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Conjugate gradient algorithm for training neural networks

1. Introduction

Recall that in thesteepest-descemteural netwrk training algorithm, consecué line-search directions are
orthogonal such that,

glw(t+1)]7d(t) = 0 1)

where,g[w(t +1)] denoteddE[w(t+ 1)], the gradient of the errd® with respect to the weights(t + 1) at
step(t+ 1) of the training algorithm, and(t) denotes the line-search direction at stegf the training algo-
rithm. In steepest descent, of course,

d(t) = —g(1), (2)
and,
w(t+1) = w(t)-n(t)g(t), 3)
wheren(t) is determined at each step through line minimization.
2. Derivingthe conjugate gradient algorithm
A. Introduction

As we hae seen, choosing consewatiine-search directions as in equati@gphcan lead to oscillatory beha
ior in the training algorithm,wen for simple quadratic error saces.This can signifiantly slav down con-
vergence of the algorithnTo combat this, we should ideally choose conseedine-search directions that
are non-interfering — in otherards, consecute search directions that do not undo the progress wbpee
search directions. Suppose werdnaecuted a line-search along directid(t) at time stegt ; then the net
search directiom(t + 1) should be chosen so that,

g[w(t+1) +nd(t+1)]Td(t) = 0, On. 4)

Condition(4) explicitly presenes progress made in the yigus line search (see Figure 7.111f), and will
guide us through our delopment of the conjude gradient training algorithm. Belpwe closely follev the
derivation in[1], but provide somehat greater detail in certain parts of the d&ion.

B. First step
Lemma Condition(4) implies,
d(t+1)THd(t) (5)
to first ordey whereH is the Hessian matrix with elemenﬂ%’j) ,

_ 0%E
Hiiiy = 363063 " (6)

evaluated atw(t + 1), where,

w = [‘*’1 Wy ... w\,\]T. ()
Proof First, let us approximatg(w) by its frst-orderTaylor approximation abouwt/(t + 1) ,

g(w)T=g[w(t+1)]T+[w-w(t+1)]TO{g[w(t +1)]} 8
and ealuate the right-hand side of equati@atw(t+ 1) +nd(t+1):

glw(t+1) +nd(t+1)]T=g[w(t+1)]T+nd(t+1)TH. ©)
Note from equatioi9) that,
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H = O{OE[w(t+1)]} = O{g[w(t+1)]}. (10)
Substituting equatio(®) into (4),

{glw(t+1)]T+nd(t+1)TH}d(t) = 0 (12)

g[w(t+1)]7d(t) + nd(t+ 1)THd(t) = 0. (12)
From(1),

glw(t+1)]7d(t) = 0, (13)

so that equatiofiL2) reduces to,
nd(t+1)THd(t) = 0. (14)

Equation(14) implies eithern = 0 and/ord(t+ 1)THd(t). We can dismiss ther§it of these implications
(n = 0), since a zero learning parametayuld mean that we are not changing the weightgrefore (5)
follows from(4) and the proof is completgl

Note that for quadratic error sades, the fst-orderTaylor approximation irf8) is exact. For non-quadratic
error surfces, it is approximately correct in the locally quadratic neighborhood of the weigtur v
w(t+1).

Search directions that meet conditi&) are calledH -orthogonal or conjugate with @spect toH . Our over
all goal in deeloping the conjuate gradient algorithm is to construct conseeusiearch directiond(t) that
meet conditior(5) without plicit computation of the lge Hessian matrix{ ). Note that an algorithm that
usesH -orthogonal search directions will cange to the minimum of the error sace (for quadratic or
locally quadratic error swates) in at mostV steps, wher&V is the number of weights in the neural netkv

C. Linear algebrapreiminaries

In our dervation of the conjugte gradient algorithm, we will assume a locally quadratic erroaceif(w)
of the following form:

E(w) = Eg+bTw+ %WTHW (15)

whereE, is a constant scalap is a constantector andH is a constant matrix (i.e. the Hessian). Further
more, we assume th&t is symmetricand positive-defiite, a property that we will sometimes denote by
H>0.

Definition: A square matriXd is positive-defiite, if and only if all its eigevaluesh; are greater than zero. If
a matrix is positie-defhite, then,

vTHv>0, Ov#0. (16)

Note that for a quadratic error sack,H is constant and is therefore guaranteed to be ywsigfhite every-
where. Considerfor example, the follwing simply quadratic error sate of tvo weights,

E = 20wf + w3. (17)

For (17), we hae previously computed the Hessian to be,

H = {4‘)0} (18)
0 2

with eigevaluesA; = 40 andA, = 2. HenceH is positve-defnite. Note also, that for grerror function
with continuous partial deratives, the Hessian is guaranteed tayrametricsince,
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02E _  092%E

0w 0w 0w,0w, (19)

Theorem For a positve-defnite square matrixd , H -orthogonal ectors{d,, d,, ..., d,} arelinearly inde-
pendent

Proof For linear independence, we must\sttbat,
a,d;+a,d,+...+a,d. =0 (20)

if and only ifa; = O, 0i. In equation(20), O denotes aeactor with equal dimensionality a and all zero
elements. Let usrit, pre-multiply equatiof20) by diTH ,

o,dTHd, +o,dTHd, + ... +a,dHd, = dHO (21)

o,dTHd, +o,dTHd, + ... + o, dTHd,

0 (22)
Note that since we ka assumed that thdy, i 0 {1, 2, ..., k} , vectors areH -orthogonal, i.e.,

dTHd; = 0, Di #], (23)
all terms in(22) drop out &cept theaidiTH d; term, so thaf22) reduces to,

a;dHd, = 0 (24)
SinceH is positve-defnite, havever, we knav from (16) that,

dHd, >0 (25)
so that in order fof24) to be true,

a; =0,i0{1,2 ...k}, (26)

and the proof is completél

From this theorem, it folles directly that in aW-dimensional spaceH -orthogonal ‘ectors d,,
i0{1 2, ...,W}, form a complete, albeit non-orthogonal, basis Bes means that gnvectorv in that
space may bexpressed as the linear combination of thevectors, i.e.,

w
v = Z a,d;. (27)
i=1
D. Thesetup

This section establishes the foundations of the catgugradient algorithm. In our desition here and subse-
guent sections, we will assume a locally quadratic erroaseidf form(15),

E(W) = Eg+bTw + %WTHW. (28)

For now, let us also assume a settbforthogonal (or conjugte) \ectorsd, , i 0{1,2, ..., W} . Given these
conjugate \ectors, let us see owve can mee from some initial (nonzero) weightetorw, to the minimum
wU of error surfice(28). From(27) we can Bpress the diérence betweew andwU as,

w
wh-w; = 5 ayd, (29)
i=1

so that,
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wh = w, + VZV a;d;. (30)
i=1
Then, if we defie,
j-1
Wy =w, + z a,d; (31)
i=1

we can rarite equatior(30) recursvely as,

Wjpq =W +0(jdj. (32)

i
Note that equatio(B82) represents a sequence of steps in weight spacexffoto wll. These steps are paral-
lel to the conjugte directiondd. , and the length of each step is controlledaby Equation(32) forms the
basis of the conjuge gradient algorithm for training neural netis and is similar to pwéous training algo-
rithms that we hae studied in that it éérs a recursie minimization procedure for the weights. The big
difference to prégous algorithms is, of course, thd}i —g;, as vas the case for the gradient and steepest

descent algorithmg\lso, the step size(j is not held constant, as is typical in gradient descent.

At this point, seeral big questions remain unansweredyder. First, hav do we construct thd. vectors
given an error sugce? Second, hodo we determine the corresponding step sizesuch that we are guar
anteed covergence in at mosW steps on a locally quadratic error sud? Finallyhowv can we do both
without explicit computation of the Hessidd ? Belav, we answer these questions one by one.

E. Computing correct step sizes

Let us fist attempt to fid an &pression forO(j , assuming that we e a set oW conjugate \ectorsd,,
i0{1,2, ..., W}.To do this, let us pre-multiply equati¢?29) by djTH :

w

T O - dT O O
dTH(WO-wy) = dTHOY ad 0 (33)
0=, O
W
dTHWO-wy) = ¥ o;dTHd, (34)
i=1

By H -orthogonality all the terms in the right-hand sum of equafi®4) wherei #j are zeroThus, equation
(34) reduces to,

djTH (wh-w,) = ajdjTH d;. (35)

Now, note that since the gradient(@B) is given by

gw) = b+Hw, (36)
the minimumwO can be gpressed implicitly as,

gwh) =0 (37)
so that,

b+HwlU=0, (38)

Hwl= —b. (39)

Consequentlyequation(35) further reduces to,

df(=b—Hw,) = o;dHd;, (40)
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—dT(b+Hw,) = a;dTHd,. (41)
Thus,
—dT(b+Hw
aj = _._J(_.._Q (42)
dHd,

Although equatior(42) gives an epression foraj , the right-hand side d#2) is dependent on the initial
weightsw, . We can remee this dependence. Starting with equa{i@h),

j—-1
Wi = wy z a,d; (43)
i=1
we (once agin) pre-multiply bydjTH ,

-1
dfHw; = dTHw, + ¥ a;dHd,. (44)
i=1

Sincei #] for all terms in the sum on the right-hand side of equdtidh the sum is zero bl -orthogonal-
ity. Thus, equatioif44) reduces to,

djTHWj = djTle. (45)
Substituting(45) into (42) and letting,
g = b+ij, (46)

equation(42) further simplifes to,

—dT(b +Hw;
a. = _....JL....._J) (47)
J dfHd,
_d.Tg.
o. = _ 19 48
J djTde ( )

Below, we proof that iteratioif32), with step sizen(j as gven in(48), will corverge towl in at mostw
steps from ayinonzero initial weightectorw,; and a quadratic error sade.

TheoremAssuming aW-dimensional quadratic error sack,
E(W) = Eg+bTw + %WTHW, (49)

andH -orthogonal ectorsd,;, i 0{1,2, ..., W}, the follaving weight iteration,

Wipq = Wt agd;, (50)
_d.Tg.

P 51

J djTde ( )

will converge in at mostW steps to the minimurwU of the error suefce E(w) from ary nonzero initial
weight \ectorw, .

Proof We will proof this theorem by skagng that the gradientectorg; at thej th iteration is orthogonal to
all previous conju@te directionsd, , i <j. From this, it follavs that afterW steps, the components of the
gradient along all directions will kia been made zero, and consequeitdyation(50) will have corverged

to the minimumwU.
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Since,
g = b+ ij (52)

we can write,

9+179 = H(Wj+1_Wj)- (53)
From(50),
(Wj 4+ 1=W)) = 04 (54)

so that(53) reduces to,

9+1-9 = ojHd;. (55)
Not surprisingly we nav pre-multiply equatiorf55) by dT

djT(gj+1—gj) = dojTde (56)

and substitut¢s51) for a j SO that,

d7(g . ,-g) = E_ﬂEdTHd- (57)
g +17 Y [djTdeDJ i

djT(gj+1_gj) = —djng (58)
dfg;.,-dfg = g (59)
dTg ., = 0. (60)

Therefore, from the result {{60), we knav that the gradient at thg + 1) th step is orthogonal to the pre
ous directionoli . To shav that the same is also true for allyioeis conjugte directionsd, , k<j, let us pre-
multiply equation(55) by d T,

dg(gjﬂ—gj) = ajdllde. (61)

Sincek <j, the right-hand side of equati@fil) is zero byH -orthogonality Thus,(61) reduces to,

d-kr(9j+1_gj) =0 (62)

d[ngrl = d[gj ,k<j. (63)
Through induction of equatior{63) and(60), we can easily shothat,

dig; = 0, Ok<j. (64)
For example, letk = j—1. From(63),

dT 19,1 = dT g, (65)

and from(60),

djT_lgj =0 (66)
so that,

df 19+, = 0. (67)
Now we can letk = j—2,j—3, ..., 1 and repeat the steps for= j —1. This completes the prodil

-6-
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F. Constructing conjugate vectors

So far in our deelopment, we hae assumed a set of mutualy/-orthogonal ectors{d.} , but hare not
talked about he to construct thesesetors.The theorem bele gives one iteratie method gor doing just that.

Theorem Let dj be defined as follavs:

1. Let,
dy = -gy (68)
2. Let,
dig =0 +Bd;,i=1, (69)
where,
[

The construction of68), (69) and(70) generatesNV mutually H -orthogonal ectors on aV-dimensional
guadratic error suate, such that,

dfHd; = 0, Oi #j. (71)
Proof First, we will shav that our choice oﬂj in (70) implies,
dl, Hd, = 0. (72)

In other words, we will shwr that consecuie search directions aite -orthogonal. Pre-multiplying69) by
dTH
J 1

dfHd;,; = —diHg;,, +BidfHd;, (73)

and substituting70) into (73), we get,

', Hd.O
T = _dT 1+ “i=yT
djTde+1 = —djTng+1+ng+1de =0. (75)
Next, we demonstrate that if,
dJ-THdi =0 O djTJrlHdi =0,0d<j, (76)
( O means “implies”), then,
dfHd; = 0, Oi #j. (77)

This can be shen by induction o{72) and(76); for example,

dgH d; = 0 (from(72), by construction) (78)
dgH d; = 0 (from (78) and(76), by assumption) (79)
dgH d, = 0 (from(72), by construction) (80)
dIH d; = 0 (from(79) and(76), by assumption) (81)

-7-
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dIH d, = 0 (from (80) and(76), by assumption) (82)

dIH d; = 0 (from(72), by construction), etc. (83)
Thus, to complete the proof, we need tovelioat(76) is true. First, we transpose and post-mult{i9) by
Hd,,i<j,

djT+1Hdi = —ng+1Hdi + BjdjTHdi (84)

Now, by assumptioi(76), djTH d; = 0. Hence,
dl, Hd, = —g[, 1Hd,;. (85)

From(32), we hae that,

Wjsg— W = ayd;, (86)

H(Wj+1—Wj) = Gdej. (87)
Since,

gJ = HWj+b’ (88)

H(Wj+1_Wj) =9+179- (89)

Combining equationé37) and(89),
O‘dej =9+179 (90)

1
de = a—j(gj+1_gj)- 1)

We substitute equatid®1) into the right-hand side of equati(8b) [switching the inde fromj toi in equa-
tion (91)], so that,

1

df, {Hd; = —a‘_ng+ 1(%i+1-9), (92)
|
1

df,  Hd; = _a_i(ng+ 19i+1~9+19) (93)
1

djT+ 1Hd; = —a(giT+ 1gj+1_ging+1)- (94)
|

Now, we will shav that the right-hand side of equati@) is zero, by shwing that,
g9, = 0, Ok<j. (95)

This will complete the proof. Froif68) and(69), we see thatl, , k=1, is a linear combination of all prie
ous gradient directions,

k-1
de = =G+ > V(9 (96)

=1

where they, are scalar coétients. r example,

d; = -9;, (97)
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d, = -0, +Byd; = —9,—B19;, (98)

d3

—03;+B,dy, = —03— Bzgz -B,B49; - (99)
We hae already shen,
dlfgj =0, Ok<j, (100)

so that if we transpose and post-multiply equat8§) by 9 j >k,

k—1
d|—(rgj = —gggj + 2 V|9|Tgk , (101)
=1
k—1
0= —gggj + 2 v,9/9, [from (100}, (102)
=1
k—1
WY = > V19 G- (103)
=1
Sinced; = -9,
dIgj = —gIgj = 0,j>1, [from (100), (104)
9fg; = 0,j>1. (105)

By induction of equationgl03) and(105), we can nav shaw that(95) is true; for @ample,

079, = 0 [from (105) (106)

0293 = v,9]9; = 0 [from (103)and(105)] (107)

979, = 0 [from (105) (108)

029, = v,9]J9, = 0 [from (103)and(105)] (109)

039, = v,9]9,+Y,979, = 0 [from (103)and(109), etc. (110)
Thus,

o9 = 0, Ok<j, (111)
so that,

1 L
djT+ 1Hd; = _(x_i(giT+ 19 +1—9iT9j +1) =0,i<j. (112)

Recall that equatio(iL12) presupposedjTH d; = 0, so that we hae shavn equation(76) to be true; i.e.,
dl, Hd; = 0 whend[Hd; = 0, 0i <j. (113)

Thus, by induction of equatiorfg2) and(76), the construction if68), (69) and(70) generates mutualli -
orthogonal ectors on a quadratic error sagé, such that,

dfHd;, Di#j, (114)

and the proof is completél
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G. Computing Bj without the Hessian

We nav have the follaving algorithm for training the weights of a neural netkv
1. Let,
d; = -9, (115)

wherew, is a random initial weightector

2.Forj=1 let,
W1 =W, +0(jdj (116)
where,
_d.Tg.
- 0%
a, = ——+ 117
I dTHd (117)
3. Let,
dj+1:_gj+1+Bjdj ) (118)
where,
ng+ lde
e 119
B aTha (119)

4. lterate step® and3.

Ideally, we would like to compute botlurj and Bj without explicit computation ofH . Let us look aBj first.
Substituting equatio(®1),

1
de = a‘j(9j+1—gj) (120)
into equation(119), we get,

_ ng+ 1(9j +1—gj)

B: (121)
: djT(gj+1—gj)
which is knavn as theHestenes-Stiefaxpression forBj . Expressior{(121) can be further simpliéid. From
equation(118),
dj =gt Bj—ldj—l : (122)
Then, transposing and post-multiplying equa(ib??) by g; we get,
Tg = —qT T
479 = 079+ B 1919 - (123)
Since
dig; = 0, Ok<j, (124)
equation(123)reduces to,
Ta = —aTa:
nggj = —djng . (126)

-10-
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Consequentlyequation(121) reduces to,

B = ng+ 1(9+1-9)

J nggj (127)
which is knevn as theéPolak-Ribiee expression for[3j . Finally since,
99 = 0, Ok<j, (128)
equation(127)further reduces to,
B = ng%ng (129)
99,

which is knavn as tha-letcher-Re&esexpression forf3; . Note that none of the thrge expressions (equa-
tions(121), (127)and(129), respectiely) requires computation of the local HessknAlso, note that on a
purely quadratic error sw@ate, the threexpressions ahw are identical. Since a neural netlwerror func-
tion is typically only approximately quadratic,vmever, the diferent expressions fof3; will give slightly dif-
ferent resultsAccording to[1], the Polak-Ribiere form irf127) usually gves slightly better results in
practice than the other dnexpressionsWith (127), when the algorithm is making poor progrefsjs,will be
approximately zero, so that the search direction will be reset to gagveegradient, ééctively re-initializ-
ing or restarting the conjage gradient algorithm.

H. Computing Q; without the Hessian

As we will shav below, rather than compute, (the step size along each search direction) through equation
(51),

_dTa
_ 49

= 130
: djTdep (130)

we can instead determime through a line minimization alomjgj . We will shaw below that for a quadratic
error surfce, this line minimization is eqailent to computinng explicitly. For a quadratic error suate,

E(W) = Eg+bTw + %WTHW (131)
we have that,
1
_ T < T
E(Wj + ajdj) = Ey+b (wj + o(jdj) + 2(Wj + O‘jdj) H(Wj + doj) ) (132)

We naw differentiate equatio(iL32) with respect tay and equate to zero:

?E—Olv%@ = b7d, + ZdTH (w + aydy) + S(w, + od;)THd| = O (133)
SinceH is symmetric,

djTH(wj +oyd;) = (w, +0(jdj)Tde (134)
equation(133)reduces to,

dej + djTH(wj +o;d;) =0 (135)

dTb +dTHw; +a;dTHd, = 0 (136)

-11-
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a;d/Hd; = —dT(b+Hw;) (137)
Since,
g = b+Hw, (138)
equation(137)reduces to,
T = dTg
orjdj de = dJ 9, (139)
_d.Tg.
- 9
o = —1=L 140
J djTde ( )

Note that equatioi140) is equvalent to equatiorf130), which was denved independently from theoretical
considerationsTherefore, we ha shavn that we may safely replacepdicit computation oforj with a line
minimization alongdj .

3. Theconjugate gradient algorithm
We hare nav arrived at the completeonjugate gadient algorithm which we summarize beio

1. Choose an initial weightectorw, (e.g. \ector of small, random weights).

2. Evaluateg, = E[w,] and let,
d; = -0;- (141)

3. At stepj, j =1, perform a line minimization alon(j;j such that,

E(w, +0(EUJ-)SE(Wj +ad;), Oa. (142)
4. Let,
Wi =W, +0(EUJ- (143)

5. Evaluateg; , ; .

6. Let,
disy = -9, +Bd, (144)
where,
-
Bj _ gj+1(9j+1—gj) . (145)

99,
7.Letj = j+1 and go to stef.

Note that at no time does the a&balgorithm requirexlicit computation of the Hessiad . In fact, the conju-

gate gradient algorithm requiresry little additional computation compared to the steepest descent algorithm. It
does, hwever, exhibit significantly faster comergence properties. Iraft, on aw-dimensional quadratic error
surface, the conjuage gradient algorithm is guaranteed tovenge to the minimum i'W steps; no such guaran-
tees gist for the steepest descent algoritithe main diference between the twalgorithms is that the conju-
gate gradient algorithmxeloits a reasonable assumption about the erromasair(i.e. locally quadratic) to
achieve faster comergence.

A neural netwrk error surdce will in general, of course, not be globally quadratierefore, in practice, more
than W steps will usually be required before eemence to a local minimum. Consequentty applying the
conjugate gradient algorithm to neural neik training, we typically reset the algorithimeey W steps; that is,

-12-
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we reset the search direction to thgatwe gradient [equatio(i41). Finally we note that throughout ound-
opment, we hae assumed that the Hessidnis positve defhite. WhenH is not positve defnite, the line mini-
mization in ste@ of the algorithm pneents the algorithm from making gegive progress (i.e. increasing the
error of the neural netwk).

4. Examples

In this section, we willxeamine the conjuate gradient algorithm for some simplamples, including (1) a sim-
ple quadratic error swate, (2) a simple non-quadratic error aoef, and (3) a simple neural netw training
example.We will see that the conjate gradient algorithm signifintly outperforms both the steepest descent
and gradient descent algorithms in speed ofegence.

A. Quadratic example
Here we consider the simple quadratic erroragugf
E = 20w+ w3. (146)

For this error sudce and from initial weight$¢w,, w,) = (1, 2), Figure 1belav plots the trajectory in
weight space of (1) the conjaig gradient algorithm, (2) the steepest descent algorithm, and (3) the gradient
descent algorithm with a learning raterpf= 0.04. Each trajectory is superimposed on top of a contour plot
of E and is stopped whetfE < 10-5 . Note that the minimum foE occurs afw,, w,) = (0,0).

From Figure 1 we male seeral obserations. First, asxpected, the conjude gradient algorithm does
indeed comerge in two steps for a ta-dimensional quadratic error sack. By contrast, the steepest descent
algorithm requires 15 steps to veme to an error./E < 10~8, even though the tw algorithms require
approximately the same amount of computation per $tep gradient descent algorithm comes in a distant
third at 175 steps to ceargence for a learning ratg = 0.04, and this does not count the amount of compu-
tation performed in searching for the neatimal \alue of the learning rateg . In fact, one of the nicest fea-
tures of the conjugte gradient algorithm is that it requires hand-selection of gnlearning parameter
momentum term, etc.

2 2 2

e
2
.
o
e
o

-
-
-

W7 Wy W7
Wy Wy Wy
conjugate gradient steepest descent gradient descengn = 0.04)
2 steps to carergence 15 steps to carergence 175 steps to caergence
Figurel

A legitimate complaint abougigure lis that the conjuate gradient algorithm is speciily designed for a
guadratic error suatce, so that its superior performance in this case is not surprising — in otlasr; the
skeptical reader might easily conclude that the comparisétigire 1lis rigged.Therefore, we consider a
decidedly non-quadratic error sack in the follaing section.

B. Non-quadratic example

Here we consider the simple non-quadratic erroasetf
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E = 1-exp(-5wf-w3), (147)

which is plotted inFigure 2 This error sutdice is characteristic of someagiens in weight space for neural
network training problems in that for certain weights, the gradient is close to zero.

For this error sudce and from initial weightéw,, w,) = (0.2, 0.5), Figure 3belawv plots the trajectory in
weight space of (1) the conjaig gradient algorithm, (2) the steepest descent algorithm, and (3) the gradient
descent algorithm with a learning raterpf= 0.1. Each trajectory is superimposed on top of a contour plot
of E and is stopped whetfE < 10-5 . Note that the minimum foE occurs afw,, w,) = (0,0).

FromFigure 3 we male seeral obserations. First, the conjage gradient algorithm no longer ecames in

just two steps (for a terdimensional sudce), sinceée in (147)is not quadratic; it does, Waver, corverge in

four short steps ta/E < 10~ . By contrast, the steepest descent algorithm requires 25 stepsemedn an

error ,/E < 108, and the gradient descent algorithm comes in a distant third at 60 stepgeigence for a
learning raten = 0.1; once agin, the 60 steps for gradient descent does not account for the computation
performed in searching for the nesmatimal \alue of the learning rate .

The obserant reader may still be sftical.Why, you ask, did we choog®.2, 0.5) as the initial weight ec-
tor for this problem? Caught onceaag It turns out that these particular initial weighadl fust inside the
region of the weight space where the Hesditins positve defnite. The reyion in Figure 4encircled by the
heavy line corresponds to thatgien in weight space wheitd > 0. Note that(0.2, 0.5) falls just inside that
region.

So hav does the conjugge gradient algorithmafe whenH is not positie defnite? Figure 5answers this
question. IrFigure § we initialize the weights téw,, w,) = (1, 2), outside the posite-defnite region, and
once agin track the conjugte gradient, steepest descent and gradient descentr(witi®.1) algorithms.
Note that once ain, the conjugte gradient algorithm clearly outperforms it®taompetitors. Indct, the

T \ T \ 0 \

04 02 o 02

W ’ 0010 Wy
conjucpte gradient steepest descent gradient descent(n = 0.1)
4 steps to corergence 25 steps to corergence 60 steps to corergence
Figure3

-14-



EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

Wy
\ / Figure4
Wy
w, ' W, w,
Wy Wy Wy
conjucpte gradient steepest descent gradient descent(n = 0.1)
5 steps to corergence 24 steps to corergence 940 steps to cxergence
Figure5

gradient descent algorithmgknerates to amdiul 940 steps to carergence —this poor performance is typ-
ical of gradient descent irefl regions of the error suate.

C. Neural-network training example

Finally, we look at a simple neural nedvk training @ample. Here we are interested in approximating,

y = %+ %sin(ZT[x) , 0<x<1, (seeFigure § (148)
with a single-layerthree-hidden-unit neural nevk! (seeFigure § and symmetric sigmoidal ag#tion
functions,

1 1
u) = -z, 149
VW = 3 (149)

Our training data for this problem consists Wf= 500 evenly spaced(x,y) points sampled from
xdJ[o,1].

Figure 7plots,

E
logy, [N (150)

1. Due to an gersight, no connectionsdm the bias unit to the output unit was included in this netwidnks, thee are
a total of nine tainable weights in this neaknetwork.
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0.6

0.2

Figure6

X 1 X J
as a function of the number of steps (or epochs) of the catejtigiining algorithm for thert 200 steps. By
comparisonfFigure 8illustrates that steepest descent does not come close to approaching tretegniudti-
ent algorithms performance,ven after 500 steps. Finallwe note that gradient descent (with= 0.3)
requires 10,000 epochs to reach approximately the same error as thateogjadient algorithm does in 200
epochs, as skm in Figure 9 Once agin, the conjugte gradient algorithm cearges in may fewer steps
than either of its t@ competitors.

D. Postscript

Let us look at tvw more issues with gard to the neural netwk training &ample of the préous section.
First, Figure 10plots the neural netwk’s progress in approximating as the number of epochs (steps)
increases from 1 to 200. Notevinthe conjug@te gradient algorithm shy begins to bend an initially linear
approximation to ultimately generate ery good fi of the sine cur.

Second, it is interesting tox@mine hav this neural netark, with sigmoidal actiation functions centered
about the origin [see equati§h49) is able to approximate the functign (with non-zero gerage alue)
without a bias connection to the output unitLet us denote;, i {1, 2, 3}, as the net contriltion from
hidden uniti to the outputz, so that,

Z2=27+2,+2;. (151)
In other vords,

z = wh,,i0{1,23}, (152)
wherew, denotes the weight from théh hidden unit to the output, arid denotes the output of hidden unit
i . Figure 11(top) plots each of the , which are easily recognized asfeiient parts of the symmetric sig-
moid function in equatio149). To understand o they combine to form an approximation gf we sepa-
rately plotz, +z, andz; in Figure 11(bottom). Note that, is primarily responsible for theverall shape
of the z function, whilez, + z, together “pull” the ends af to conform to thedmiliar sine cure shape.

5. Conclusion

We have derved the conjugte gradient algorithm and illustrated its properties on some sixgaiepdesWe

have shavn that it outperforms both the gradient descent as well as the steepest descent algorithms in terms
of the number of computations required to reacivegence This improszement has been achéz primarily

by accounting for the local properties of error aoefs, alloving us to emplg gradient information in a more
intelligent manner; furthermore, the conjiig gradient algorithm mak unnecessary the often painful trial-
and-error selection of tunable learning parameters.

[1] C. M. Bishop, “Chapter 7:d&ameter OptimizatioAlgorithms, Neurl Networks for Bttern Recgni-
tion, Oxford Unversity Press, Oxford, 1995.
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1 epoch 5 epochs

20 epochs 92 epochs

163 epochs 200 epochs
1 1
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Figure 10

-18-



EEL6825: Pattern Recognition Conjugate gradient algorithm for training neural networks

2 F

1t

0 L

-1t

_2 0

X
2 15
15 1
1 Zl + 22 05
0.5 0 Z3
0 -05
-05 -1
1 -15
0 0.2 0.4 0.6 08 1 0 0.2 0.4 0.6 08 1
X X
Figure11

-19-



	1. Introduction
	2. Deriving the conjugate gradient algorithm
	A. Introduction
	B. First step
	C. Linear algebra preliminaries
	D. The setup
	E. Computing correct step sizes
	F. Constructing conjugate vectors
	G. Computing without the Hessian
	H. Computing without the Hessian

	3. The conjugate gradient algorithm
	4. Examples
	A. Quadratic example
	B. Non-quadratic example
	C. Neural-network training example
	D. Postscript

	5. Conclusion

