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Lecture #6: Continuous-Time Signals

 

1. Introduction

 

In this lecture, we discussed the following topics:

1. Mathematical representation and transformations of continuous-time signals.

2. Some important continuous-time functions.

As we have seen so far, signals are usually one-dimensional functions of time.

 

1

 

 We can broadly classify these
signals into two categories:

1.

 

Continuous-time signals

 

, denoted as , where  usually denotes time as the independent variable, and

2.

 

Discrete-time signals

 

, denoted as , where  is an integer and denotes the time index.

Signals in the real world are usually continuous-time. Discrete-time signals, on the other hand, are convenient to
represent and operate on in digital computer systems; oftentimes, discrete-time signals are sampled versions of
continuous-time signals. Because of the computer revolution of the past several decades, the study and under-
standing of discrete-time signals and systems has gone up dramatically with the rise of ever-more powerful com-
puters and DSP (digital signal processing) systems.

We have already seen (and, in some cases, heard) many examples of signals, both continuous-time and discrete-
time. In today’s lecture, we begin our study of signals from a more mathematical point of view.

 

2. Continuous-time signals

 

A. Signal transformations

 

One of the most important basic skills we require in our study of signals is the ability to understand basic
transformations with respect to the independent variable . In this section, we will examine transformations
on continuous-time signals; later, we will do the same for discrete-time signals.

Let  denote a continuous function of time . In this class it will frequently be important to know how the
function  changes when we change its argument. The table below gives the qualitative effect of some simple
changes in argument.

 

1. We have seen one exception — namely, images which are two-dimensional signals, where the independent 
variables are the horizontal and vertical location of each pixel  and the dependent variable is each 
pixel’s color (intensity for gray-scale images).

function effect

 

Reflection

,  Compression

, Stretching

, Shift to the right along the horizontal axis

, Shift to the left along the horizontal axis

, Magnification

, Reduction

, Shift up along the vertical axis

, Shift down along the vertical axis
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Figures 1 and 2 illustrate some of these on two simple continuous functions. It is very important that you
understand each of these illustrations, and are able to perform them yourself without the aid of a computer or
calculator. 

Compound transformations that perform both scaling and left/right shifting are a little trickier than each one
by itself. Consider  in Figure 1 and the compound transformation . To understand what this
function looks like, we first change it to:

(1)

In this form, we see that we first scale the function (in this case, compress it), and then shift the scaled func-
tion by  time units (

 

not

 

 1 time units) to the right; this transformation is illustrated in the bottom right cor-
ner of Figure 1. Figure 2 (bottom right corner) illustrates another compound-transformation example:

(2)

Again, we see that by factoring the scaling information (in this case a reflection), the function is first reflected
about the -axis, and is then shifted 5 time units to the right (

 

not

 

 to the left).

 

B. Some useful continuous-time signals

 

In this section, we introduce some very useful continuous-time signals. The first of these is the 

 

impulse

 

 or

 

Dirac delta

 

 function . It is defined as follows:

, (3)

(4)

Note that the value of  is defined only implicitly by equation (4). We can view the Dirac delta function
as the limiting case of a square pulse , as illustrated in Figure 3 below.

Note that no matter what the value of , the integral of  will always be equal to one:

(5)

For larger values of ,  becomes more narrow and taller, but equation (5) still holds. Therefore, we can
view  as the following limit:

(6)

One of the important properties of the  function is its 

 

sifting

 

 or 

 

sampling property

 

. For any continuous-
time function ,
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Figure 3
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EEL3135: Discrete-Time Signals and Systems Lecture #6: Continuous-Time Signals

- 4 -

 

-10 -5 0 5 10

-0.1

0

0.1

0.2

 

-10 -5 0 5 10

-0.1

0

0.1

0.2

 

-10 -5 0 5 10

-0.1

0

0.1

0.2

 

-10 -5 0 5 10

-0.1

0

0.1

0.2

 

-10 -5 0 5 10

-0.1

0

0.1

0.2

 

-10 -5 0 5 10

-0.1

0

0.1

0.2

 

-10 -5 0 5 10

-0.1

0

0.1

0.2

 

-10 -5 0 5 10

-0.1

0

0.1

0.2

 

x t

 

( )

 

x t

 

–

 

( )

 

x

 

2

 

t

 

( )

 

x t

 

5

 

–

 

( )

 

x

 

1
2

 

---

 

t

 

 
 

 

x t

 

5

 

+

 

( )

 

1 2

 

⁄( )

 

x t

 

( )

 

x t

 

–

 

5

 

+

 

( )

 

x t

 

5

 

–

 

( )

 

–

 

( )

 

=

 

t

t t

t

t t

t t

 

Figure 2



 

EEL3135: Discrete-Time Signals and Systems Lecture #6: Continuous-Time Signals

- 5 -

 

(7)

since the time-shifted delta function  is zero everywhere except for . Let’s look at a couple of
examples:

 (  = some constant) (8)

(9)

(10)

(11)

One place where the delta function comes up is in the continuous-time Fourier transform representation of a
sinusoid. For the sinusoid,

, (12)

the magnitude spectrum representation  is given by,

(13)

as illustrated in Figure 4 below.

Another continuous-time function of significance in our mathematical representation of signals is the 

 

unit
step

 

 function ,

(14)

plotted in Figure 5. The unit step function allows us to mathematically represent signals that are piece wise
continuous with discontinuities at a finite number of points. Consider for example, the three functions plotted
in Figure 6. Each of these would be impossible to describe functionally without the aid of the unit step func-
tion; with , however, each function has a straightforward representation:

(15)

(16)

(17)
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Finally, we look at sinusoidal functions and their mathematical representation. In our previous lectures, we
have already seen and heard many different sinusoids and these functions are perhaps the most important in
our understanding of signals and system analysis. While we could use both cosines or sines in our mathemat-
ical representation, we will primarily use the cosine function by convention from here on out. Consider 
defined by,

(18)

and plotted in Figure 7 below. For equation (18), we define the following quantities:

 = 

 

amplitude

 

,  = 

 

phase

 

 (rad), (19)

 = 

 

cyclic frequency

 

 (1/sec or Hertz (Hz) units), (20)

 = 

 

radian frequency

 

 (rad/sec units), (21)

 = 

 

period

 

 (units of seconds). (22)

 

Figure 5: The unit-step function
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Figure 6
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A sinusoidal wave is 

 

periodic

 

; that is,

, . (23)

In fact, the sinusoid is perhaps the most important periodic waveform that we will study, since almost all
other periodic waveforms can be constructed as the infinite sum of sinusoids; for any periodic signal , we
can write,

(24)

Equation (24) is known as the 

 

Fourier series

 

 representation of the periodic signal . We will look at how
to determine the coefficients  and  a little later.

 

 

A

T

 

0

 

1

 

f

 

0

 

⁄

 

=

 

t

x t

 

( )

 

A

 

2

 

π

 

f

 

o

 

t

 

α

 

+

 

( )

 

cos

 

=

 

Figure 7

 

A

 

α

 

cos

 

x t

 

( )

 

x t T

 

o

 

–

 

( )

 

=

 

t

 

∀

 

x t

 

( )

 

x t

 

( )

 

a

 

0

 

a

 

k

 

2

 

π

 

f

 

o

 

kt

 

( )

 

cos

 

k

 

1

 

=

 

∞

 

∑

 

b

 

k

 

2

 

π

 

f

 

o

 

kt

 

( )

 

sin

 

+ +=

 

x t

 

( )

 

a

 

k

 

b

 

k


