#### **EEL6825:** Pattern Recognition

# Quiz I

#### Fall 2003

#### Problem 1. (5 points)

When rolling an unbiased die 6 times, which of the following outcomes has a higher probability? Why?

- 1. The outcome has three 1's and three 6's.
- 2. The outcome is the sequence  $\{1, 2, 3, 4, 5, 6\}$ .

## Problem 2. (25 points)

Let two random variables,  $\mathbf{x}$  and  $\mathbf{y}$ , have a joint probability distribution function (pdf)

$$p_{\mathbf{xy}}(x,y) = \frac{1}{8\pi} e^{-\frac{x^2 + y^2 + 6x - 2y + 10}{8}}$$
(1)

Answer the following questions:

- 1. What type of distribution is  $p_{\mathbf{xy}}(x, y)$ ? (5 points)
- 2. Are  $\mathbf{x}$  and  $\mathbf{y}$  independent? (5 points)
- 3. Are  $\mathbf{x}$  and  $\mathbf{y}$  correlated? (5 points)
- 4. What are the mean and variance values of  $\mathbf{x}$ ? (10 points)

## Problem 3. (35 points)

The two classes,  $\omega_1$  and  $\omega_2$ , of the random variable **x** are distributed, as shown in Figure 1. The prior probabilities of the two classes  $\omega_1$  and  $\omega_2$  are equal.

- 1. Compute the constant k. (5 points)
- 2. Derive the Bayes classifier to classify data x into the two classes  $\omega_1$  and  $\omega_2$ . (10 points)
- 3. Sketch a graph that indicates the Bayes error for the classifier from 2. Mark all the important points in the graph. (10 points)
- 4. Compute the Bayes error for the classifier from 2. (10 points)



Figure 1: The two distributions for Problem 3.

## Problem 4. (35 points)

Let a 2-D random vector  $\mathbf{U}$ , defined as  $\mathbf{U} = [\mathbf{x} \ \mathbf{y}]^T$ , have a uniform distribution:

$$p_{\mathbf{U}}(U|\theta_x, \theta_y) = \begin{cases} k & , \quad \theta_x - 0.5 \le \mathbf{x} \le \theta_x + 0.5 \ , \quad \theta_y - 1.5 \le \mathbf{y} \le \theta_y + 1.5 \ , \\ 0 & , \quad otherwise \ , \end{cases}$$
(2)

where k denotes a constant, and  $\theta_x$  and  $\theta_y$  are parameters of the distribution  $p_{\mathbf{U}}(U|\theta_x, \theta_y)$ . Further, suppose that the following 5 samples of **U**:

$$U_1 = \begin{bmatrix} 0.23\\ 2.79 \end{bmatrix}, U_2 = \begin{bmatrix} -0.31\\ 1.68 \end{bmatrix}, U_3 = \begin{bmatrix} 0.04\\ 3.25 \end{bmatrix}, U_4 = \begin{bmatrix} -0.62\\ 0.99 \end{bmatrix}, U_5 = \begin{bmatrix} 0.17\\ 3.72 \end{bmatrix},$$

are drawn independently from the distribution  $p_{\mathbf{U}}(U|\theta_x, \theta_y)$ .

- 1. Find the constant k (5 points)
- 2. Compute the maximum likelihood estimate (ML) of the parameters  $\theta_x$  and  $\theta_y$ , using the given independent samples  $U_i$ ,  $i \in [1, 5]$ . (30 points)