

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 1 -

Conjugate gradient algorithm for training neural networks

1. Introduction

Recall that in the

steepest-descent

 neural network training algorithm, consecutive line-search directions are

orthogonal

, such that,

(1)

where, denotes , the gradient of the error with respect to the weights at
step of the training algorithm, and denotes the line-search direction at step of the training algo-
rithm. In steepest descent, of course,

, (2)

and,

, (3)

where is determined at each step through line minimization.

2. Deriving the conjugate gradient algorithm

A. Introduction

As we have seen, choosing consecutive line-search directions as in equation (2) can lead to oscillatory behav-
ior in the training algorithm, even for simple quadratic error surfaces. This can significantly slow down con-
vergence of the algorithm. To combat this, we should ideally choose consecutive line-search directions that
are non-interfering — in other words, consecutive search directions that do not undo the progress of previous
search directions. Suppose we have executed a line-search along direction at time step ; then the next
search direction should be chosen so that,

, . (4)

Condition (4) explicitly preserves progress made in the previous line search (see Figure 7.11 in [1]), and will
guide us through our development of the conjugate gradient training algorithm. Below, we closely follow the
derivation in [1], but provide somewhat greater detail in certain parts of the derivation.

B. First step

Lemma: Condition (4) implies,

(5)

to first order, where is the Hessian matrix with elements ,

, (6)

evaluated at , where,

. (7)

Proof: First, let us approximate by its first-order Taylor approximation about ,

(8)

and evaluate the right-hand side of equation (8) at :

. (9)

Note from equation (9) that,

g w

t

1

+

()[]

T

d

t

()

0

=

g w

t

1

+

()[]

E

w

t

1

+

()[]∇

E

w

t

1

+

()

t

1

+

()

d

t

()

t

d

t

()

g

t

()

–=

w

t

1

+

()

w

t

() η

t

()

g

t

()

–=

η

t

()

d

t

()

t

d

t

1

+

()

g w

t

1

+

() η

d

t

1

+

()

+

[]

T

d

t

()

0

=

η∀

d

t

1

+

()

T

Hd

t

()

H

H

i j

,()

H

i j

,()

∂

2

E

∂ω

i

∂ω

j

------------------=

w

t

1

+

()

w

ω

1

ω

2

… ω

W
T

=

g w

()

w

t

1

+

()

g w

()

T

g w

t

1

+

()[]

T

w w

t

1

+

()

–

[]

T

g w

t

1

+

()[]{ }∇

+

≈

w

t

1

+

() η

d

t

1

+

()

+

g w

t

1

+

() η

d

t

1

+

()

+

[]

T

g w

t

1

+

()[]

T

η

d

t

1

+

()

T

H

+

≈

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 2 -

. (10)

Substituting equation (9) into (4),

(11)

. (12)

From (1),

, (13)

so that equation (12) reduces to,

. (14)

Equation (14) implies either and/or . We can dismiss the first of these implications
(), since a zero learning parameter would mean that we are not changing the weights. Therefore, (5)
follows from (4) and the proof is complete.

❏

Note that for quadratic error surfaces, the first-order Taylor approximation in (8) is exact. For non-quadratic
error surfaces, it is approximately correct in the locally quadratic neighborhood of the weight vector

.

Search directions that meet condition (5) are called

-orthogonal

 or

conjugate with respect to

. Our over-
all goal in developing the conjugate gradient algorithm is to construct consecutive search directions that
meet condition (5) without explicit computation of the large Hessian matrix (). Note that an algorithm that
uses -orthogonal search directions will converge to the minimum of the error surface (for quadratic or
locally quadratic error surfaces) in at most steps, where is the number of weights in the neural network.

C. Linear algebra preliminaries

In our derivation of the conjugate gradient algorithm, we will assume a locally quadratic error surface
of the following form:

(15)

where is a constant scalar, is a constant vector, and is a constant matrix (i.e. the Hessian). Further-
more, we assume that is

symmetric

 and

positive-definite

, a property that we will sometimes denote by
.

Definition: A square matrix is

positive-definite

, if and only if all its eigenvalues are greater than zero. If
a matrix is positive-definite, then,

, . (16)

Note that for a quadratic error surface, is constant and is therefore guaranteed to be positive-definite every-
where. Consider, for example, the following simply quadratic error surface of two weights,

. (17)

For (17), we have previously computed the Hessian to be,

(18)

with eigenvalues and . Hence, is positive-definite. Note also, that for any error function
with continuous partial derivatives, the Hessian is guaranteed to be

symmetric

since,

H

E

w

t

1

+

()[]∇{ }∇

g w

t

1

+

()[]{ }∇

= =

g w

t

1

+

()[]

T

η

d

t

1

+

()

T

H

+

{ }

d

t

()

0

=

g w

t

1

+

()[]

T

d

t

() η

d

t

1

+

()

T

Hd

t

()

+

0

=

g w

t

1

+

()[]

T

d

t

()

0

=

η

d

t

1

+

()

T

Hd

t

()

0

=

η

0

=

d

t

1

+

()

T

Hd

t

()

η

0

=

w

t

1

+

()

H

H

d

t

()

H

H

W

W

E

w

()

E

w

()

E

0

b

T

w

1
2

w

T

Hw

+ +=

E

0

b

H

H

H

0

>

H

λ

i

v

T

Hv

0

>

v

∀

0

≠

H

E

20

ω

1
2

ω

2
2

+=

H

40 0

0 2

=

λ

1

40

=

λ

2

2

=

H

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 3 -

(19)

Theorem: For a positive-definite square matrix , -orthogonal vectors are

linearly inde-
pendent

.

Proof: For linear independence, we must show that,

(20)

if and only if , . In equation (20), denotes a vector with equal dimensionality as and all zero
elements. Let us first, pre-multiply equation (20) by ,

(21)

(22)

Note that since we have assumed that the , , vectors are -orthogonal, i.e.,

, , (23)

all terms in (22) drop out except the term, so that (22) reduces to,

(24)

Since is positive-definite, however, we know from (16) that,

(25)

so that in order for (24) to be true,

, , (26)

and the proof is complete.

❏

From this theorem, it follows directly that in a -dimensional space, -orthogonal vectors ,
, form a complete, albeit non-orthogonal, basis set. This means that any vector in that

space may be expressed as the linear combination of the vectors, i.e.,

. (27)

D. The setup

This section establishes the foundations of the conjugate gradient algorithm. In our derivation here and subse-
quent sections, we will assume a locally quadratic error surface of form (15),

. (28)

For now, let us also assume a set of -orthogonal (or conjugate) vectors , . Given these
conjugate vectors, let us see how we can move from some initial (nonzero) weight vector to the minimum

 of error surface (28). From (27) we can express the difference between and as,

(29)

so that,

∂

2

E

∂ω

i

∂ω

j

∂

2

E

∂ω

j

∂ω

i

------------------=

H

H

d

1

d

2

…

d

k

, , ,{ }

α

1

d

1

α

2

d

2

… α

k

d

k

+ + +

0

=

α

i

0

=

i

∀

0

d

i

d

i
T

H

α

1

d

i
T

Hd

1

α

2

d

i
T

Hd

2

… α

k

d

i
T

Hd

k

+ + +

d

i
T

H0

=

α

1

d

i
T

Hd

1

α

2

d

i
T

Hd

2

… α

k

d

i
T

Hd

k

+ + +

0

=

d

i

i

1 2

…

k

, , ,{ }∈

H

d

i
T

Hd

j

0

=

i

∀

j

≠

α

i

d

i
T

Hd

i

α

i

d

i
T

Hd

i

0

=

H

d

i
T

Hd

i

0

>

α

i

0

=

i

1 2

…

k

, , ,{ }∈

W

H

d

i

i

1 2

…

W

, , ,{ }∈

v

d

i

v

α

i

d

i
i

1

=

W

∑

=

E

w

()

E

0

b

T

w

1
2

w

T

Hw

+ +=

H

d

i

i

1 2

…

W

, , ,{ }∈

w

1

w

∗

w

1

w

∗

w

∗

w

1

–

α

i

d

i
i

1

=

W

∑

=

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 4 -

. (30)

Then, if we define,

(31)

we can rewrite equation (30) recursively as,

. (32)

Note that equation (32) represents a sequence of steps in weight space from to . These steps are paral-
lel to the conjugate directions , and the length of each step is controlled by . Equation (32) forms the
basis of the conjugate gradient algorithm for training neural networks and is similar to previous training algo-
rithms that we have studied in that it offers a recursive minimization procedure for the weights . The big
difference to previous algorithms is, of course, that , as was the case for the gradient and steepest
descent algorithms. Also, the step size is not held constant, as is typical in gradient descent.

At this point, several big questions remain unanswered, however. First, how do we construct the vectors
given an error surface? Second, how do we determine the corresponding step sizes such that we are guar-
anteed convergence in at most steps on a locally quadratic error surface? Finally, how can we do both
without explicit computation of the Hessian ? Below, we answer these questions one by one.

E. Computing correct step sizes

Let us first attempt to find an expression for , assuming that we have a set of conjugate vectors ,
. To do this, let us pre-multiply equation (29) by :

(33)

(34)

By -orthogonality, all the terms in the right-hand sum of equation (34) where are zero. Thus, equation
(34) reduces to,

. (35)

Now, note that since the gradient of (28) is given by,

, (36)

the minimum can be expressed implicitly as,

(37)

so that,

, (38)

. (39)

Consequently, equation (35) further reduces to,

, (40)

w

∗

w

1

α

i

d

i
i

1

=

W

∑

+=

w

j

w

1

α

i

d

i
i

1

=

j

1

–

∑

+

≡

w

j

1

+

w

j

α

j

d

j

+=

w

1

w

∗

d

j

α

j

w

d

j

g

j

–

≠

α

j

d

j

α

j

W

H

α

j

W

d

i

i

1 2

…

W

, , ,{ }∈

d

j
T

H

d

j
T

H w

∗

w

1

–

()

d

j
T

H

α

i

d

i
i

1

=

W

∑

 
 
 

=

d

j
T

H w

∗

w

1

–

() α

i

d

j
T

Hd

i
i

1

=

W

∑

=

H

i j

≠

d

j
T

H w

∗

w

1

–

() α

j

d

j
T

Hd

j

=

g w

()

b Hw

+=

w

∗

g w

∗()

0

=

b Hw

∗

+

0

=

Hw

∗

b

–=

d

j
T

b

–

Hw

1

–

() α

j

d

j
T

Hd

j

=

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 5 -

. (41)

Thus,

(42)

Although equation (42) gives an expression for , the right-hand side of (42) is dependent on the initial
weights . We can remove this dependence. Starting with equation (31),

(43)

we (once again) pre-multiply by ,

. (44)

Since for all terms in the sum on the right-hand side of equation (44), the sum is zero by -orthogonal-
ity. Thus, equation (44) reduces to,

. (45)

Substituting (45) into (42) and letting,

, (46)

equation (42) further simplifies to,

(47)

(48)

Below, we proof that iteration (32), with step size as given in (48), will converge to in at most
steps from any nonzero initial weight vector and a quadratic error surface.

Theorem: Assuming a -dimensional quadratic error surface,

, (49)

and -orthogonal vectors , , the following weight iteration,

, (50)

, (51)

will converge in at most steps to the minimum of the error surface from any nonzero initial
weight vector .

Proof: We will proof this theorem by showing that the gradient vector at the th iteration is orthogonal to
all previous conjugate directions , . From this, it follows that after steps, the components of the
gradient along all directions will have been made zero, and consequently, iteration (50) will have converged
to the minimum .

d

j
T

b Hw

1

+

()

–

α

j

d

j
T

Hd

j

=

α

j

d

j
T

b Hw

1

+

()

–

d

j
T

Hd

j

------------------------------------=

α

j

w

1

w

j

w

1

α

i

d

i
i

1

=

j

1

–

∑

+=

d

j
T

H

d

j
T

Hw

j

d

j
T

Hw

1

α

i

d

j
T

Hd

i
i

1

=

j

1

–

∑

+=

i j

≠

H

d

j
T

Hw

j

d

j
T

Hw

1

=

g

j

b Hw

j

+=

α

j

d

j
T

b Hw

j

+

()

–

d

j
T

Hd

j

-----------------------------------=

α

j

d

j
T

g

j

–

d

j
T

Hd

j

----------------=

α

j

w

∗

W

w

1

W

E

w

()

E

0

b

T

w

1
2

w

T

Hw

+ +=

H

d

i

i

1 2

…

W

, , ,{ }∈

w

j

1

+

w

j

α

j

d

j

+=

α

j

d

j
T

g

j

–

d

j
T

Hd

j

----------------=

W

w

∗

E

w

()

w

1

g

j

j

d

i

i j

<

W

w

∗

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 6 -

Since,

(52)

we can write,

. (53)

From (50),

(54)

so that (53) reduces to,

. (55)

Not surprisingly, we now pre-multiply equation (55) by ,

(56)

and substitute (51) for so that,

(57)

(58)

(59)

. (60)

Therefore, from the result in (60), we know that the gradient at the th step is orthogonal to the previ-
ous direction . To show that the same is also true for all previous conjugate directions , , let us pre-
multiply equation (55) by ,

. (61)

Since , the right-hand side of equation (61) is zero by -orthogonality. Thus, (61) reduces to,

(62)

, . (63)

Through induction of equations (63) and (60), we can easily show that,

, . (64)

For example, let . From (63),

, (65)

and from (60),

(66)

so that,

. (67)

Now we can let and repeat the steps for . This completes the proof.

❏

g

j

b Hw

j

+=

g

j

1

+

g

j

–

H w

j

1

+

w

j

–

()

=

w

j

1

+

w

j

–

() α

j

d

j

=

g

j

1

+

g

j

–

α

j

Hd

j

=

d

j
T

d

j
T

g

j

1

+

g

j

–

() α

j

d

j
T

Hd

j

=

α

j

d

j
T

g

j

1

+

g

j

–

()

d

j
T

g

j

–

d

j
T

Hd

j

 
 
 

d

j
T

Hd

j

=

d

j
T

g

j

1

+

g

j

–

()

d

j
T

g

j

–=

d

j
T

g

j

1

+

d

j
T

g

j

–

d

j
T

g

j

–=

d

j
T

g

j

1

+

0

=

j

1

+

()

d

j

d

k

k j

<

d

k
T

d

k
T

g

j

1

+

g

j

–

() α

j

d

k
T

Hd

j

=

k j

<

H

d

k
T

g

j

1

+

g

j

–

()

0

=

d

k
T

g

j

1

+

d

k
T

g

j

=

k j

<

d

k
T

g

j

0

=

k

∀

j

<

k j

1

–=

d

j

1

–

T

g

j

1

+

d

j

1

–

T

g

j

=

d

j

1

–

T

g

j

0

=

d

j

1

–

T

g

j

1

+

0

=

k j

2

–

j

3

–

…

1

, , ,

=

k j

1

–=

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 7 -

F. Constructing conjugate vectors

So far in our development, we have assumed a set of mutually -orthogonal vectors , but have not
talked about how to construct these vectors. The theorem below gives one iterative method for doing just that.

Theorem: Let be defined as follows:

1. Let,

(68)

2. Let,

, , (69)

where,

(70)

The construction of (68), (69) and (70) generates mutually -orthogonal vectors on a -dimensional
quadratic error surface, such that,

, . (71)

Proof: First, we will show that our choice of in (70) implies,

. (72)

In other words, we will show that consecutive search directions are -orthogonal. Pre-multiplying (69) by
,

, (73)

and substituting (70) into (73), we get,

(74)

. (75)

Next, we demonstrate that if,

 , , (76)

(means “implies”), then,

, . (77)

This can be shown by induction of (72) and (76); for example,

 (from (72), by construction) (78)

 (from (78) and (76), by assumption) (79)

 (from (72), by construction) (80)

 (from (79) and (76), by assumption) (81)

H

d

j

{ }

d

j

d

1

g

–

1

=

d

j

1

+

g

j

1

+

–

β

j

d

j

+=

j

1

≥

β

j

g

j

1

+

T

Hd

j

d

j
T

Hd

j

----------------------=

W

H

W

d

j
T

Hd

i

0

=

i

∀

j

≠

β

j

d

j

1

+

T

Hd

j

0

=

H

d

j
T

H

d

j
T

Hd

j

1

+

d

j
T

Hg

j

1

+

–

β

j

d

j
T

Hd

j

+=

d

j
T

Hd

j

1

+

d

j
T

Hg

j

1

+

–

g

j

1

+

T

Hd

j

d

j
T

Hd

j

 
 
 

d

j
T

Hd

j

+=

d

j
T

Hd

j

1

+

d

j
T

Hg

j

1

+

–

g

j

1

+

T

Hd

j

+

0

= =

d

j
T

Hd

i

0

=

⇒

d

j

1

+

T

Hd

i

0

=

i

∀

j

<

⇒

d

j
T

Hd

i

0

=

i

∀

j

≠

d

2

T

Hd

1

0

=

d

3

T

Hd

1

0

=

d

3

T

Hd

2

0

=

d

4

T

Hd

1

0

=

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 8 -

 (from (80) and (76), by assumption) (82)

 (from (72), by construction), etc. (83)

Thus, to complete the proof, we need to show that (76) is true. First, we transpose and post-multiply (69) by
, ,

(84)

Now, by assumption (76), . Hence,

. (85)

From (32), we have that,

, (86)

. (87)

Since,

, (88)

. (89)

Combining equations (87) and (89),

(90)

. (91)

We substitute equation (91) into the right-hand side of equation (85) [switching the index from to in equa-
tion (91)], so that,

, (92)

, (93)

. (94)

Now, we will show that the right-hand side of equation (94) is zero, by showing that,

, . (95)

This will complete the proof. From (68) and (69), we see that , , is a linear combination of all previ-
ous gradient directions,

, (96)

where the are scalar coefficients. For example,

, (97)

d

4

T

Hd

2

0

=

d

4

T

Hd

3

0

=

Hd

i

i j

<

d

j

1

+

T

Hd

i

g

j

1

+

T

Hd

i

–

β

j

d

j
T

Hd

i

+=

d

j
T

Hd

i

0

=

d

j

1

+

T

Hd

i

g

j

1

+

T

Hd

i

–=

w

j

1

+

w

j

–

α

j

d

j

=

H w

j

1

+

w

j

–

() α

j

Hd

j

=

g

j

Hw

j

b

+=

H w

j

1

+

w

j

–

()

g

j

1

+

g

j

–=

α

j

Hd

j

g

j

1

+

g

j

–=

Hd

j

1

α

j

g

j

1

+

g

j

–

()

=

j

i

d

j

1

+

T

Hd

i

1

α

i

g

j

1

+

T

g

i

1

+

g

i

–

()

–=

d

j

1

+

T

Hd

i

1

α

i

g

j

1

+

T

g

i

1

+

g

j

1

+

T

g

i

–

()

–=

d

j

1

+

T

Hd

i

1

α

i

g

i

1

+

T

g

j

1

+

g

i
T

g

j

1

+

–

()

–=

g

k
T

g

j

0

=

k

∀

j

<

d

k

k

1

≥

d

k

g

–

k

γ

l

g

l
l

1

=

k

1

–

∑

+=

γ

l

d

1

g

–

1

=

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 9 -

, (98)

. (99)

We have already shown,

, , (100)

so that if we transpose and post-multiply equation (96) by , ,

, (101)

 [from (100)], (102)

. (103)

Since ,

, , [from (100)], (104)

, . (105)

By induction of equations (103) and (105), we can now show that (95) is true; for example,

 [from (105)] (106)

 [from (103) and (105)] (107)

 [from (105)] (108)

 [from (103) and (105)] (109)

 [from (103) and (109)], etc. (110)

Thus,

, , (111)

so that,

, . (112)

Recall that equation (112) presupposes , so that we have shown equation (76) to be true; i.e.,

 when , . (113)

Thus, by induction of equations (72) and (76), the construction in (68), (69) and (70) generates mutually -
orthogonal vectors on a quadratic error surface, such that,

, , (114)

and the proof is complete.

❏

d

2

g

2

–

β

1

d

1

+

g

2

–

β

1

g

1

–= =

d

3

g

–

3

β

2

d

2

+

g

3

–

β

2

g

2

–

β

2

β

1

g

1

–= =

d

k
T

g

j

0

=

k

∀

j

<

g

j

j k

>

d

k
T

g

j

g

–

k
T

g

j

γ

l

g

l
T

g

k
l

1

=

k

1

–

∑

+=

0

g

–

k
T

g

j

γ

l

g

l
T

g

k
l

1

=

k

1

–

∑

+=

g

k
T

g

j

γ

l

g

l
T

g

k
l

1

=

k

1

–

∑

=

d

1

g

–

1

=

d

1

T

g

j

g

–

1

T

g

j

0

= =

j

1

>

g

1

T

g

j

0

=

j

1

>

g

1

T

g

2

0

=

g

2

T

g

3

γ

1

g

1

T

g

3

0

= =

g

1

T

g

4

0

=

g

2

T

g

4

γ

1

g

1

T

g

4

0

= =

g

3

T

g

4

γ

1

g

1

T

g

4

γ

2

g

2

T

g

4

+

0

= =

g

k
T

g

j

0

=

k

∀

j

<

d

j

1

+

T

Hd

i

1

α

i

g

i

1

+

T

g

j

1

+

g

i
T

g

j

1

+

–

()

–

0

= =

i j

<

d

j
T

Hd

i

0

=

d

j

1

+

T

Hd

i

0

=

d

j
T

Hd

i

0

=

i

∀

j

<

H

d

j
T

Hd

i

i

∀

j

≠

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 10 -

G. Computing without the Hessian

We now have the following algorithm for training the weights of a neural network:

1. Let,

, (115)

where is a random initial weight vector.

2. For let,

(116)

where,

(117)

3. Let,

, (118)

where,

(119)

4. Iterate steps 2 and 3.

Ideally, we would like to compute both and without explicit computation of . Let us look at first.
Substituting equation (91),

(120)

into equation (119), we get,

(121)

which is known as the

Hestenes-Stiefel

 expression for . Expression (121) can be further simplified. From
equation (118),

. (122)

Then, transposing and post-multiplying equation (122) by , we get,

. (123)

Since

, , (124)

equation (123) reduces to,

, (125)

. (126)

β

j

d

1

g

–

1

=

w

1

j

1

≥

w

j

1

+

w

j

α

j

d

j

+=

α

j

d

–

j
T

g

j

d

j
T

Hd

j

----------------=

d

j

1

+

g

j

1

+

–

β

j

d

j

+=

β

j

g

j

1

+

T

Hd

j

d

j
T

Hd

j

----------------------=

α

j

β

j

H

β

j

Hd

j

1

α

j

g

j

1

+

g

j

–

()

=

β

j

g

j

1

+

T

g

j

1

+

g

j

–

()

d

j
T

g

j

1

+

g

j

–

()

--=

β

j

d

j

g

–

j

β

j

1

–

d

j

1

–

+=

g

j

d

j
T

g

j

g

–

j
T

g

j

β

j

1

–

d

j

1

–

T

g

j

+=

d

k
T

g

j

0

=

k

∀

j

<

d

j
T

g

j

g

–

j
T

g

j

=

g

j
T

g

j

d

j
T

g

j

–=

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 11 -

Consequently, equation (121) reduces to,

(127)

which is known as the

Polak-Ribiere

 expression for . Finally since,

, , (128)

equation (127) further reduces to,

(129)

which is known as the

Fletcher-Reeves

 expression for . Note that none of the three expressions (equa-
tions (121), (127) and (129), respectively) requires computation of the local Hessian . Also, note that on a
purely quadratic error surface, the three expressions above are identical. Since a neural network error func-
tion is typically only approximately quadratic, however, the different expressions for will give slightly dif-
ferent results. According to [1], the Polak-Ribiere form in (127) usually gives slightly better results in
practice than the other two expressions. With (127), when the algorithm is making poor progress, will be
approximately zero, so that the search direction will be reset to the negative gradient, effectively re-initializ-
ing or restarting the conjugate gradient algorithm.

H. Computing without the Hessian

As we will show below, rather than compute (the step size along each search direction) through equation
(51),

p (130)

we can instead determine through a line minimization along . We will show below that for a quadratic
error surface, this line minimization is equivalent to computing explicitly. For a quadratic error surface,

(131)

we have that,

. (132)

We now differentiate equation (132) with respect to and equate to zero:

(133)

Since is symmetric,

(134)

equation (133) reduces to,

(135)

(136)

β

j

g

j

1

+

T

g

j

1

+

g

j

–

()

g

j
T

g

j

--=

β

j

g

k
T

g

j

0

=

k

∀

j

<

β

j

g

j

'

1

+

T

g

j

1

+

g

j
T

g

j

-------------------------=

β

j

β

j

H

β

j

β

j

α

j

α

j

α

j

d

–

j
T

g

j

d

j
T

Hd

j

----------------=

α

j

d

j

α

j

E

w

()

E

0

b

T

w

1
2

w

T

Hw

+ +=

E

w

j

α

j

d

j

+

()

E

0

b

T

w

j

α

j

d

j

+

()

1
2

w

j

α

j

d

j

+

()

T

H w

j

α

j

d

j

+

()

+ +=

α

j

∂

E

w

j

α

j

d

j

+

()
∂α

j

b

T

d

j

1
2

d

j
T

H w

j

α

j

d

j

+

()

1
2

w

j

α

j

d

j

+

()

T

Hd

j

+ +

0

= =

H

d

j
T

H w

j

α

j

d

j

+

()

w

j

α

j

d

j

+

()

T

Hd

j

=

b

T

d

j

d

j
T

H w

j

α

j

d

j

+

()

+

0

=

d

j
T

b d

j
T

Hw

j

α

j

d

j
T

Hd

j

+ +

0

=

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 12 -

(137)

Since,

, (138)

equation (137) reduces to,

(139)

(140)

Note that equation (140) is equivalent to equation (130), which was derived independently from theoretical
considerations. Therefore, we have shown that we may safely replace explicit computation of with a line
minimization along .

3. The conjugate gradient algorithm

We have now arrived at the complete

conjugate gradient algorithm

, which we summarize below:

1. Choose an initial weight vector (e.g. vector of small, random weights).

2. Evaluate and let,

. (141)

3. At step , , perform a line minimization along such that,

, . (142)

4. Let,

(143)

5. Evaluate .

6. Let,

(144)

where,

. (145)

7. Let and go to step 3.

Note that at no time does the above algorithm require explicit computation of the Hessian . In fact, the conju-
gate gradient algorithm requires very little additional computation compared to the steepest descent algorithm. It
does, however, exhibit significantly faster convergence properties. In fact, on a -dimensional quadratic error
surface, the conjugate gradient algorithm is guaranteed to converge to the minimum in steps; no such guaran-
tees exist for the steepest descent algorithm. The main difference between the two algorithms is that the conju-
gate gradient algorithm exploits a reasonable assumption about the error surface (i.e. locally quadratic) to
achieve faster convergence.

A neural network error surface will in general, of course, not be globally quadratic. Therefore, in practice, more
than steps will usually be required before convergence to a local minimum. Consequently, in applying the
conjugate gradient algorithm to neural network training, we typically reset the algorithm every steps; that is,

α

j

d

j
T

Hd

j

d

j
T

b Hw

j

+

()

–=

g

j

b Hw

j

+=

α

j

d

j
T

Hd

j

d

j
T

g

j

–=

α

j

d

j
T

g

j

–

d

j
T

Hd

j

----------------=

α

j

d

j

w

1

g

1

E

w

1

[]∇

=

d

1

g

1

–=

j

j

1

≥

d

j

E

w

j

α∗

d

j

+

()

E

w

j

α

d

j

+

()≤

α∀

w

j

1

+

w

j

α∗

d

j

+=

g

j

1

+

d

j

1

+

g

j

1

+

–

β

j

d

j

+=

β

j

g

j

1

+

T

g

j

1

+

g

j

–

()

g

j
T

g

j

--=

j j

1

+=

H

W

W

W

W

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 13 -

we reset the search direction to the negative gradient [equation (141)]. Finally we note that throughout our devel-
opment, we have assumed that the Hessian is positive definite. When is not positive definite, the line mini-
mization in step 3 of the algorithm prevents the algorithm from making negative progress (i.e. increasing the
error of the neural network).

4. Examples

In this section, we will examine the conjugate gradient algorithm for some simple examples, including (1) a sim-
ple quadratic error surface, (2) a simple non-quadratic error surface, and (3) a simple neural network training
example. We will see that the conjugate gradient algorithm significantly outperforms both the steepest descent
and gradient descent algorithms in speed of convergence.

A. Quadratic example

Here we consider the simple quadratic error surface,

. (146)

For this error surface and from initial weights , Figure 1 below plots the trajectory in
weight space of (1) the conjugate gradient algorithm, (2) the steepest descent algorithm, and (3) the gradient
descent algorithm with a learning rate of . Each trajectory is superimposed on top of a contour plot
of and is stopped when . Note that the minimum for occurs at .

From Figure 1, we make several observations. First, as expected, the conjugate gradient algorithm does
indeed converge in two steps for a two-dimensional quadratic error surface. By contrast, the steepest descent
algorithm requires 15 steps to converge to an error , even though the two algorithms require
approximately the same amount of computation per step. The gradient descent algorithm comes in a distant
third at 175 steps to convergence for a learning rate , and this does not count the amount of compu-
tation performed in searching for the near-optimal value of the learning rate . In fact, one of the nicest fea-
tures of the conjugate gradient algorithm is that it requires

no

 hand-selection of any learning parameter,
momentum term, etc.

A legitimate complaint about Figure 1 is that the conjugate gradient algorithm is specifically designed for a
quadratic error surface, so that its superior performance in this case is not surprising — in other words, the
skeptical reader might easily conclude that the comparison in Figure 1 is rigged. Therefore, we consider a
decidedly non-quadratic error surface in the following section.

B. Non-quadratic example

Here we consider the simple non-quadratic error surface,

H

H

E

20

ω

1
2

ω

2
2

+=

ω

1

ω

2

,()

1 2

,()

=

η

0.04

=

E

E

10

6

–

<

E

ω

1

ω

2

,()

0 0

,()

=

E

10

6

–

<

η

0.04

=

η

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

ω

1

ω

2

ω

2

ω

2

ω

1

ω

1

η

0.04

=

()

conjugate gradient steepest descent gradient descent
175 steps to convergence15 steps to convergence2 steps to convergence

Figure 1

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 14 -

, (147)

which is plotted in Figure 2. This error surface is characteristic of some regions in weight space for neural
network training problems in that for certain weights, the gradient is close to zero.

For this error surface and from initial weights , Figure 3 below plots the trajectory in
weight space of (1) the conjugate gradient algorithm, (2) the steepest descent algorithm, and (3) the gradient
descent algorithm with a learning rate of . Each trajectory is superimposed on top of a contour plot
of and is stopped when . Note that the minimum for occurs at .

From Figure 3, we make several observations. First, the conjugate gradient algorithm no longer converges in
just two steps (for a two-dimensional surface), since in (147) is not quadratic; it does, however, converge in
four short steps to . By contrast, the steepest descent algorithm requires 25 steps to converge to an
error , and the gradient descent algorithm comes in a distant third at 60 steps to convergence for a
learning rate ; once again, the 60 steps for gradient descent does not account for the computation
performed in searching for the near-optimal value of the learning rate .

The observant reader may still be skeptical. Why, you ask, did we choose as the initial weight vec-
tor for this problem? Caught once again! It turns out that these particular initial weights fall just inside the
region of the weight space where the Hessian is positive definite. The region in Figure 4 encircled by the
heavy line corresponds to that region in weight space where . Note that falls just inside that
region.

So how does the conjugate gradient algorithm fare when is not positive definite? Figure 5 answers this
question. In Figure 5, we initialize the weights to , outside the positive-definite region, and
once again track the conjugate gradient, steepest descent and gradient descent (with) algorithms.
Note that once again, the conjugate gradient algorithm clearly outperforms its two competitors. In fact, the

E

1 5

ω

1
2

–

ω

2
2

–

()

exp

–=

-2

-1

0

1

2 -2

-1

0

1

2

0

0.25

0.5

0.75

1

-2

-1

0

1

2

Figure 2

ω

1

ω

2

E

ω

1

ω

2

,()

0.2 0.5

,()

=

η

0.1

=

E

E

10

6

–

<

E

ω

1

ω

2

,()

0 0

,()

=

-0.4 -0.2 0 0.2 0.4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.4 -0.2 0 0.2 0.4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

ω

1

ω

2

ω

2

ω

2

ω

1

-0.4 -0.2 0 0.2 0.4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 3

ω

1

η

0.1

=

()

conjugate gradient steepest descent gradient descent
60 steps to convergence25 steps to convergence4 steps to convergence

E

E

10

6

–

<

E

10

6

–

<

η

0.1

=

η

0.2 0.5

,()

H

H

0

>

0.2 0.5

,()

H

ω

1

ω

2

,()

1 2

,()

=

η

0.1

=

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 15 -

gradient descent algorithm degenerates to an awful 940 steps to convergence —this poor performance is typ-
ical of gradient descent in flat regions of the error surface.

C. Neural-network training example

Finally, we look at a simple neural network training example. Here we are interested in approximating,

, , (see Figure 6) (148)

with a single-layer, three-hidden-unit neural network

1

 (see Figure 6) and symmetric sigmoidal activation
functions,

. (149)

Our training data for this problem consists of evenly spaced points sampled from
.

Figure 7 plots,

(150)

1. Due to an oversight, no connections from the bias unit to the output unit was included in this network. Thus, there are
a total of nine trainable weights in this neural network.

-0.4 -0.2 0 0.2 0.4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 4

ω

1

ω

2

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

ω

1

ω

2

ω

2

ω

2

ω

1

Figure 5

ω

1

η

0.1

=

()

conjugate gradient steepest descent gradient descent
940 steps to convergence24 steps to convergence5 steps to convergence

y

1
2

1
2

2

π

x

()

sin

+=

0

x

1

≤ ≤

γ

u

()

1
1

e

u

–

+

1
2

---–=

N

500

=

x y

,()

x

0 1

,[]∈

log

10

E
N

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 16 -

as a function of the number of steps (or epochs) of the conjugate training algorithm for the first 200 steps. By
comparison, Figure 8 illustrates that steepest descent does not come close to approaching the conjugate gradi-
ent algorithm’s performance, even after 500 steps. Finally, we note that gradient descent (with)
requires 10,000 epochs to reach approximately the same error as the conjugate gradient algorithm does in 200
epochs, as shown in Figure 9. Once again, the conjugate gradient algorithm converges in many fewer steps
than either of its two competitors.

D. Postscript

Let us look at two more issues with regard to the neural network training example of the previous section.
First, Figure 10 plots the neural network’s progress in approximating as the number of epochs (steps)
increases from 1 to 200. Note how the conjugate gradient algorithm slowly begins to bend an initially linear
approximation to ultimately generate a very good fit of the sine curve.

Second, it is interesting to examine how this neural network, with sigmoidal activation functions centered
about the origin [see equation (149)] is able to approximate the function (with non-zero average value)
without a bias connection to the output unit . Let us denote , , as the net contribution from
hidden unit to the output , so that,

. (151)

In other words,

, , (152)

where denotes the weight from the th hidden unit to the output, and denotes the output of hidden unit
. Figure 11 (top) plots each of the , which are easily recognized as different parts of the symmetric sig-

moid function in equation (149). To understand how they combine to form an approximation of , we sepa-
rately plot and in Figure 11 (bottom). Note that is primarily responsible for the overall shape
of the function, while together “pull” the ends of to conform to the familiar sine curve shape.

5. Conclusion

We have derived the conjugate gradient algorithm and illustrated its properties on some simple examples. We
have shown that it outperforms both the gradient descent as well as the steepest descent algorithms in terms
of the number of computations required to reach convergence. This improvement has been achieved primarily
by accounting for the local properties of error surfaces, allowing us to employ gradient information in a more
intelligent manner; furthermore, the conjugate gradient algorithm makes unnecessary the often painful trial-
and-error selection of tunable learning parameters.

[1] C. M. Bishop, “Chapter 7: Parameter Optimization Algorithms,”

Neural Networks for Pattern Recogni-
tion

, Oxford University Press, Oxford, 1995.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

z

x

1

y

x

Figure 6

η

0.3

=

y

y

z

z

i

i

1 2 3

, ,{ }∈

i

z

z z

1

z

2

z

3

+ +=

z

i

ω

i

h

i

=

i

1 2 3

, ,{ }∈

ω

i

i

h

i

i

z

i

y

z

1

z

2

+

z

3

z

3

z

z

1

z

2

+

z

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 17 -

0 50 100 150 200

-2

-1.5

-1

-0.5

Figure 7

number of epochs

log

10

E
N

conjugate gradient algorithm

0 200 400 600 800 1000

-2

-1.5

-1

-0.5

Figure 8

number of epochs

log

10

E
N

conjugate gradient algorithm

steepest descent algorithm

0 2000 4000 6000 8000 10000

-2

-1.5

-1

-0.5

Figure 9

number of epochs

log

10

E
N

conjugate gradient algorithm

gradient descent algorithm

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 18 -

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

5

epochs

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

11

epochs

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1

epoch

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

7

epochs

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

92

epochs

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

200

epochs

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

20

epochs

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

163

epochs

Figure 10

EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

- 19 -

Figure 11

0 0.2 0.4 0.6 0.8 1

-2

-1

0

1

2

z

1

z

2

z

3

x

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

xx

z

1

z

2

+

z

3

	1. Introduction
	2. Deriving the conjugate gradient algorithm
	A. Introduction
	B. First step
	C. Linear algebra preliminaries
	D. The setup
	E. Computing correct step sizes
	F. Constructing conjugate vectors
	G. Computing without the Hessian
	H. Computing without the Hessian

	3. The conjugate gradient algorithm
	4. Examples
	A. Quadratic example
	B. Non-quadratic example
	C. Neural-network training example
	D. Postscript

	5. Conclusion

