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Lecture #9(b): Discrete-Time Signals

1. Introduction

Now that we have explored the process of sampling — that is, the conversion of continuous-time signals to dis-
crete-time signals,

(1)

— we are ready to cover some important aspects of discrete-time signals, as we did with continuous-time signals.
Specifically, this set of notes covers the following topics:

1. Mathematical representation and transformations of discrete-time signals.

2. Some important discrete-time functions.

This introductory treatment closely parallels our previous treatment of continuous-time signals.

2. Discrete-time signals

A. Signal transformations

Let  denote a discrete-time function of time index . As we have already seen for continuous-time func-
tions, it will frequently be important to know how the function  changes when we change its argument. The
table below gives the qualitative effect of some simple changes in argument for discrete-time signals.

Figures 1 and 2 illustrate some of these on two simple discrete-time functions, which are sampled versions of
the continuous-time functions in Figures 1 and 2 of the “Lecture #6” notes, with sampling frequencies of
10Hz and 5Hz, respectively. It is very important that you understand each of these illustrations, and are able
to perform them yourself without the aid of a computer or calculator. 

As was the case for continuous-time signals, compound transformations that perform both scaling and left/
right shifting are a little trickier than each one by itself. Consider  in Figure 1 and the compound trans-
formation . To understand what this function looks like, we first change it to:

(2)

In this form, we see that we first scale the function, and then shift the scaled function by  units (not 10 units)
to the right; this transformation is illustrated in the bottom right corner of Figure 1. Figure 2 (bottom right
corner) illustrates another compound-transformation example:

(3)

Again, we see that by factoring the scaling information (in this case a reflection), the function is first reflected
about the -axis, and is then shifted 20 time units to the right (not to the left). (The Mathematica notebook
“discrete_transformations.nb was used to generate these examples.)

discrete-time function effect

Reflection

,  Compression

, Shift to the right along the horizontal axis

, Shift to the left along the horizontal axis

, Magnification

, Reduction

, Shift up along the vertical axis

, Shift down along the vertical axis
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B. Some useful discrete-time signals

In this section, we introduce some very useful discrete-time signals. The first of these is the discrete-time
impulse or delta function , defined by,

, (4)

and plotted in Figure 3 below.

We can define any discrete-time signal as the weighted sum of time-shifted  functions:

(5)

For example, the discrete-time signal  in Figure 4 below can be written as:

(6)

Another discrete-time function of significance in our mathematical representation of signals is the discrete
unit step function ,

(7)

plotted in Figure 5. 

Finally, we introduce the discrete-time sinusoidal function. Since the continuous-time sinusoid can be written
as,
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(8)

the discrete-time equivalent is given by,

(9)

In Figure 6 below, we plot equation (8) for  and different sampling frequencies .

Figure 5
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