation; (2) the
analysis of discrete-time, or computefthe-loop feedback control systems; and (3) in the design of shérter fi
ters with frequengresponse characteristics similar to those of longer RERdi

The z-transform

A. Intr oduction

In this section, we introduce awéransform, thez-transform, which will allev us to analyze IIR systems of
the following form:

N M

y[n] = % ay[n-I]+ % bx[n-k] 1)
=1 k=0

where some of the, coeficients are nonzero constartée have already seen some simplemples of IIR
(or recursie) systems in the 1/24 and 1/29 lecture nofls.z-transform will allav us to analyze a more
general class of IIR systems by werting diference equations to polynomial equations.

B. Definition

Thebilateral z-transform X(z) of a discrete-time sequenggn] is defned as:

o)

X(z) = z X[n]z™" (2)

n=—ow
If we compare the defition of X(z) to the defiition of the DTFTX(el ),

X(el®) = S x[n]e-in® 3)

n=—oo

we can derie a relationship between thetransform and the DTET

X(el9) = X(2) (4)

z=d0"

Below, we derve some important transform pairs that associate time-domain signals with their vespecti
transform; we will use these transform pairs later in our analysis of lIR systems.




EEL3135: Discrete-Time Sgnals and Systems Introduction to IR systems

C. Transform pairs

Below, the < symbol denotes a correspondence between the time-domain representation of a signal and
the z-domain representation of that same signal.

Linearity:

ax [n] +Bx[n] = aXy(2) +BX,(2) (%)
Proof: Let,

wln] = ax;[n] +Bx,[n]. (6)

Then, by defiition (2),

o]

W(2) = 3 wln]z" (7)

W(z) = 5 (ax[n]+px,[n)z™" (8)

W(z) = z ax,[n]z"+ Bx,[n]z " 9)

o2 o o°Z 0

W(z) = aOd :Z_wxl[n]z— %+ Ba\zz_wxz[n]z— %: aX;(2) + BX,(2). (10)
Time-shift

x[n-nygl = Z™X(2) (11)
Proof: Let,

w[n] = x[n—ng] (12)

Then, by defiition (2),

[o0]

W@ = 5 wnjz" (13)
Wz = ¥ x[n-nglz" (14)

Let us mak the substitutiok = n—n, into equatior(14).

[0

Wz =y x[K]Z K+ o) (15)
k = —c0
02 0O
W(@) =20 § x[K]z*O = Z7"°X(2). (16)
= —00 D
Convolution:
X([n] * x,[n] = X;(2)X5(2) a7
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Proof: Let,
w[n] = x;[Nn] * X,[n]

Then, by defition (2),

W(z) = z w[n]z™"

n=—o

00

W(Z) = 5 (x[n] * x[n])z™"

n=—oo

> g2 0
W) = a(Z Xl[k]Xz[n—k]ET”

n=—oo

Let us mak the substitutioom = n—k into equatior(21).

00 (o] D
W(2) = 0 X4 [K] X[ m] Oz M+ K)
(2) m:z_m :Z_oo 1[KIX,[ ]D

W@ = 5 S (xq[KIZH)mlz™)

k=—om= -

= —00 00

W(z) = E . X [k]z"‘% S X [m]Z‘mB= X, (2)X,(2)
Q(z 1 =Z_ 2 0 1 AC

Discrete-time delta function

o[n] = 1
Proof: Let,
w[n] = 9[n]

Then, by defition (2),

W(z) = z w[n]z™"

n=—o

W(z) = ¥ 3[nz"=2z0=1.

n=—oo

Shifted discrete-time delta function

3[n-ny] - <z

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

Proof: We can dexie transform pai(29) two ways. First, we can appeal directly to the migbn of thez-

transform. Let,
w[n] = d[n-ng]

Then, by defiition (2),

(30)
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00

W(z) = Z w[n]z™" (31)
W) =y 3ln-nglz" = z M, (32)

Alternatively we could combine transform paikl) and(25). Let x[n] = d[n] . Then, by transform pair
(25),

X(z) = 1. (33)
Now we use transform paji1) to determine the-transform forw[n] = x[n—ng]:

W(z) = 270X(z) = 20, (34)
Discrete-time, ¥ponential step input

1

a”u[n] = m, |aj <Z. (35)
Proof: Let,
wln] = a"u[n] (36)

Then, by defition (2),
W(z) = z (@u[n])z" = z ahz™" (37)

n=—o n=0

laz Y <1, (38)

W(z) = 5 (azHn = T

1!
n=0 z

where, in(38), we hae used the infiite geometric sum identity:

: 1
n —
Z bn = _1—b’|b|<1' (39)
n=0
The conditionjaz™}| <1 determines the gion of cowvergence for thez-transform, and can be restated as
la| <z. Thus,
_ 1
W(z) = ——, || <z. (40)
1-azl

Although at this point it may seem odd that we took the time teaedgansform pai¢35), we will hare mary
occasions to use that particular transform pair in our analysis of IR sy3teetsmble bel summarizes the
transform pairs that we deed in this section.

Transform pair label win] = W(2)
Linearity ax,[n] +Bx,[n] = aXy(2) +BX,(2)
Time-shift x[n-nyg] = Z™X(2)
Corvolution [N *x[nl = X(2)Xy(2)
Discrete-time delta function: o[n] - 1
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Transform pair label win] = W(2)
Shifted discrete-time delta function: d[n—-ng] = z"M
Discrete-time, exponential step input: alu[n] - 1 ,lal <z
1-azl

3. Impulse response of IR systems
A. Intr oduction
In this section, we apply the-transform to devie the impulse response of |IRdis.

B. Derivation

Below, we apply thez-transform to the IIR diérence equation:

N M

yin] = 5 ayln-1]+ % bx[n-K] (41)
=1 k=0

From the transform pairs deeid in the preious section, we consider each term in equaddnseparately:

yin] = Y(2) (42)

N N N

S ayln-11 - Y a 7'Y(2) = Y(2) > & z7 (linearity and time-shift properties) (43)
|=1 =1 =1

M M M

Z bx[n-kK| « z bkz—kx(z) = X(2) z bkz—k (linearity and time-shift properties) (44)
k=0 k=0 k=0

Combining the results ¢f2) through(44):.

N M
Y2 =Y2) Y az!+X(2) S b,z ¥ (45)
=1 k=0
o N O M
YO - Y az'0= X2 § bz* (46)
0 =1 0 k=0
M
> b,z X
)\_2% - kz?\l (47)
-3 az’

Equation(47) gives us thez-transformH(z) of the impulse responddn] of the IIR system irf41).

M
b,z ¥
_ Y@ _ «=o
H(z) = X(2) - ) ; | (48)
-y az

=1
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H(z) is knawvn as thdransfer function of the system. So, for ginput sequencg[n] , whosez-transform is
given by X(z) , the output of the systegjn] , whosez-transform is gien by Y(z) , can be written in the-
domain as,

Y(z) = H(2)X(2) (corvolution property). (49)

As we will shav in the follaving sections, we can reger the time-domain representationstdfz) (i.e.
h[n]) andY(2) (i.e.y[n]) through algebraic manipulation and the transform pairsetpraiously.

C. Example #1
Let us consider the follaing first-order IIR system:
y[n] = ay[n—1] + bx[n] . (50)

By direct substitution, we can degithe impulse responsgn] of the system by letting[n] = d[n], and
assumingy[n] = 0, n<0:

h[0] = ay[-1] +b3[0] = b (51)

h[1] = ah[0] +bJ[1] = ah[0] = ba (52)
h[2] = ah[1] + bd[2] = ah[1] = ba? (53)
Generalizing for arbitrary,
h[n] = bau[n]. (54)
Alternatively, we can devie the impulse response through thé&ransform:
M
> b,z
= b
H(z) = X=9 = 55
2 X o) (55)
1-y az’!
=1
Applying transform pai(35),
h[n] = ba"u[n]. (56)
Note that equation®4) and(56) are equialent. N&t, we will consider a more complicatexiaenple.
D. Example #2
Let us consider the follaing general second-order IIR system:
y[n] = a;y[n—1] +a,y[n—2] + box[n] +b;x[n—1]. (57)

For this system, direct substitution will no longeor to reveal a general analytic solution for the impulse
responseh[n] . Therefore, let us try to dee the impulse respon$gn] instead through the-transform:

M
b, zK
go k by + b,z
H(z) = *=2 = - 5 (58)
(1-a,z+—-a,z7)
1-5 az’

=1

We will now try to getH(z) into a form that will allev us to apply property35) to write davn h[n] by
inspectionWe bain by factoring the denominator {®8) into:

(l-a,z1-a,z2) = (1-r;zY)(1-r,z7) (59)
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wherer, andr, are the roots of the polynomial equation,

?(1-a,z1-a,z7?) = 22-a;z-a, = 0, (60)
and are knan as thepoles of the system. Recall that for a polynomial of the form,

ax2+bx+c =0 (61)

the quadratic formula gés us the roots of equati@®il) as,

_ —b-4b2-4ac —b+.b2-4ac (62)
2a '

ry = andr, = >a

Applying the result in62) to equation(60), wherea = 1, b = —a; andc = —-a,, we get the follwing

roots for equatiotf59):
a, + ,/a? +4a, (63)

a, —,/af +4a,
2

ry = — andr, =
Next, we want to epressH(z) as follavs:

by +b,zt A A,
= +
(1-rizhH(@-r,zY)  (A-r,zh) (1-r,zY)

H(z) = (64)

where we need to determine treues ofA; andA, . The epression on the right-hand side of equatiéf)
will allow us to epressh[n] as:
h[n] = A;rflu[n] + A,rBu[n] [property(35)]. (65)

Below, we derve \alues forA; andA,, starting from equatio(64).

by + bzt A, O-r,zig A, O-r,z'0
= E O+ K; O (66)
(L-rizh(1-r,zY)  (A-r,zYh)d-r,zig (1-r,zh)i-r,z70
by + bzt _ A(L-r,z ) + A (1-1,Z71) 67)
(1-r,zh(1-r,z7) (1-ryzH(1-r,z7)
by + bzt = Aj(1-r,zY) +A(1-r,77) (68)
by+ bzl = (A +A,) +(—Ar,—Ayr)zt (69)
Note that in order for equatidf9) to hold, the follaving two equations must be true:
Al+A; = by (70)
—Ar,—=Ar = by (71)
Equationg70) and(71) are tw linear equations i, andA, and can be sobd forA; andA,:
b, + byr b, + byr
A1:1—°1,A2:1—02 (72)
ri=rs ra=r
Therefore, the impulse responsin] for IIR system(57)is given by
h[n] = A;rfu[n] + A,r3u[n] (73)

where,
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[52 [52
- af +4a, oyt af +4a, _ by +bgryg
ry = Iy = ,Al =
2 2 ry=ro

andA

b, +byr,

5 =

ro—rq

(74)

Note that the solution fdn[n] in equationg73) and(74) only works for distinct roots, i.e.; #r,; also note
that equation$73) and(74) completely specify the impulse response of the system in terms dfehedef-

ficientsa,, a,, by andb, .

In the following section, we consider some numewaraples for this second-ordetragnple.

E. Numeric examples (second-order system)

We nawv consider four dferent numericxamples, for which we lva already computed the intermediatd v

ues, as shon in the table bele.

a a by by r ) Ay A,
#1 0 9/16 2 1 -3/4 3/4 1/3 5/3
42 a5 | -16/25 2 1| Aeiva)| Agva | 1,0848| {_i348
5 5 4 4
#3 3/2 -1/2 2 1/2 1 -4 6
#4 8/5 -11/20 1/2 11/10 -10/3 16/3

For each of these numerigamples, the impulse responisfn] is given by equatiorf73) abose. Note that
for example #2, we carxpressh[n] in terms of a realalued, discrete-time cosine function:

h[n] = Ajrfu[n] + A,rfuln] = [%l + B—rﬁ’%e-l U 3)511 +H —13—4@%@ (v 3>%P}u[n] (75)
Note that,

l+j%/_§ _ «/_j_§ej atan(3./3/4) andl_ﬁ_4_f3> _ «/_j_§e—j atan(3./3/4) (76)
so that,

gt = [LBgiatarts &0 B vl 4 L atrts. 0 B v ugmy 77)

h,[n] = [#%ge—j (/3 - atan(3,/3/4)) 4+ %/%_?’%gej (nn/3-atar(3ﬁs/4))]u[n] (78)

hy[n] = g@%gwqm/s—atar(3Jé/4)]u[n] . (79)
The other impulse responses angegiby

_1lgs3d S8’

hy[n] = 355 ulnl + 35 uln] (80)

hy[n] = —4%gu[n] +6(1)"u[n] = [6—4%g]u[n] 81)

hy(n] = —%)%Epu[n] ¥ %S%égu[n] . (82)
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hy[n] , h,[n]
1.5
1
1
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0 I[TTTT!!--.... -1
0 10 20 30 40 0 10 20 30 40
6
5 200 hy[n]
hs[n] 4 150
3
100
2
1 - il
0 { 0 .-!!!?TTTTTTTTTTTITI X{[
0 10 20 30 40 0 10 20 , 30 40
Figurel

In Figure 1 we plot the impulse responses for each of theeabases, and maekwo obserations. First, note
that without the z-transform, we could h& never obtained the analyticxpressions forh,[n],
i0{1,2 3 4. Second, the roots, andr, are intimately tied to the stability (or lack thereof) of each sys-
tem. From(73), we see that when,

‘ri‘ <1 (i.e. all the roots lie inside the unit circle of the compiane) (83)

the systens impulse response will decay to zeraas « (examples #1 and #2); while for

\ri\ >1 (i.e. the roots lie on or outside the unit circle of the corplane) (84)

the systens impulse response will not decay to zermas « (examples #3 and #4), and may fact grav
without bound (rample #4).Therefore, by dctoring the denominator ansagnining the resulting roots of
H(z) , we can tell whether or not the system willBi80O (bounded-input, bounded-output) stable — that is,
whether or not the output signal is bounded,

ly[n]| <, On, (85)

when the input signal andtér coeficients are bounded:

X[n]l <eo, On, (86)
la| <, OI, (87)
by <o, OK. (88)

In general, a system will be BIBO stable if all of the rootsp@es) of its transfer functiorH(z) lie inside
the unit circle of the compkeplane; that is, i(ri‘ <1,00t

1. The case of ‘ri‘ = 1 requiresadditional analysis and will not be considered separately here; whether
or not such a systemis BIBO stable depends on the multiplicity of the root on the unit circle.
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F. Generalization to N th-order systems

In the preious sections, we derd the time-domain impulse resportge] for a second-order IIR dér-
ence equatioh by using the follaing procedure:

1. ComputeH(z) [equation(48)].
2. Factor the denominator polynomial bif(iz) and epress the poleattors in the form;
(1-r,z71Y) and(1-r,zY). (89)

3. ExpandH(z) into a partial fractionxpansion of the form:

Ay A
H(z) = + (90)
(1-r,zY) (1-r,zY)
4. Write dovn the time-domain impulse resporigan] :
h[n] = A;rfu[n] + A,ruln] . (91)
Below, we generalize the abe procedure to IIR systems of the general form,
N M
y[n] = Z ay[n-I]+ Z b x[n—kK] (92)
=1 k=0
with the restriction thalM <N and that the poles of the transfer function are distinct, i.e.,
R, 0{L 2. N} (93)
For such systems, we can comphfa] as followvs:
1. ComputeH(z) [equation(48)].
2. Factor the denominator polynomial Bif(z) and epress the poleattors in the form:
(1-r,zY),i0{12 .., N}. (94)
3. ExpandH(2) into a partial fractionypansion of the form:
N A
H@2) = 3 — , whereA, = H(z)(l—rirl)‘ (95)
S l-rzt z=r,
4. Write dovn the time-domain impulse resporigan] :
N
h[n] = Z Airrfu[n]. (96)

i=1

Note that the only diérence between the procedure for the second-order system avithtbeder system is
that we hge introduced a general procedure for compufingn equation(95). Let us see whthis works on
the second-ordexample from before. From equati¢®4).

by + bzt A A,

(@) = (1-rzY)(1-r,z1) - (1—rlz—1)+(1—r22—1)'

(97)

Following equatior(95), let us multiply both sides of equati(dv) by (l—rlz—l) (in order to computd, ):

1. Assuming distinct polessuchthat r; #r,.

-10-
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by +b,z1 A A
(1-r,zh) v — = (1-rz)}—F—+(1-rzh)—2— (98)
(1-ryz)(1=r,zY) (1-r,z7) (1-ryz7)
by +b,z1 (1-r,zY
0 1 _ . 2—1 (99)
(1-r,z7%) (1-r,z71)
Now, substitutez = r, into equatior(99).
by +byryt (1-rirgh) (100)
(L-r,r7h 1 2(1—r2rIl)
by +b,ryl _
il A R Y N € 2 ) Y (101)
(1-rrh) (L—r 1Y)
by+b,ri1  bor,+b
_ MoTP1m _ Bol1 ™Y (102)

| = = =
(1_r2r11) r—=r

Note that this result is identical to thatyirsly computed in equatiqi@2). Equationg100)and(101) male
clear wly the formula,

A = H(z)(l—riz—l)‘ ) (103)

works in general when the roots are distiaditof the unknavn coeficientsAj , ] #1 disappearand we are
left with a simple gpression forA, .

G. Output of system br finite-length input

Suppose we apply an inpxfn] of finite duration to an IIRT system:

L
x[n] = ¥ ¢dln—kK (104)
k=0

Once we hee computed the impulse resporga] of the IR system, the outpyfn] is easy to compute by
linearity and time-imariance (IIl) properties:

L
y[n] = Z ch[n—K]. (105)
k=0

4. Frequency esponse of IR systems
A. Intr oduction

For astable IIR system, the frequepcesponseH (el ®) of that system is gen by

H(el®) = H(D)|, _ o (106)
M
z bke—j G
H(el®) = X=0. (107)
-3 aell®

=1
Note that equatio(l07)reduces to DTFT ofi[n] for FIR systems (i.ea; = 0, OI).

-11-
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