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Introduction to Signals and Systems, Part IV: Lecture Summary

 

Last time we introduced 

 

difference equations

 

 as the mathematical representation of discrete-time systems. Moreover,
we said that in this class, we will restrict ourselves mostly to the study of a class of difference equations known as

 

Linear, Time-Invariant (LTI)

 

 systems. These systems, or difference equations, assume the following general form:

(1)

In today’s lecture, we look at some examples of LTI systems, specifically focusing on filtering, and introducing the
important concept of 

 

frequency response

 

. As we will see, designing an LTI filter with desirable properties requires the
designer to select (1) the order of the filter ( ), (2) the filter coefficients  and , and (3) the sampling fre-
quency.

 

1

 

To start, let us restrict ourselves to non-recursive filters; that is filters for which the coefficients  are all equal to
zero, so that:

(2)

In our first example, let us further restrict ourselves to the following simple filter equation:

(3)

Now, suppose that we wish to design a 

 

low-pass filter

 

; that is, a filter that allows low frequencies in a signal through,
while attenuating higher frequencies in a signal.

 

2

 

 Given that we assume difference equation (3), we need to decide
what the coefficients  and  should be. After a little thought, consider the following candidate values:

(4)

To understand why the choice of filter coefficients in (4) might accomplish low-pass filtering of a signal, let us see
how the filter in equation (3) affects the two signals  and  in Figure 1.

For signal , a constant (zero-frequency) signal over time index , the resulting output  will be:

(5)

 

1. For today’s lecture, we assume that the sampling frequency is already given; we will talk more about the 
implications of sampling later in this course.

2. An ideal low-pass filter allows frequencies in a signal below some cut-off frequency  through unchanged, 
while zeroing all frequencies in the signal above that same cut-off frequency.

y n[ ] aly n l–[ ]
l 1=

N

∑ bkx n k–[ ]
k 0=

M

∑+=

N M, al bk

al

y n[ ] bkx n k–[ ]
k 0=

M

∑=

y n[ ] box n[ ] b
1
x n 1–[ ]+=

fc

bo b
1

b
0

b
1

1 2⁄= =

x
1

n[ ] x
2

n[ ]

0 5 10 15 20

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
1

n[ ]

n

x
2

n[ ]

n
Figure 1

x
1

n[ ] n y
1

n[ ]

y
1

n[ ] 1 2⁄ x
1

n[ ] 1 2⁄ x
1

n 1–[ ]+=



 

EEL3135: Discrete-Time Signals and Systems Introduction to Signals and Systems, Part IV: Lecture Summary

- 2 -

 

, . (6)

For signal , a fast-changing (i.e. high-frequency) signal over time index , the resulting output  will be:

(7)

, . (8)

In Figure 2 we plot the input and output signals computed in (6) and (8). In other words, this choice of filter coeffi-
cients appears to allow low-frequency signals through unscathed, while completely eliminating the highest-frequency
signal. That’s all well and good, but what can we say about intermediate frequencies?

To answer this question, we can compute the 

 

frequency response

 

 of the system. The frequency response of an LTI
system tells us to what extent different frequency components in a signal are affected as an input signal is modified by
the LTI system (difference equation) to generate an output signal. While we will omit the details of how to compute a
system’s frequency response for now, in Figure 3 we plot the magnitude frequency response 

 

1

 

 of the low pass
filter in equations (3) [with filter coefficients from (4)]. 

This plot confirms what we previously derived experimentally for the two sample signals in Figure 1. High-frequency
components of a signal are completely eliminated, while low-frequency components are attenuated little, if at all.
Intermediate frequencies are attenuated to varying degrees. For example, if a signal contains a frequency component
at frequency  with amplitude , the output signal will contain that frequency component at an approximate magni-
tude of .

 

1.  denotes the magnitude of the frequency response as a function of frequency. There is another aspect of 
the frequency response, namely, the phase frequency response . We will cover this concept once we 
develop a mathematical treatment of LTI systems.
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We can generate higher-order low-pass filters by generalizing the difference equation in (3) to:

(9)

(10)

The filter in equation (10) is known as a running-average filter. In Figure 4, we plot the filtered output signal ,
the magnitude frequency spectrums  and , and the magnitude frequency response  for a sample
input signal  and  (previous example), ,  and . (See Mathematica notebook,
section “Non-recursive difference equation example: simple low-pass filter” for these examples.) The input signal

 is a discrete-time signal sampled at Hz from the continuous-time signal,

(11)

where, for each sample, the “noise” component of the signal consists of a uniformly distributed random number in the
interval . Note that as the size of the filter (i.e. ) is increased, higher frequencies become more and
more suppressed, although not uniformly. In fact, a discrete number of frequencies are zeroed entirely; let us examine
why this is so.

Consider the frequency response of the running-average filter for . Note that this filter zeroes frequency com-
ponents at 50, 100, 150, 200 and 250Hz. In Figure 5 below, we plot a short, sampled 50Hz sine wave signal with the
same sampling frequency as before. Note that for this signal, it doesn’t matter which consecutive 10 samples we aver-
age, we will always get zero. That’s why the frequency response for the 10-point running average filter is zero at
50Hz. The same argument applies to the other zeroed frequencies.

Now, let us switch gears and consider the task of high-pass filtering. In high-pass filtering, we want to do exactly the
opposite of low-pass filtering; that is we want to attenuate low-frequency components of signals while passing
through high-frequency components relatively unattenuated. We begin with the same basic difference equation as
before:

(12)

and choose the following coefficient values:

 and (13)

so that equation (12) becomes:

1 (14)

1. Note that this is a discrete-time, first-order approximation of a derivative.
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Now, we examine how this filter affects the two signals in Figure 1. For signal , a constant (zero-frequency) sig-
nal over time index , the resulting output  will be:

, . (15)

For signal , a fast-changing (i.e. high-frequency) signal over time index , the resulting output  will be:

, ,  = odd. (16)

, ,  = even. (17)

In Figure 6 we plot the input and output signals computed in (15) through (17). Note that now, the constant signal is
zeroed, while the high-frequency signal passes through unscathed.

We can derive higher-order high-pass filters by deriving approximations of higher-order derivatives. For example, the
second derivative can be approximated by:

(18)

(19)

Similarly, the third and fourth derivative approximations are given, respectively, by:

 and (20)

(21)

In Figure 7, we plot the filtered output signal , the magnitude frequency spectrums  and , and the
magnitude frequency response  for a sample input signal  and the first, second, third and fourth-order
high-pass filters in equations (14), (19), (20) and (21), respectively. (See Mathematica notebook, sections “Non-
recursive difference equation example: simple high-pass filter #1, #2, #3 and #4” for these examples.) As before, the
input signal  is a discrete-time signal sampled at Hz from the continuous-time signal,

(22)

where, for each sample, the “noise” component of the signal consists of a uniformly distributed random number in the
interval . Note that as we increase the order of the high-pass filter, low frequencies are attenuated more
and more.

We can also observe low-pass and high-pass filtering visually. In images, low-pass filtering results in smoothing of an
image, while high-pass filtering results in detection of edges (i.e. sharp transitions in intensity), as shown in Figure 8.
The low-pass filtered image had a two-dimensional 20-point averaging filter applied to it, while the high-pass filtered
image had a a second-order high-pass filter [equation (19)] applied to it. (See Mathematica notebook, section “Simple
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non-recursive filters in two dimensions (image)” for this example, and section “Simple non-recursive filters on speech
example” for low and high-pass filtering of a sample speech signal.)

At this point, you may be wondering if there are more systematic ways of designing filters, whether they be low-pass,
high-pass or band-pass, than just intuitively guessing at filter coefficients. The answer is, of course, yes, and many fil-
ter design algorithms are easily implemented (or already available) in mathematical software packages like Matlab
and Mathematica. In these filter design algorithms, typically the design engineer specifies an idealized desired fre-
quency response, the desired filter order, and the algorithm returns a good approximation of the idealized frequency
response given the desired filter order. Below we give an example of one 24-point band-pass filter that was derived
using an advanced filter design algorithm. The difference equation for this filter is given by:

(23)

where the approximate filter coefficients are listed in the table below.

Figure 9 plots the magnitude frequency response for this filter (red line); an ideal band-pass filter might have the fre-
quency response of the dashed blue line in Figure 9. Note that the 24-point filter approximates the characteristics of
an ideal band-pass filter pretty well, with sharp cut-off frequencies  and  beyond which frequencies are almost
entirely zeroed, while inside the band, frequencies pass through with virtually no magnitude change. In general, the
higher the order of the filter, the better that filter will be able to approximate the frequency response of an ideal filter.
(See Mathematica notebook, section “Non-recursive difference equation example: well-designed band-pass filter” for

k k k k

0 -0.0193 6 0.0264 12 0.2442 18 -0.0649

1 0.0099 7 -0.0126 13 -0.3331 19 0.0000

2 -0.0003 8 0.1188 14 0.0000 20 0.0276

3 0.0276 9 0.0000 15 0.1188 21 -0.0003

4 0.0000 10 -0.3331 16 -0.0126 22 0.0099

5 -0.0649 11 0.2442 17 0.0264 23 -0.0193
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the filtered output corresponding to this filter and a noisy sine wave input.) Later in this course, we will look at how
we can design filters like the one in Figure 9, from a user-specified desired frequency response.

So far we have only looked at examples of non-recursive difference equations; that is, difference equations where the
output is only dependent on time-delayed values of the input signals , ,..., . Next time, we
will look at a few examples of recursive difference equations, and introduce the concept of stability for such systems.
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