EEL6825: Pattern Recognition Introduction to feedforward neural networks

Introduction to feedforward neural networks

1. Problem statement and historical context
A. Learning framework

Figure 1below illustrates the basic framerk that we will see irartificial neual networklearning.We
assume that weamt to learn a classifation taskG with n inputs andm outputs, where,

G(x), 1)

Yy

X = [xl Xy ... xn}T andy = [yl Yo .. ynJT. 2)

In order to do this modeling, let us assume a mbduelith trainable parameteeetorw , such that,

z = T(x,w) 3)
where,
z= [zl z, ... zn]T. 4)

Now, we want to minimize the error between the desired outpuasid the model outputs for all possible
inputsx . That is, we wvant to fnd the parametereetorwl so that,

E(wD) <E(w), Ow, ®)
whereE(w) denotes the error betweéhandl” for model parameterectorw . Ideally, E(w) is given by

E(w) = fly -2I?p(x)dx (6)

wherep(x) denotes the probability density functioveo the input space . Note thatE(w) in equation(6)
is dependent ow throughz [see equatioif3)]. Now, in general, we cannot compute equati@ndirectly;
therefore, we typically computé(w) for a training data set of input/output data,

{(xpyp} . 10{L2,p},)
wherex; is then-dimensional input ectog
T

corresponding to theth training pattern, ang, is them-dimensional outputectoy

a
>
X1 I A=
£ 3
.
3 X Unknown mapping G Y2 5
£ - 2
) [}
Xn = Ym %
7 2
13
; 5
Trainable model” =2, 3
: [
- o
-— = 7 o
m £ Figure 1

EEL6825: Pattern Recognition Introduction to feedforward neural networks

T

Yi = [yil Yio - yirrJ 9
corresponding to theth training patterni O {1, 2, ..., p} . For (7), we can defie thecomputablesrror func-
tion E(w),

1P Ppm
Ew) =33 vi-zl* =33 ¥ =) (10)
i=1 i=1j=1

where,

z, =T (x;, w). (11)

If the data set is well distritbed aver possible inputs, equati¢hO) gives a good approximation of the error
measure irf6).

As we shall see shortlgrtificial neural netwrks are one type of parametric modefor which we can min-
imize the error measure in equatid®) over a gven training data set. Simply put, adiéil neural netwrks

are nonlinear function approximators, with adjustable (i.e. trainable) parametehst allev us to model
functional mappings, including class#ition tasks, between inputs and outputs.

B. Biological inspiration

So wty are artifcial neural netwrks called artifiial neural netwrks?These models are referred to as neural
networks because their structure and function is loosely basdiotogical neural netwrks, such as the
human brain. Our brains consist of basic cells, callgions connected together in massiand parallel
fashion.An individual neuron recees electrical signals fromentrites connected from other neurons, and
passes on electrical signals through the nesromtput, theaxon as depicted (crudely) igure 2belaw.

axon

dentrites

neuion

Figure2

A neurons transfer function can be roughly approximated by a threshold function as illustr&igdrin 3

below. In other vords, a neuros’axon fies if the net stimulus from all the incoming dentrites isvatsmme
threshold. Learning in our brain occurs through adjustment of the strength of connection between neurons (at
the axon-dentrite junction). [Note, this description is a gross siggtldin of what really goes on in a brain;
nevertheless, this brief summary is adequate for our purposes.]

axon output

net stimulus sm dentrites Figure 3

EEL6825: Pattern Recognition Introduction to feedforward neural networks

Now, artificial neural netwrks attempt to crudely emulate biological neural weks in the folleving impor
tant ways:

1. Simple basic units are theiltling blocks of artiftial neural netwrks. It is important to note that artil
“neurons” are much, much simpler than their biological counterparts.

2. Individual units are connected masdy and in parallel.
3. Individual units hae threshold-type aetation functions.

4. Learning in artiftial neural netwrks occurs by adjusting the strength of connection betweenduéll
units. These parameters are knoas theveightsof the neural neterk.

We point out that artifial neural netwrks are much, much, much simpler than compielogical neural
networks (like the human brainjccording to the Engclopedia Britannica, thevarage human brain consists
of approximately1010 individual neurons with approximatel§012 connections. Ean \ery complicated
artificial neural netwrks typically do not hae more thanl04 to 10° connections between, at mo$@*
individual basic units.

As of Septembe001, an INSPEC database search generated!6,000 hits with thedgword “neural net-
work.” Considering that neural netrk research did not really talof until 1986, with the publication of the
backpropagtion training algorithm, we see that research in @lfheural netwrks has gploded @er the
past 15 years and is still quite aetiodayWe will try to corer some of the highlights of that research. First,
however, we will formalize our discussion ab®, clearly defiing what a neural netwk is, and ha we can
train artificial neural netwrks to model input/output data; that iswhiearning occurs in artiial neural net-
works.

2. What makes a neural network a neural network?
A. Basic building blocks of neural networks

Figure 4belaw illustrates the basicuilding block of artiftial neural netwrks; theunit's basic function is
intended to roughly approximate the beba of biological neurons, although biological neurons tend to be
orders-of-magnitude more complthan these artifial units.

In Figure 4

EPE[% @ - wq]T (12)

represents aector of scalar inputs to the unit, where thevariables are either neural netk inputsx; , or
the outputs from préous units, including theias unit@,, which is fked at a constantalue (typicaliy 1).
Also,

-
w= w0 ... @ (13)
represents the inpweightsof the unit, indicating the strength of connection from the unit inputas we

shall see laterthese are the trainable parameters of the neurabrietwinally, y represents the (typically
nonlinear)activation functiorof the unit, andp represents the scalar output of the unit where,

Figure4

EEL6825: Pattern Recognition Introduction to feedforward neural networks

od O
w=y(wllp) = yO) wed (14)
H=o U
Thus, a unit in an artifial neural netwrk sums up its total input and passes that sum through some (in gen-
eral) nonlinear aotation function.

B. Perceptrons

A simple perception is the simplest possible neural netl, consisting of only a single unAs shavn in
Figure 6 the output unig actvation function is theéhresholdfunction,

il uz=9
ye(u) = Ep u<9 (15)
which we plot inFigure 5 The outputz of the perceptron is thusvgin by
I e p———
£
=
0 Figure5
0 u
ik x=0
7= W (16)
Ep w k<0
where,
-
X = [1 Xq .. xn] and, (7)
T
w = [‘*’o Wy .. wn} (18)

A perceptron lilke that pictured ifrigure 6is capable of learning a certain set of decision boundaries, specifi
cally those that arbnearly sepaable The property of linear separability is best understood geometrically
Consider the tw, two-input Boolean functions depicted figure 7— namely the OR and the XOR func-
tions (filed circles represent 0, while halccircles represent 1The OR functiorcan be represented (and
learned) by a te-input perceptron, because a straight line can completely separat® ttlagses. In other

z

Figure 6

EEL6825: Pattern Recognition Introduction to feedforward neural networks

Xo 0)
wy = -05
w; =1
w, =1
A N Xl
OR function XOR function

Figure7

words, the tw classes are linearly separable. On the other hand, the XOR furantiootbe represented (or
learned) by a terinput perceptron because a straight la@notcompletely separate one class from the
other For three inputs and abe, whether or not a Boolean function is representable by a simple perceptron
depends on whether or not a plane (oypehplane) can completely separate the tlasses.

The algorithm for learning a linearly separable Boolean function i&/kras theperception learning rule
which is guaranteed to cegrge for linearly separable functions. Since this training algorithm does not gener
alize to more complicated neural netks, discussed belp we refer the interested readel{2 for further
details.

C. Activation function

In biological neurons, the aetition function can be roughly approximated as a threshold function [equation
(15)], as in the case of the simple perceptronvabin artiftial neural netwrks that are more complicated
than simple perceptrons, we typically emulate this biological\behthrough nonlinear functions that are
similar to the threshold functionubare, at the same time, continuous antediftiable. [As we will see
later, differentiability is an important and necessary property for training neurabristmore complicated
than simple perceptronsthus, twp common actiation functions used in artifel neural netwrks are the
sigmoidfunction,

1
u) = 19
VW = = (19)
or thehyperbolic tangntfunction,
eU_e—U
u) = 20
VW = S (20)

These tw functions are plotted iRigure 8belon. Note that the ta functions closely resemble the threshold
function inFigure 5and difer from each other only in their respeetioutput ranges; the sigmoid functisn’
range is[0, 1] , while the lyperbolic tangent functioa’range ig—1, 1] . In some cases, when a system out-
put does not hee a predefied range, its corresponding output unit may use a linegatati function,

sigmoid hyperbolic tangnt

1 1
0.8

0.5
0.6

s S5 o

X o4 =

-05
0.2

0 -1

-10 -5 0 5 10 -10 -5 0 5 10
u u
Figure8

-5-

EEL6825: Pattern Recognition Introduction to feedforward neural networks

y(u) =u (21)

FromFigure § the role of the bias unip, should nav be a little clearer; its role is essentially elent to
the threshold parametérin Figure 5 allowing the unit outputp to be shifted along the horizontal axis.

D. Neural network architectures

Figures9 and10 shaw typical arrangements of units in axtiéil neural netwrks. In both fjures, all connec-
tions are feedforard and layered; such neural netlss are commonly referred to feedforwad multilayer
perceptons (MLPs) Note that units that are not part of either the input or output layer of the neuratiknetw
are referred to dsidden unitsin part since their output agitions cannot be directly obsed/from the out-
puts of the neural netwk. Note also that each unit in the neural mekwreceves as input a connection from
the bias unit.

The neural netarks in Figure® and10 are typical of mayneural netwrks in use today in that tharrange

the hidden units itayers, fully connected between consewatiayers. Br exkample ALVINN, a neural net-

work that learned he to autonomously steer an automobile on real roads by mapping coarse camera images
of the road ahead to corresponding steering direcfRinsised a single-hidden-layer architecture to aghie

its goal (sed-igure 11below).

MLPs are, hwever, not the only appropriate or allable neural netark architecture. & example, it is fre-
guently adentageous to va direct input-output connections; such connections, which jump hidden-unit lay-
ers, are sometimes referred toshsrtcutconnections. Furthermore, hidden units do not necessaviéytba

be arranged in layers; later in the course, we will, kan®ple, study the cascade learning architecture, an
adaptve architecture that arranges hidden units in a partjautar-layered manneiWe will say more about
neural netwrk architectures later within the coxt®f specifc, successful neural netwk applications.

Finally, we point out that there alsaist neural netwrks that allev cyclic connections; that is, connections
from ary unit in the neural netark to ary other unit, including self-connectiongheserecurrentneural net-
works present additional challenges and will be studied later in the coursewfdran@ver, we will confne
our studies to feedforavd (agclic) neural netwrks only

E. Simple example
Consider the simple, single-input, single-output neural otwhavn in Figure 12belav. Assuming sigmoi-

dal hidden-unit and linear output-unit aetiion functions (equationd9) and(21), respectiely), what \al-
ues of the weight§ w,;, w,, ..., w,} will approximate the functiorf(x) in Figure 12

bias unit hidden unit layer

signal fow (feedforwad)

bias unit

Figure9

-6-

EEL6825: Pattern Recognition Introduction to feedforward neural networks

hidden unit layer #2

signal fow (feedforwad)

hidden unit layer #1

Figure 10

To answer this question, let ussfiexpressf(x) in terms of threshold agtition functions [equatio(iL5)]:
f(x) = cly;(x—-a) -y (x-b)] (22)
f(x) = cy(x—a)—cy,(x-Db) (23)

Recognizing that the threshold function can be approximated arbitrarily well by a sigmoid function [equation
(191,

Yi(u) - y(ku) ask - o (24)

we can rarite (23) in terms of sigmoidal ast@tion functions,

Sharp Straight Sharp
Left Ahead Right

30x32 Sensor
Input Retina

Figure 11

Bu 14991 SnowouolINy J0J YJOMPBN [eJneN NN IATY

EEL6825: Pattern Recognition Introduction to feedforward neural networks

z f()
c.- —
Ws
bias unit 0
. ab X
Figure 12
f(x) = cy[k(x—a)] —cy[k(x—b)] for lage k. (25)

Now, let us write dwn an &pression forz, the output of the neural natvk. FromFigure 12
Z = g+ WgY(Wy + w,yX) + W,y (g + wW,yX) (26)

Comparing(25) and(26), we arrre at tw possible sets of weighalues for approximatind(x) with z:

weights (V] W, (0N W, Wg Wg W,
set #1 —kb k —ka k 0 —C c
set #2 —ka k —kb k 0 c —C

3. Sometheoretical propertiesof neural networks
A. Single-input functions

From the ®ample in Sectio2(E), we can conclude that a single-hidden layer neuralarktean modeany
single-input function arbitrarily well with a didient number of hidden units, sinceyamne-dimensional
function can be>gressed as the sum of localizeditips: It is important to note, h@ever, that typically a
neural netwrk does not actually approximate functions as the sum of localimagds Consideifor exam-
ple, Figure 13 Here, we used a three-hidden neural netwio approximate a scaled sinewe. Note that
even with only three hidden units, the maximum neural agtwerror is less than 0.01.

B. Multi-input functions

Now, does thisuniversal function appwximator property for single-hidden layer neural netis hold for
multi-dimensional functions? No, because the creation of localized peaks in multiple dimensions requires an

1
0.004
0.8
0.002
06 s 0
~~~ 8
x D 0002
= o4 zZ
Z - 0004
02 - 0.006
0 - 0.008
o 20 200 500 50 1000 0 200 400 600 800 1000
X X
Figure 13

-8-



EEL6825: Pattern Recognition Introduction to feedforward neural networks

additional hidden layefonsiderfor ekample,Figure 14belown, where we used a foinidden unit netwrk to

create a localized peak. Note wever, that unlile in the single-dimensionak@&mple, secondary ridges are

also presenilhus, an additional sigmoidal hidden unit in a second layer is required to suppress the secondary
ridges, lot, at the same time, preserthe localized peaRhis ad hoc“proof” indicates thaany multi-input

function can be modeled arbitrarily well by aotividden-layer neural netwk, as long as a dufient number

of hidden units are present in each lagefiormal proof of this is gien by Cyben&[1].

Figure 14

4. Neural network training
There are three basic steps in applying neuralaré&sato real problems:

1. Collect input/output training data of the form:
{(x,y)},10{1,2,...,p}, (27)
wherex; is then -dimensional input &ctog
T
corresponding to theth training pattern, ang, is them-dimensional outputector
T
Yi = I:yil Yig - yinJ (29)

corresponding to theth training patterni 0 {1, 2, ..., p} .

2. Select an appropriate neural netwarchitecture. Generallthis involves selecting the number of hidden
layers, and the number of hidden units in each ld&pemotational covenience, let,

z = (w,Xx) (30)
denote then-dimensional outputectorz for the neural netark I , with g -dimensional weightector
W 1

T
w = [ool W, ... ooc;| (31)

and input ectorx . Thus,
z; = (W, x;) (32)
denotes the neural netvk outputsz; corresponding to the inpueetor for thei th training pattern.

3. Train the weights of the neural netwk to minimize the error measure,

-9-



EEL6825: Pattern Recognition Introduction to feedforward neural networks

E= (yij—zij)2 (33)

1

”M'O
”M'U
||M3

1
vi-zl* =3
1 i=1j

1
2

|
which measures the &fence between the neural netwoutputsz; and the training data outpus.
This error minimization is also frequently referred tdemsning

Steps 1 and 2 alwe are quite application specitand will be discussed a little latétere, we will bgin to inves-
tigate Step 3 — namelthe training of the neural netwk parameters (weights) from input/output training data.

A. Gradient descent

Note that since; (as defned in equatio32) aborve) is a function of the weights of the neural netark, E
is implicitly a function of those weights as wdlhat is,E changes as a function wf. Therefore, our goal is
to find that set of weighte which minimizesE over a gven training data set.

The first algorithm that we will study for neural netii training is based on a method tmasgradient
descentTo understand the intuition behind this algorithm, conskdgure 15belov, where a simple one-
dimensional error swate is drevn schematicallyThe basic question we must answer isvluw we fnd the
parameteiw that corresponds to the minimum of that erroraef(pointd )?

Gradient descent fafrs a partial answer to this question. In gradient descent, we initialize the parameter
some random alue and then incrementally change thalug by an amount proportional to thegatve
derivative,

dE
— 34

o (34)
Denoting w(t) as parametew at stept of the gradient descent procedure, we can write this in equation
form as,

w(t+1) = w(t)—n%l(zt) (35)

wheren is a small positie constant that is frequently referred to adehening rate. In Figure 15 given an
initial parameter &lue ofa and a small enough learning rate, gradient descent wieamto the global
minimum d ast - o . Note, havever, that the gradient descent procedure is not guaranteedagsaton-
vemge to theglobal minimum for general (non-ceex) error surlces. If we start at an initiab value ofb,
iteration (35) will converge to e, while for an initialw value ofc, gradient descent will cormge tof as
t - . Thus, gradient descent is only guaranteed towarge to alocal minimum of the error suate (for
sufficiently small learning rates ), not a global minimum.

E(w)

Figure 15

w

-10-



EEL6825: Pattern Recognition Introduction to feedforward neural networks

Iteration(35) is easily generalized to error minimizatioreo multiple dimensions (i.e. parametectos w ),
w(t+1) = w(t)—nOE[w(t)] (36)
whereJE[w(t)] denotes the gradient & with respect tav(t),

T

_ o oE oE
HELw(] = 960, (1) J0,(1) " B (D) (37)

Thus, one approach for training the weights in a neuralarktimplements iteratio(87) with the error mea-
sure defied in equatioi(33).

. Simple example

Consider the simple single-input, single-output feedémdaneural netark in Figure 16below, with sigmoi-
dal hidden-unit actation functionsy, and a linear output unit.oF this neural netark, let us, by ay of
example, compute,

oE

m‘ (38)
where,
_1 2
E = 5(y-2) (39)

for a single training patterak, yC. Note that since dérentiation is a linear operatdhe dewative for mul-
tiple training patterns is simply the sum of the ¢ives of the indiidual training patterns,

p p
£ 2t o] i)
i IL%=1 i=1

Therefore, generalizing the@mple belas to multiple training patterns is straightfcad.

First, let us rplicitly write down z as a function of the neural netwk weights.To do this, we defie some
intermediate ariables,

net; = wy + wyX (42)

net, = wg + wyX (42)
which denote the net input to theawidden units, respeetly, and,

h, =y(net,) (43)

h, =y(net,) (44)

which denote the outputs of theawridden units, respeetly. Thus,

bias unit
1 X Figure 16

-11-



EEL6825: Pattern Recognition Introduction to feedforward neural networks

Z = W5+ wghy + w;h, (linear output unit). (45)

Now, we can compute the dedtive of E with respect taw, . From(39), and remembering the chain rule of
differentiation,

o 0z

E = —(y—z)aw4 (46)
aE _ ljz h2 net2D

s )
oE _ .

m = (z-y)w,y'(net,)x (48)

wherey' denotes the destive of the actiation function.This example shws that, in principle, computing

the partial deriatives required for the gradient descent algorithm simply requires careful application of the
chain rule. In general, haver, we would like to be able to simulate neural netits whose architecture is

not knavn a priori. In other vords, rather than hard-code detives with eplicit expressions lik (48)

above, we require an algorithm which alle us to compute demtives in a more generalay Such an algo-

rithm exists, and is knan as thebadkpropagation algorithm

C. Backpropagation algorithm

The backpropaggion algorithm vas frst published by Rumelhart and McClelland in 1986 and has since
led to an gplosion in pregiously dormant neural-netwk researchBadkpropagation offers an dfcient, algo-
rithmic formulation for computing error dedtives with respect to the weights of a neural wekwAs such,
it allows us to implement gradient descent for neural adtiraining without gplicitly hard-coding dexia-
tives.

In order to deelop the backpropagion algorithm, let ustt look at an arbitrary (hidden or output) unit in a
feedforward (agclic) neural netwrk with activation functiony. In Figure 17 that unit is labeledl. Let hj
be the output of unit, and Ietnetj be the net input to unjt. By defhition,

h, = y(net)) (49)
net; = Z hyw (50)

Note thatnetj is summed eer all units feeding into unjt; uniti is one of those units. Let usm@ompute,

oE _ E ey (51)
aooij @netjmawijﬂ

From equatior{50),

anetj_h 5o
M (52)

unit i

Figure 17

-12-



EEL6825: Pattern Recognition Introduction to feedforward neural networks

since all the terms in summati¢s0), k# i are independent abij . Defining,

_0E

i = one; (53)
we can write equatiobl) as,
0E _
il (54)

ij

As we will see shortlyequation(54) forms the basis of the backpropgign algorithm in that thé, variables
can be computed recwsly from the outputs of the neural nefilkk back to the inputs of the neural netiu
In other words, the6j values ardadkpropagatedthrough the netark (hence, the name of the algorithm).

. Backpropagation example

ConsiderFigure 18 which plots a small part of a neural netk Belaw, we derve an &pression fod, (out-
put unit) andéj (hidden unit one layer remed from the outputs of the neural netl). For a single training
pattern, we can write,

(y, - Z|)2 (55)
1

NI

M 3

wherel indexes the outputs (not the training patterns)wNo

0z
6ksg'§_etk = %Z%Fﬁkg (56)
Since,
z, = y(nety) (57)
we have that,
éi_zfcl_( = y'(nety) (58)
%

unit i Figure 18

-13-



EEL6825: Pattern Recognition Introduction to feedforward neural networks

Furthermore, from equatiq5),

d
% = (Zc—Y) (59)

since all the terms in summati@sb), | # k are independent & . Combining equation&6), (58) and(59),
and recalling equatiofb4),

3 = (z— Y)Y (nety) (60)
0E _

Note that equation&0) and(61) are \alid for anyweight in a neural netwk that is connected to an output
unit. Also note thath. is the output alue of units feeding into output urkit While this may be the output of
a hidden unit, it could also be the output of the bias unit (i.e. 1) oathe of a neural netwk input (i.e.xj ).
Next, we want to computeSj in Figure 18in terms of thed values that follav unit j . Going back to defi-
tion (53),

506 _ ¢mE mfrelg 62)
1 anetj Eﬁnqu])netjD

Note that the summation in equati@@?2) is over all the immediate successor units of ynithus,

_ ﬁ3netID
5 = Za' Conet;! (63)
By defiition,
net, = Zoosly(nets) (64)
S

So, from equatiol64),

one,

onet; = wyy'(net)) (65)

since all the terms in summati¢®4), s#j are independent ofetj . Combining equation&3) and(65),

51' = Zélely'(netj) (66)
5 = &eslmj@'(netj) 67)

0E _

%, = §h, (68)
Note that equatioii67) computesd; in terms of thoseé values one connection ahead of ynitin other
words, thed values are backpropatgd from the outputs back through the rekwAlso note thath, is the
output \alue of units feeding into unjt While this may be the output of a hidden unit from an earlier hidden-

unit layer it could also be the output of a bias unit (i.e. 1) or #ieevof a neural netwk input (i.e.x; ).

It is important to note that (1) the general dative expression in(54) is valid for all weights in the neural
network; (2) the &pression for the outp@l values in(60) is valid for all neural netwrk output units; and (3)
the recursie relationship fort’Sj in (67) is valid for all hidden units, where thieindexed summation is\wer
all immediate successors of upit

-14-



EEL6825: Pattern Recognition Introduction to feedforward neural networks

E. Summary of backpropagation algorithm

Below, we summarize the results of the dation in the preious sectionThe partial dexiative of the errgr

m
1]
NI

NN 3

(v, —7)? (69)

=1

(i.e. a single training pattern) with respect to a Wetgjrp(t connected to output unkt of a neural netark is

given by
O = (z— YWY (nety) (70)
0E _

whereh, is the output of hidden unijt(or the inpug ), andnet, is the net input to output urkt. The partial
derivative of the errofE with respect to a Weighbij connected to hidden urjitof a neural netark is given

by,
5 = aélel%'(netj) (72)
0E
o " &h; (73)

1]

whereh; is the output of hidden unit (or the inputi ), andne'[j is the net input to hidden urjit The abee
results are tvially extended to multiple training patterns by summing the results forichdil training pat-
terns wer all training patterns.

5. Basic stepsin using neural networks

So, nav we knav what a neural netwrk is, and we kne a basic algorithm for training neural neiks (i.e.
backpropagtion). Here, we will gtend our discussion of neural nefks by discussing some practical aspects
of applying neural netarks to real-wrld problems. Belw, we review the steps that need to be felked in using
neural netwrks.

A. Collect training data

In order to apply a neural netwk to a problem, we mustrét collect input/output training data that ade-
guately represents that problem. Often, we also need to condition, or preprocess that data so that the neural
network training comerges more quickly and/or to better local minima of the erromsarfData collection

and preprocessing i€y application-dependent and will be discussed in greater detail in thataafrdpe-

cific applications.

B. Select neural network architecture

Selecting a neural nebtsk architecture typically requires that we determine (1) an appropriate number of
hidden layers and (2) an appropriate number of hidden units in each hidden layer for oursgpasfition,
assuming a standard multilayer feedfardrarchitecture. Often, there will be npadifferent neural netark
structures that wrk about equally well; which structures are most appropriate is frequently guidegdris e
ence and/or trial-and-ertdklternatively, as we will talk about later in this course, we can use neurabrietw
learning algorithms that adayily change the structure of the neural retnas part of the learning process.

C. Sdlect learning algorithm

If we use simple backpropation, we must select an appropriate learning natélternatively, as we will
talk about later in this course, wevkaa choice of more sophisticated learning algorithms as well, including
the conjugte gradient andkéended Kalman liering methods.

-15-



EEL6825: Pattern Recognition Introduction to feedforward neural networks

D. Weight initialization
Weights in the neural netwk are usually initialized to small, randoralwes.
E. Forward pass

Apply a random inputectorx; from the training data set to the neural retwand compute the neural net-
work outputs(z,) , the hidden-unit outputéhj) , and the net input to each hidden L(miEIj) .

F. Backward pass

1. Evaluated, at the outputs, where,

= oot (74)
for each output unit.
2. Backpropagte thed values from the outputs backvds through the neural neduk.
3. Using the computed values, calculate,
o (75)
the dervative of the error with respect to each weightin the neural netark.
4. Update the weights based on the computed gradient,
w(t+1) = w(t)—nOE[w(1)]. (76)

G. Loop

Repeat stepk andF (forward and backard passes) until training results in a satisfry model.

6. Practical issuesin neural networks
A. What should thetraining data be?

Some questions that need to be answered include:

1. Is your training data sfi€ient for the neural netwk to adequately learn what yoant it to learn? &r
example, what if, ilALVINN [3], we davn-sampled tdlO x 10 images, instead &0 x 32 images? Such
coarse imagesould probably not sfitte for learning the steering of the on-roathicle with enough
accurag. At the same time we must nakure that we dohinclude training data that is too much or irrel-
evant for our application (e.g. f&LVINN, music played while dving). Poorly correlated or irrelant
inputs can easily sledown corvergence of, or completely sidetrack, neural rieearning algorithms.

2. Is your training data biased? SupposeMoVINN, we trained the neural netnk on race trackwval. Hov
wouldALVINN drive on real roads®/ell, it would probably not hae adequately learned right turns, since
the race track consists of left turns ofilze distritution of your training data needs to approximately
reflect the gpected distribtion of input data where the neural netlvwill be used after training.

3. Is your task deterministic or stochastic? Is it stationary or nonstationary? Nonstationary problems cannot
be trained from kied data sets, since, by dhfiion, things changewer time.

We will have more on these concerns within the crindé specifc applications later

B. What should your neural network architecture/structure be?

This question is lgely task dependent, and often requingsegience and/or trial-and-error to answer ade-
quately Therefore, we will hee more on this question within the coxitef specifc applications latern

-16-



EEL6825: Pattern Recognition Introduction to feedforward neural networks

general, though, it helps to look at similar problems the¢ lpeeviously been sokd with neural netarks,
and apply the lessons learned there to our current applicAtiaptive neural netark architectures, that
change the structure of the neural ratwas part of training, are also an altew&to manually selecting an
appropriate structure.

C. Preprocessing of data

Often, it is wise to preprocessaranput/output training data, since it can raake learning (i.e. neural net-
work training) comerge much better and$ter In computer vision applications, foxample, intensity ner
malization can reme \variation in intensity — caused perhaps by suv overcast days — as a potential
source of confusion for the neural netk. We will have more on this question within the corttef specifc
applications later

D. Weight initialization

Since the weight parametens are learned through the recwesielationship ir(76), we olviously need to
initialized the weights [i.e. sew(0)]. Typically, the weights are initialized temall randomvalues. If we
were to initialize the weights toniform (i.e. identical) alues instead, the sigmifint weight symmetries in
the neural netark would substantially reduce thefedtive parameterization of the neural netlw since
mary partial error dewiatives in the neural netwk would be identical at the gining of training and remain
so throughout. If we were to initialize the weightdaimge values, there is a high &khood that may of the
hidden unit actiations in the neural netwk would be stuck in thedt areas of the typical sigmoidal aeti
tion functions, where the dedtives @aluate to approximately zer@s such, it could tak quite a long time
for the weights to carerge.

E. Select alearning parameter

If using standard gradient descent, we must select an appropriate learnipgThte can be quite trigk as
the simple rample belw illustrates. Consider thetial two-dimensional, quadratic “error” function,

E = 20wf + wj (77)
which we plot inFigure 19belav. [Note that equatio(i77) could neer really be a neural netnk error func-
tion, since a neural nebtsk typically has maphundreds or thousands of weights.]

For this error function, note that the global minimum occuréugt w,) = (0, 0). Now, let us ivestigate
how quickly gradient-descent cegrges to this global minimum for dérent learning rateg ; for the pur
poses of thisxample, we will say that gradient descent havemed when/E < 106 . First, we must com-
pute the deviatives,

0E

a—wl = 40(101, and, (78)
0E _
6—002 = 2(.02, (79)

Figure 19

-17-



EEL6825: Pattern Recognition Introduction to feedforward neural networks

so that the gradient-descent weight recursidii®) is given by

oE

Wy (t+1) = wl(t)—r]m (80)

w;(t+1) = w,(t)(1-40n) (81)
and similarly

Wy(t+1) = wy(t)(1-2n). (82)

From an initial poin{(w;, w,) = (1, 2), Figure 20belawv plots the number of steps to eergence as a func-
tion of the learning parametgr. Note that the number of steps to wemgence decreases as a function of the
learning rate parameter until about0.047 (intuitive), kut then shoots up sharply unfilo5, at which point
the gradient-descent equationg8d) and(82) become unstable andvdige (counteintuitive).

1400

1200

1000

# steps to caremgence

0 0.01 0.02 0.03 0.04 0.05
n Figure 20

Figure 21plots some actual gradient-descent trajectories for the learningOr@#s0.04 and 0.05. Note
that forn = 0.05, gradient descent does not eeme hut oscillates about, = 0. To understand whthis
is happening, consider thedd-point iterations i81) and(82). Each of these is of the form,

w(t+1) = cw(t) (83)
which will diverge for aly nonzerow(0) and||c| > 1, and comeme for |c|| <1. Thus, equatiorf81) will
converge for,

[1-40n| <1 (84)

-1<1-40n<1 (85)

n = 0.02 n = 0.04 n = 0.05
(‘02 05 ('02 05 (‘02 05 ll ll ‘l ll
Wy Wy Wy
Figure 21

-18-



EEL6825: Pattern Recognition Introduction to feedforward neural networks

0<n<0.05 (86)
Since recursioKi82) generates the weakbound,
0<n<1, (87)

the upper bound i(86) is controlling in that it determines the range of learning rates for which gradient
descent will coverge in this gample.

We male a fav obserations from this specifiexample: First, “long, steep-sidedlieys” in the error sudce
typically cause sk convergence with a single learning rate, since gradient descent wilegnquickly
down the steepalleys of the error suaice, it will take a long time to treel along the shalle valley. Slov
convergence of gradient descent isgaly why we will study more sophisticated learning algorithms, \aéh
facto adaptve learning rates, later in this course. In thianeple, comergence along thev, axis is assured
for larger n ; however, the upper bound i(86) prevents us from using a x&d) learning rate greater than or
equal t00.05. SecondFigure 20 although dravn specifcally for this kample, is generally refttive of gra-
dient-descent coergence rates for more complerror surfces as well. If the chosen learning rate is too
small, conergence can taka \ery long time, while learning rates that are tomdawill cause gradient
descent to dierge. This is another reason to study more sophisticated algorithms — since selecting an appro-
priate learning rate can be quite frustrating, algorithms that do not require such a selgetinela adan-
tage. Finally note that, in general, it is not possible to determine theoretica¢mgence bounds, such as
those in(86), for real neural netarks and error functions. Only thery simple error suaice in(77) allowed

us to do that here.

F. Pattern vs. batch training

In pattern tmining, we compute the errde and the gradient of the errbiE for one input/output pattern at a
time, and update weights based on that single trainiagple (Sectiorb describes pattern training). It is
usually a good idea to randomize the order of training patterns in pattern training, so that the neantal netw
does not coverge to a bad local minima or fyet training ®gamples early in the training.

In batdh training, we compute the errdg and the gradient of the err@IE for all training &amples at once,
and update the weights based on that aggeeerror measure.

G. Good generalization

Generalization toxamples notxplicitly seen in the training data set is one of the most important properties
of a good model, including neural nettk models. Considefor example, Figure 22 Which is a better
model, the left cure or the right cur@?Although the right cure (i.e. model) has zero errores the specié

data set, it will probably generalize more poorly to points not in the data set, since it appearsiiodeled

the noise properties of the specifraining data sefThe left model, on the other hand, appears teha
abstracted the essential feature of the data, while rejecting the random noise superimposed on top.

Figure 22

-19-



EEL6825: Pattern Recognition Introduction to feedforward neural networks

cross-validation data

NN erior

|
|
|
| ..
Figure 23 : training data

early stopping point training time

There are tw ways that we can ensure that neural ek generalize well to data nogpdicitly in the train-

ing data set. First we need to pick a neural ngtvarchitecture that is nower-parameterized — in other
words, the smallest neural nemk that will perform its task well. Second, we can use a methodrkas
cross-validation In typical neural netark training, we tak our complete data set, and split that data set in
two. The frst data set is called the training data set, and is used to actually train the weights of the neural net-
work; the second data set is called the crediskation data set, and is notpdicitly used in training the
weights; ratherthe cross-alidation set is reseed as a check on neural netl learning to preent over-
training. While training (with the training data set), wedp track of both the training data set error and the
cross-alidation data set errdWhen the crossalidation error no longer decreases, we should stop training,
since that is a good indication that further learning will adjust the weights onypexiliarities of the train-

ing data setThis scenario is depicted in the generic diagrarigéire 23belav, where, we plot neural net-
work error as a function of training tim&s we indicate in thediure, the training data set error will generally
be laver than the crossalidation data set error; mones, the training data set error will usually continue to
decrease as a function of training time, whereas the catisistion data set error will typically g to
increase at some point in the training.

[1] G. Cybenb, “Approximation by Superposition of a Sigmoidal Functidathematics of Condt, Sig-
nals, and Systemeol. 2, no. 4, pp. 303-14, 1989.

[2] Richard O. Duda, Peter E. Hart andvidlaG. Stork,Pattern Classiftation, 2nd ed.Chapters 5 and 6,
JohnWiley & Sons, Nev York, 2001. .

[3] D. A. Pomerleau, “Neural Netwk Perception for Mobile Robot Guidaric®h.D. Thesis, School of
Computer Science, Camjie Mellon Unversity, 1992.

[4] D. E. Rumelhart and J. L. McClellanBarallel Distributed Pocessing: Explation in the Micostruc-
ture of Canition, vols. 1 and 2, MIT Press, Cambridge, MA, 1986.

-20-



	1. Problem statement and historical context
	A. Learning framework
	B. Biological inspiration

	2. What makes a neural network a neural network?
	A. Basic building blocks of neural networks
	B. Perceptrons
	C. Activation function
	D. Neural network architectures
	E. Simple example

	3. Some theoretical properties of neural networks
	A. Single-input functions
	B. Multi-input functions

	4. Neural network training
	A. Gradient descent
	B. Simple example
	C. Backpropagation algorithm
	D. Backpropagation example
	E. Summary of backpropagation algorithm

	5. Basic steps in using neural networks
	A. Collect training data
	B. Select neural network architecture
	C. Select learning algorithm
	D. Weight initialization
	E. Forward pass
	F. Backward pass
	G. Loop

	6. Practical issues in neural networks
	A. What should the training data be?
	B. What should your neural network architecture/structure be?
	C. Preprocessing of data
	D. Weight initialization
	E. Select a learning parameter
	F. Pattern vs. batch training
	G. Good generalization


