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Lecture #7: Discrete-time Signals and Sampling

 

1. Introduction

 

Unlike continuous-time signals, discrete-time signals have defined values only at a fixed number of points in
time; discrete-time signals typically arise when we 

 

sample

 

 a continuous-time signal. In this class, we will con-
sider discrete-time signals whose defined values occur only at regularly spaced intervals, in other words, dis-
crete-time signals with a constant 

 

sampling frequency

 

. To convert a continuous-time signal  to a discrete-
time signal , we can use the following equation:

(1)

where  denotes the 

 

sampling period

 

,  denotes the 

 

sampling frequency

 

, and,

. (2)

Note that in equation (1) we define the discrete-time signal  as a function of the dimensionless time index
, . Figure 1 plots the discrete-time sequences  of tow continuous-time signals

, and a sampling frequency of  = 5 Hertz (samples/second).

If we want to reconstruct a continuous-time signal from a discrete-time signal, knowledge of the sampling fre-
quency is critically important, since without it, we do not know to which real time  each time index  corre-
sponds. For example, music recorded on a CD is stored as a sequence of numbers. By international agreement,
all music stored on CDs is sampled at 44.1 kHz; without this critical piece of information, the stored music could
not be faithfully reconstructed in the continuous-time domain (on your stereo). Computer music files, such as
mp3’s, have their sampling frequency encoded in the file itself. If the encoded sampling frequency in the mp3 file
is incorrect for some reason, the music that your computer would play would sound either too fast or too slow. To
demonstrate this point, I took a short piece of music (from Kenny Roger’s “The Gambler”), sampled at 32kHz,
and played the original music during lecture, assuming that the sampling frequency was 24kHz (incorrect),
32kHz (correct) and 40kHz (incorrect). The piece of music played back with the incorrect sampling frequency of
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24kHz sounds slowed down, while it sounds sped up with the incorrect sampling frequency of 40kHz. All three
music files are posted on the web site in 

 

wav

 

 and 

 

mp3

 

 formats.

 

2. Sampling

 

A.

 

How fast is enough?

 

An extremely important question that must be answered in the sampling process is “How fast is enough?”
That is, how fast do we have to sample a continuous-time signal in order to be able to reconstruct it from just
the discrete-time signal and knowledge of the sampling frequency? A truly remarkable theorem, the 

 

Shannon
Sampling Theorem

 

, answers this question:

 

Shannon Sampling Theorem

 

: A continuous-time signal  with frequencies no higher than  
can be reconstructed exactly from its samples , if the samples are taken at a sampling 
frequency , that is, at a sampling frequency greater than . The frequency  is 
known as the Nyquist frequency.

 

We have already seen that any signal can be converted into its frequency domain representation, which tells
us what frequencies are contained within that signal. Now, we begin to see one reason why that frequency-
domain representation is so important. It allows us to determine (or filter our signal) so that we know ;
with that knowledge, we can confidently sample at a frequency greater than the Nyquist frequency and

 

 lose
no information in that sampling process

 

.

As an example, consider a 1Hz cosine wave:

(3)

For this signal, Hz, so that the Nyquist frequency is 2Hz. In Figure 2, we plot the sequences 
corresponding to eight different sampling frequencies: 100Hz, 10Hz, 5Hz, 3Hz, 2.1Hz, 1.9Hz, 1.4Hz and
1.1Hz. The Sampling Theorem tells us that we should be able to reconstruct  from just the samples for
all sampling frequencies greater than 2Hz (top five plots in Figure 2). This seems surprising given the relative
sparsity of data for sampling frequencies 5Hz, 3Hz and 2.1Hz. As you will remember, most of the class
thought that the 100Hz sampling frequency would be sufficient for reconstructing the original waveform;
some of the class thought the 10Hz sampling frequency would be sufficient; however, very few thought that
any of the lower frequencies would be sufficient for perfect reconstruction of the original signal. Therefore,
the Sampling Theorem is not only remarkably powerful, but also remarkably surprising.

 

B. Ideal reconstruction of discrete-time signal

 

Note that the Sampling Theorem does not tell us specifically how we should reconstruct the continuous-time
signal from the discrete-time samples. Clearly, if we are to reconstruct the original sine wave in Figure 2 from
the samples corresponding to the smaller sampling frequencies above 2Hz, we cannot simply use linear inter-
polation. Figure 3 shows, for example, two naive reconstructions of the cosine wave for the sampling fre-
quency Hz. The reconstruction on the left simply approximates the reconstructed function  as a
sequence of pulses spaced  seconds apart. The reconstruction on the right linearly interpolates between
consecutive samples; neither reconstruction could, in any sense of the phrase, be considered a “perfect recon-
struction” of the original signal.

To achieve the ideal reconstruction, each sample should be the weighted and time-shifted peak of the sinc
function,

 

1

 

(4)

plotted in Figure 4 below. Specifically, the ideal reconstruction is given by,

 

1. We will see later why this is so.
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. (5)

where  refers to the reconstructed, continuous-time signal. You may wonder why the value of the
 function is 1 at , since both the numerator and denominator of equation (4) is zero at .

When we have such an undefined ratio, we can use 

 

L’Hospital’s Rule

 

 (from calculus) to determine the value
at :

Figure 2: A 1Hz cosine wave and different sampling frequencies
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. (6)

Now, in Figure 5 below we plot this ideal reconstruction for sampling frequencies  = 5Hz, 3Hz, 2.1Hz,
1.9Hz, 1.4Hz and 1.1Hz, using equation (5) above. Note that for sampling frequencies greater than 2Hz (the
Nyquist frequency for the 1Hz signal), the reconstruction is very good, while for sampling frequencies less
than 2Hz, the reconstructed signal  does not approximate  in equation (3) very well.

At this point, the observant reader will notice that the reconstruction for Hz, while good, is not per-
fect. The reason for this is that we are not actually reconstructing,

 [equation (3)] (7)

but instead are reconstructing the 

 

time-limited

 

 continuous-time signal below:

. (8)

As we will see later, the continuous-time magnitude frequency rerpresentation  for (8) above is actu-
ally not frequency-limited such that Hz, as illustrated in Figure 6, which plots  for the time-
limited signal (8). Note that while the frequency content of the time-limited cosine waveform still has domi-
nant peaks at Hz, time limiting the cosine causes the frequency spectrum to spread out over the entire fre-
quency spectrum. Therefore, the 2.1Hz sampling frequency is strictly speaking not larger than , so that
the reconstruction in Figure 5 is not perfect.

Furthermore, there is a practical problem with the reconstruction in equation (5); the value of the recon-
structed signal  is dependent on all samples for all values of . For example, suppose we wanted to
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Figure 3: two bad reconstructions of cosine wave
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Figure 5: Ideal reconstructions from samples
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know the value of the original signal for ; in the ideal reconstruction,  is dependent not only on
samples close to , but all samples, no matter how distant (in time) from .

Therefore, as a practical matter, the ideal reconstruction is not realizable in real systems. We can compensate
for this fact by oversampling; that is sampling a signal  at a frequency significantly larger than the
Nyquist frequency. Let us again consider the example of CDs. The human ear cannot hear frequencies higher
than approximately 20 kHz; a sampling frequency of 44.1 kHz is therefore more than , where  is
the maximum frequency that we should be interested in for an audio system intended for human enjoyment.

C. Conclusion

Next time, we will continue our investigation of the sampling process to understand what is so critical about
the Nyquist frequency. Not surprisingly, our development will rely on the transformation between the time
and frequency domain. Finally, all the figures related to sampling were generated with the Mathematica note-
book “intro_sampling.nb.”
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