EEL6825: Homework \#1 (Fall 2003)

(4 problems, distributed 9/7/2003, due 9/18/2003)

Note: Submit detailed and complete solutions to the following problems, including well commented programming code that you use for any of your solutions.

Problem 1: (10 points)
Assume that two-dimensional random vectors \mathbf{x} and \mathbf{y}, defined by,

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \tag{1}\\
x_{2}
\end{array}\right] \text { and } \mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

are characterized by the following probability density functions:

$$
\begin{align*}
& p(\mathbf{x})= \begin{cases}k_{x} & 2 \leq x_{1} \leq 3 \text { and } 0 \leq x_{2} \leq 3 \\
0 & \text { otherwise }\end{cases} \tag{2}\\
& p(\mathbf{y})= \begin{cases}k_{y} e^{\frac{y_{1}+2 y_{2}}{4}} & 0 \leq y_{1} \leq \ln 2 \text { and } 0 \leq y_{2} \leq \ln 2 \\
0 & \text { otherwise }\end{cases} \tag{3}
\end{align*}
$$

Compute the following:
(a) Constants k_{x} and k_{y}. (2 points)
(b) Mean vectors $\mu_{\mathbf{x}}$ and $\mu_{\mathbf{y}}$. (4 points)
(c) Covariance matrices $\Sigma_{\mathbf{x}}$ and $\Sigma_{\mathbf{y}}$. (4 points)

Problem 2: (20 points)

During some flight experiments, the aircraft altitude a and the outside air pressure p are measured in miles and inches of mercury, respectively. Afterwards, N of these measurements are used to estimate the covariance matrix $\Sigma_{\mathbf{x}}$ for the two-dimensional random vector:

$$
\mathbf{x}=\left[\begin{array}{l}
a \tag{4}\\
p
\end{array}\right]
$$

The covariance matrix $\Sigma_{\mathbf{x}}$ was computed as:

$$
\begin{equation*}
\Sigma_{\mathbf{x}}=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}_{i}-\mu_{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\mu_{\mathbf{x}}\right)^{T} \tag{5}
\end{equation*}
$$

where \mathbf{x}_{i} denotes the i th measurement, and $\mu_{\mathbf{x}}$ denotes the mean value for the N measurements of \mathbf{x}.
(a) Which of the following nine matrices is the most likely covariance matrix $\Sigma_{\mathbf{x}}$? Explain your reasoning. (18 points)
(b) Compute the eigenvalues and eigenvectors for your answer in part (a). (2 points)

$$
\Sigma_{1}=\left[\begin{array}{cc}
1.232 & 0.0013 \\
0.0013 & 2.791
\end{array}\right] \quad \Sigma_{2}=\left[\begin{array}{cc}
1.232 & 0.867 \\
-0.867 & 2.791
\end{array}\right] \quad \Sigma_{3}=\left[\begin{array}{cc}
1.232 & -0.867 \\
-0.867 & 3.307
\end{array}\right]
$$

$$
\begin{array}{lll}
\Sigma_{4}=\left[\begin{array}{cc}
1.232 & -0.0013 \\
-0.0013 & 2.791
\end{array}\right] & \Sigma_{5}=\left[\begin{array}{ll}
1.232 & 0.867 \\
0.867 & 2.791
\end{array}\right] & \Sigma_{6}=\left[\begin{array}{cc}
1.232 & -3.307 \\
-3.307 & 2.791
\end{array}\right] \\
\Sigma_{7}=\left[\begin{array}{cc}
1.232 & -0.812 \\
-0.812 & 2.791
\end{array}\right] & \Sigma_{8}=\left[\begin{array}{ll}
1.232 & 5.867 \\
5.867 & 2.791
\end{array}\right] & \Sigma_{9}=\left[\begin{array}{cc}
1232.5 & -0.867 \\
-0.867 & 0.91
\end{array}\right]
\end{array}
$$

Problem 3: (40 points)

Two classes ω_{1} and ω_{2} are characterized by 2D normal distributions with the following parameters:

$$
\begin{align*}
& P\left(\omega_{1}\right)=P\left(\omega_{2}\right) \tag{6}\\
& \mu_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mu_{2}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] . \tag{7}
\end{align*}
$$

Plot contour plots (20 points) and the Bayes decision boundary (20 points) for each of the following cases:
(a) $\Sigma_{1}=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right], \Sigma_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(b) $\Sigma_{1}=\left[\begin{array}{cc}1 & 0.5 \\ 0.5 & 1\end{array}\right], \Sigma_{2}=\left[\begin{array}{cc}1 & -0.5 \\ -0.5 & 1\end{array}\right]$

Problem 4: (20 points)

You are given two images gator and smilie in different file formats (jpg, bmp, ppm). Your task is to statistically analyze these two images, using whichever file format is most convenient for you. Each pixel of an image, say gator, can be represented by a vector,

$$
\begin{equation*}
\mathbf{p}_{\text {gator }}^{3 D}=[r, g, b]^{T} \tag{8}
\end{equation*}
$$

in the RGB color space, where r denotes red, g denotes green and b denotes blue channel values. Similarly, for the image smilie, each pixel is represented as a 3D vector $\mathbf{p}_{\text {smilie }}^{3 D}$.

Assuming that the vectors $\mathbf{p}_{\text {gator }}^{3 D}$ and $\mathbf{p}_{\text {smilie }}^{3 D}$ have 3D Gaussian distributions, compute the maximum likelihood (ML) estimates for the mean vectors $\mu_{\text {gator }}^{3 D}$ and $\mu_{\text {smilie }}^{3 D}$, and the ML estimates for the covariance matrices $\Sigma_{\text {gator }}^{3 D}$ and $\Sigma_{\text {smilie }}^{3 D}$.

