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Intr oduction to IIR systems

 

1. Intr oduction

 

So far, we have extensively explored the analysis and design of FIR filters. In this set of notes, we consider the
analysis of IIR (infinite-impulse response) filters. Specifically, we will address the following three important
questions concerning IIR filters:

1. How do we compute the impulse response of IIR filters?

2. How do we analyze the stability of IIR filters, something we did not have to consider for FIR filters?

3. How do we compute the frequency response of an IIR filter?

All of the above questions will be solved with a new transform, namely the -transform. As we will see shortly,
the -transform is a generalization of the DTFT, and is analogous to the Laplace transform for differential equa-
tions.

Given that we have to worry about the stability of IIR systems and that such systems are more difficult to ana-
lyze, we might wonder why we bother with these systems at all. IIR systems are worthy of study for at least three
important reasons: (1) as discrete-time approximations of differential equations for computer simulation; (2) the
analysis of discrete-time, or computer-in-the-loop feedback control systems; and (3) in the design of shorter fil-
ters with frequency-response characteristics similar to those of longer FIR filters.

 

2. The -transform

 

A. Intr oduction

 

In this section, we introduce a new transform, the -transform, which will allow us to analyze IIR systems of
the following form:

(1)

where some of the  coefficients are nonzero constants. We have already seen some simple examples of IIR
(or recursive) systems in the 1/24 and 1/29 lecture notes. The -transform will allow us to analyze a more
general class of IIR systems by converting difference equations to polynomial equations.

 

B. Definition

 

The 

 

bilateral -transform

 

  of a discrete-time sequence  is defined as:

(2)

If we compare the definition of  to the definition of the DTFT ,

(3)

we can derive a relationship between the -transform and the DTFT:

. (4)

Below, we derive some important transform pairs that associate time-domain signals with their respective -
transform; we will use these transform pairs later in our analysis of IIR systems.
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C. Transform pairs

 

Below, the  symbol denotes a correspondence between the time-domain representation of a signal and
the -domain representation of that same signal.

Linearity:

  (5)

 

Proof

 

: Let,

. (6)

Then, by definition (2),

(7)

(8)

(9)

. (10)

Time-shift:

  (11)

 

Proof

 

: Let,

(12)

Then, by definition (2),

(13)

(14)

Let us make the substitution  into equation (14):

(15)

. (16)

Convolution:

  (17)
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Proof

 

: Let,

(18)

Then, by definition (2),

(19)

(20)

(21)

Let us make the substitution  into equation (21):

(22)

(23)

. (24)

Discrete-time delta function:

  (25)

 

Proof

 

: Let,

(26)

Then, by definition (2),

(27)

. (28)

Shifted discrete-time delta function:

  (29)

 

Proof

 

: We can derive transform pair (29) two ways. First, we can appeal directly to the definition of the -
transform. Let,

(30)

Then, by definition (2),
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(31)

. (32)

Alternatively we could combine transform pairs (11) and (25). Let . Then, by transform pair
(25),

. (33)

Now we use transform pair (11) to determine the -transform for :

. (34)

Discrete-time, exponential step input:

  , . (35)

 

Proof

 

: Let,

(36)

Then, by definition (2),

(37)

, , (38)

where, in (38), we have used the infinite geometric sum identity:

, . (39)

The condition  determines the region of convergence for the -transform, and can be restated as
. Thus,

, . (40)

Although at this point it may seem odd that we took the time to derive transform pair (35), we will have many
occasions to use that particular transform pair in our analysis of IIR systems. The table below summarizes the
transform pairs that we derived in this section.

 

Transform pair label   

Linearity

 

  

 

Time-shift

 

  

 

Convolution

 

  

 

Discrete-time delta function:
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3. Impulse response of IIR systems

 

A. Intr oduction

 

In this section, we apply the -transform to derive the impulse response of IIR filters.

 

B. Derivation

 

Below, we apply the -transform to the IIR difference equation:

(41)

From the transform pairs derived in the previous section, we consider each term in equation (41) separately:

  (42)

   (linearity and time-shift properties) (43)

   (linearity and time-shift properties) (44)

Combining the results of (42) through (44):

(45)

(46)

(47)

Equation (47) gives us the -transform  of the impulse response  of the IIR system in (41):

(48)

 

Shifted discrete-time delta function:

 

  

 

Discrete-time, exponential step input:
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 is known as the 

 

transfer function

 

 of the system. So, for any input sequence , whose -transform is
given by , the output of the system , whose -transform is given by , can be written in the -
domain as,

 (convolution property). (49)

As we will show in the following sections, we can recover the time-domain representations of  (i.e.
) and  (i.e. ) through algebraic manipulation and the transform pairs derived previously.

 

C. Example #1

 

Let us consider the following first-order IIR system:

. (50)

By direct substitution, we can derive the impulse response  of the system by letting , and
assuming , :

(51)

(52)

(53)

Generalizing for arbitrary ,

. (54)

Alternatively, we can derive the impulse response through the -transform:

(55)

Applying transform pair (35),

. (56)

Note that equations (54) and (56) are equivalent. Next, we will consider a more complicated example.

 

D. Example #2

 

Let us consider the following general second-order IIR system:

. (57)

For this system, direct substitution will no longer work to reveal a general analytic solution for the impulse
response . Therefore, let us try to derive the impulse response  instead through the -transform:

(58)

We will now try to get  into a form that will allow us to apply property (35) to write down  by
inspection. We begin by factoring the denominator in (58) into:

(59)
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where  and  are the roots of the polynomial equation,

, (60)

and are known as the 

 

poles

 

 of the system. Recall that for a polynomial of the form,

(61)

the quadratic formula gives us the roots of equation (61) as,

 and . (62)

Applying the result in (62) to equation (60), where ,  and , we get the following
roots for equation (59):

 and . (63)

Next, we want to express  as follows:

(64)

where we need to determine the values of  and . The expression on the right-hand side of equation (64)
will allow us to express  as:

 [property (35)]. (65)

Below, we derive values for  and , starting from equation (64):

(66)

(67)

(68)

(69)

Note that in order for equation (69) to hold, the following two equations must be true:

(70)

(71)

Equations (70) and (71) are two linear equations in  and  and can be solved for  and :

, (72)

Therefore, the impulse response  for IIR system (57) is given by,

(73)
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, ,  and . (74)

Note that the solution for  in equations (73) and (74) only works for distinct roots, i.e. ; also note
that equations (73) and (74) completely specify the impulse response of the system in terms of the filter coef-
ficients , ,  and .

In the following section, we consider some numeric examples for this second-order example.

 

E. Numeric examples (second-order system)

 

We now consider four different numeric examples, for which we have already computed the intermediate val-
ues, as shown in the table below.

For each of these numeric examples, the impulse response  is given by equation (73) above. Note that
for example #2, we can express  in terms of a real-valued, discrete-time cosine function:

(75)

Note that,

 and (76)

so that,

(77)

(78)

. (79)

The other impulse responses are given by,

(80)

(81)

. (82)

#1 0 9/16 2 1 -3/4 3/4 1/3 5/3

#2 4/5 -16/25 2 1

#3 3/2 -1/2 2 1 1/2 1 -4 6

#4 8/5 -11/20 2 1 1/2 11/10 -10/3 16/3
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In Figure 1, we plot the impulse responses for each of the above cases, and make two observations. First, note
that without the -transform, we could have never obtained the analytic expressions for ,

. Second, the roots  and  are intimately tied to the stability (or lack thereof) of each sys-
tem. From (73), we see that when,

 (i.e. all the roots lie inside the unit circle of the complex plane) (83)

the system’s impulse response will decay to zero as  (examples #1 and #2); while for,

 (i.e. the roots lie on or outside the unit circle of the complex plane) (84)

the system’s impulse response will not decay to zero as  (examples #3 and #4), and may, in fact grow
without bound (example #4). Therefore, by factoring the denominator and examining the resulting roots of

, we can tell whether or not the system will be 

 

BIBO (bounded-input, bounded-output) stable

 

 — that is,
whether or not the output signal is bounded,

, , (85)

when the input signal and filter coefficients are bounded:

, , (86)

, , (87)

, . (88)

In general, a system will be BIBO stable if all of the roots (or 

 

poles

 

) of its transfer function  lie inside
the unit circle of the complex plane; that is, if , .

 

1

 

1. The case of  requires additional analysis and will not be considered separately here; whether 
or not such a system is BIBO stable depends on the multiplicity of the root on the unit circle.
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F. Generalization to th-order systems

 

In the previous sections, we derived the time-domain impulse response  for a second-order IIR differ-
ence equation

 

1

 

, by using the following procedure:

1. Compute  [equation (48)].

2. Factor the denominator polynomial of  and express the pole factors in the form:

 and . (89)

3. Expand  into a partial fraction expansion of the form:

(90)

4. Write down the time-domain impulse response :

. (91)

Below, we generalize the above procedure to IIR systems of the general form,

(92)

with the restriction that  and that the poles of the transfer function are distinct, i.e.,

, . (93)

For such systems, we can compute  as follows:

1. Compute  [equation (48)].

2. Factor the denominator polynomial of  and express the pole factors in the form:

, . (94)

3. Expand  into a partial fraction expansion of the form:

, where (95)

4. Write down the time-domain impulse response :

. (96)

Note that the only difference between the procedure for the second-order system and the th order system is
that we have introduced a general procedure for computing  in equation (95). Let us see why this works on
the second-order example from before. From equation (64):

. (97)

Following equation (95), let us multiply both sides of equation (97) by  (in order to compute ):

 

1. Assuming distinct poles such that .
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(98)

(99)

Now, substitute  into equation (99):

(100)

(101)

(102)

Note that this result is identical to that previously computed in equation (72). Equations (100) and (101) make
clear why the formula,

(103)

works in general when the roots are distinct. All of the unknown coefficients ,  disappear, and we are
left with a simple expression for .

 

G. Output of system for finite-length input

 

Suppose we apply an input  of finite duration to an IIR LTI system:

(104)

Once we have computed the impulse response  of the IIR system, the output  is easy to compute by
linearity and time-invariance (LTI) properties:

. (105)

 

4. Frequency response of IIR systems

 

A. Intr oduction

 

For a 

 

stable

 

 IIR system, the frequency response  of that system is given by,

(106)

(107)

Note that equation (107) reduces to DTFT of  for FIR systems (i.e. , ).
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