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Introduction to advanced parameter optimization

 

1. Introduction

 

Thus far, we have studied (1) basic feedforward neural networks, and (2) one basic training algorithm for adjust-
ing the weights (parameters) in a neural network — namely, 

 

gradient descent

 

, where the 

 

backpropagation

 

 algo-
rithm is used to compute the gradient of the neural-network error with respect to the current weights ,

, efficiently. Over the next few weeks, we will extend our study of neural networks by looking at (1)
advanced training algorithms, and (2) adaptive neural-network architectures.

 

2. Heuristic extensions of gradient descent

 

A. Convergence in gradient descent

 

Recall that in the gradient-descent algorithm, we update weights at step  according to,

(1)

where,

, (2)

 are the weights of the neural network at step ,  is the fixed learning-rate parameter, and  is
the gradient of the neural network error  with respect to the training data at . There are two main prob-
lems with this algorithm: (1) slow convergence to a local minimum of the error surface, and (2) trial-and-error
selection of the learning rate .

In actual neural-network training, often 100,000s of steps, or 

 

epochs

 

, of the gradient-descent algorithm are
required to converge to a good local minimum. (An epoch is defined to be one complete presentation of the
training data.) Advanced training algorithms that we will develop in the next several weeks can reduce this
large number of required epochs by several orders of magnitude. Moreover, in some of these algorithms, we
will not have to hand-pick critical parameters like the learning rate ; rather, all necessary learning parame-
ters will be computed automatically as a function of the local second-order properties of the error surface.

Below, we will study the convergence properties of the gradient-descent algorithm through a specific exam-
ple; namely, we will reconsider the simple, two-dimensional quadratic “error” surface that we looked at last
time,

. (3)

Note, of course, that this could not possibly be a real neural-network error surface, since a neural network
typically has many more weights than just two; moreover, a neural-network error surface is almost never 

 

glo-
bally

 

 quadratic. Nevertheless, the lessons that we learn about the convergence properties of the gradient-
descent algorithm for this simple error surface will inform our development of more advanced training algo-
rithms. A 

 

quadratic

 

 error surface like that in (3) can be especially instructive, because 

 

any

 

 arbitrary error sur-
face can be approximated as 

 

locally

 

 quadratic near a local minimum of that error surface. Just as a simple
one-dimensional function  can be approximated by its second-order Taylor series about some point ,

(4)

an error function  can be approximated as,

(5)

about some vector , where,

, and, (6)

, (7)
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is the 

 

Hessian

 

 matrix of second partial derivatives evaluated at .

Definition: The 

 

 Hessian

 

 matrix  of a -dimensional function  is defined as,

(8)

where,

. (9)

In other words, element  of the  matrix, is given by,

(10)

In order to study the convergence properties of the gradient-descent algorithm, we will require a few defini-
tions and results from linear algebra.

Definition: For a  square matrix , the 

 

eigenvalues

 

  are the solution of,

(11)

where  denotes the determinant, and  denotes the  identity matrix.

Definition: A square matrix  is 

 

positive-definite

 

, if and only if all its eigenvalues  are greater than zero. If
a matrix is positive-definite, then,

, . (12)

For a quadratic error surface,  is constant and is positive-definite everywhere. For an arbitrary error surface,
 is positive-definite near a local minimum of that error surface.

Now, let  and  denote the smallest and largest eigenvalues, respectively, of the Hessian  with
respect to an error surface . Assuming that we are near a local minimum,

, (13)

the gradient descent algorithm converges maximally at a rate proportional to,

, (14)

and the learning rate  is bounded by,

(15)

for convergent (as opposed to divergent) behavior. As an example, let us compute the eigenvalues of  for
the error surface in (3). The first partial derivatives are given by,

, , (16)

and the second partial derivatives are given by,

, , . (17)

Therefore, the Hessian  is given by,

(18)
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For this matrix, the eigenvalues are easy to compute:

(19)

(20)

(21)

(22)

, (23)

[Note: The determinant of a  matrix,

(24)

is given by .]

From equation (15), the learning rate  is therefore bounded by,

(25)

[Note that the bound in (25) is equivalent to the one we derived last time by directly looking at the gradient-
descent weight iteration equations,

(26)

(27)

. (28)

Both (27) and (28) are of the form,

(29)

which converges to zero for any  such that,

. (30)

Thus, from (27) we require that,

(31)

(32)

since equation (28) leads to the weaker bound .]

Figure 1 below plots the trajectory of the gradient-descent algorithm for three different learning rates
 and initial weights . Each trajectory is superimposed on top of a con-

tour plot of  and is stopped when  (except for , where gradient descent fails to con-
verge). From this simple example, we see that the learning rate  can be critical to the rate of convergence in
gradient descent. An inappropriately small learning rate leads to slow convergence, while an inappropriately
large learning rate can lead to divergence.
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The gradient descent algorithm is especially vulnerable to slow convergence where the error surface consists
of long valleys with steep sides, as in this example. We see that the weight  quickly converges to its appro-
priate value, while the weight  takes much longer to reach its optimal value of zero. Let us characterize
mathematically what it means for an error surface to consist of a “long valley with steep sides.” Geometri-
cally, the lengths of the contour lines of the error surface in Figure 1 are proportional to,

, , (33)

where  are the two eigenvalues of  for the error surface in equation (3). In other words, “long valleys
with steep sides” in the error surface correspond to small ratios in (14), and, consequently, slow rates of con-
vergence. For regions of the error surface with small ratios,

, (34)

rather than a single, fixed learning rate along all dimensions of the error surface, we instead need different
learning rates for each weight. All the methods we will study from here on out can be viewed as varying
attempts to implement different effective learning rates along different dimensions of the neural network error
surface.

 

B. Gradient descent with momentum

 

One of the most often used heuristic modifications to basic gradient descent is the addition of a 

 

momentum
term

 

, which is intended to speed up convergence of gradient descent. In gradient descent with momentum, we
update the weights at step  according to,

(35)

where,

(36)

, , (37)

Here,  is known as the momentum parameter. Note that now, the change of the weights at step  is not only
a function of the weights at , but also of the weights at . Ideally, the addition of the momentum term
leads to higher effective learning rates in shallow dimensions of the weight space, while in steep dimensions
of the weight space, it has relatively little effect. Consider first a shallow region of the weight space, where
we can assume that the gradient is approximately constant such that,

, (38)
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Then, from equations (36),

. (39)

From (37) and (38),

(40)

(41)

. (42)

Substituting (40) into (41),

(43)

. (44)

In general, for ,

(45)

Taking the limit of equation (45),

. (46)

Thus, in shallow regions of weight space, where the gradient does not change much from one iteration to the
next, the momentum term increases the effective learning rate by an approximate factor of,

(47)

over gradient descent alone. In steep regions of weight space, on the other hand, where gradient descent tends
to oscillate, consecutive gradients will evaluate such that,

(48)

so that the momentum term from one step to the next will tend to cancel each other out (see, for example, Fig-
ure 7.6 on pp. 268 in [1]). In other words, in steep regions of weight space, the effective learning rate is
approximately the same with and without momentum.

Thus, the main advantage of including a momentum term in neural network training is that it can increase the
rate of convergence in shallow regions of weight space. The main drawback is that it requires that another
parameter (in addition to the learning rate) be hand-picked for a particular neural network training problem. If

 is not carefully chosen, momentum can do more harm than good, destabilizing the convergence of basic
gradient descent. Figure 2, for example, shows the trajectory in weight space for different combinations of

 for the simple quadratic error surface in equation (3) and equivalent initial weights and terminating
condition as in Figure 1. Note from Figure 2 that while momentum can improve the rate of convergence, it
can also destabilize the trajectory in weight space if  is set to be too high.

 

C. Conclusion

 

In the neural network community, the addition of momentum to gradient descent has been, by far, the most
popular modification to gradient descent. When carefully chosen, momentum can help improve convergence.
At the same time, it introduces another parameter that has to be fine tuned for particular training problems. 

There have also been many other heuristic attempts to improve gradient descent. A selection of these is sur-
veyed in [1] (section 7.5.3, pp. 268-72) and [2]. Most of these methods are not, however, well justified theo-
retically and often treat weights as independent from one another. This is often a very bad assumption that is
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the root of many neural network training problems. Therefore, we now begin to examine the neural network
training problem in a more principled fashion. This examination will ultimately lead us to the 

 

conjugate gra-
dient algorithm

 

 for training neural networks.

 

3. Steepest descent

 

A. Introduction

 

Recall that in the gradient descent algorithm for training neural networks, we update weights at step 
according to,

(49)

where,

, (50)

 are the weights of the neural network at step ,  is a fixed learning rate, and  is the gradient
of the neural network error  with respect to the training data evaluated at . One obvious modification
to basic gradient descent (which we will refer to as 

 

steepest descent

 

) is to proceed as follows. First, set a

 

search direction 

 

 in weight space,

(51)

as we do in gradient descent. Second, minimize,

(52)

with respect to , such that,

, . (53)

Finally, set the new weights to be,

(54)

That is, rather than have  be fixed for all training iterations, we automatically set  at each step to give us
the minimum along the direction . This one-dimensional minimization can be done with-
out computation of the derivative  through a procedure known as 

 

line search

 

 or 

 

line minimization

 

. As
we show below, a line search requires only that we be able to evaluate  for different values of . Since

 and  in equation (52) are known vectors, this is not a problem. 

The steepest descent algorithm depends on an accurate one-dimensional line search or minimization during
each training step. A successful line search is usually performed in two steps. First, we need to bracket the
minimum. Second, we need to use that bracket to zero in on that minimum. Below, we discuss each of these
steps in somewhat greater detail.

 

B. Bracketing the minimum

 

In steepest descent, we want to find the value  of the learning parameter that minimizes ,

(55)

, , (56)

where  is the current set of weights in the neural network, and . In order to perform
this minimization without computing , we first need to find three values of , , such that,

 and . (57)

In other words, we need to 

 

bracket the minimum

 

. Figure 3, for example, shows three points that satisfy (57)
and (57) for a sample function .

Below, we describe a simple algorithm for bracketing the minimum of an error functions  of form (55).

 

t

 

w

 

t

 

1

 

+

 

( )

 

w

 

t

 

( )

 

w

 

t

 

( )∆

 

+=

 

w

 

t

 

( )∆ η

 

E

 

w

 

t

 

( )[ ]∇

 

–=

 

w

 

t

 

( )

 

t

 

η

 

E

 

w

 

t

 

( )[ ]∇

 

E

 

w

 

t

 

( )

 

d

 

t

 

( )

 

d

 

t

 

( )

 

E

 

w

 

t

 

( )[ ]∇

 

–=

 

E

 

η( )

 

E

 

w

 

t

 

( ) η

 

d

 

t

 

( )

 

+

 

[ ]≡

 

η

 

E

 

η∗( )

 

E

 

η( )≤

 

η∀

 

w

 

t

 

1

 

+

 

( )

 

w

 

t

 

( ) η∗

 

d

 

t

 

( )

 

+=

 

η

 

η

 

d

 

t

 

( )

 

E

 

w

 

t

 

( )[ ]∇

 

–=

 

∂

 

E

 

∂η⁄

 

E

 

η( )

 

η

 

w

 

t

 

( )

 

d

 

t

 

( )

 

η∗

 

E

 

η( )

 

E

 

η( )

 

E

 

w

 

t

 

( ) η

 

d

 

t

 

( )

 

+

 

[ ]

 

=

 

E

 

η∗( )

 

E

 

η( )≤

 

η∀

 

w

 

t

 

( )

 

d

 

t

 

( )

 

E

 

w

 

t

 

( )[ ]∇

 

–=

 

∂

 

E

 

∂η⁄

 

η

 

a b c

 

, ,{ }

 

E a

 

( )

 

E b

 

( )>

 

E c

 

( )

 

E b

 

( )>

 

E

 

η( )

 

E

 

η( )



 

EEL6825: Pattern Recognition Introduction to advanced parameter optimization

- 8 -

 

1. Let . Let , where  is some small positive constant. Note that since we are performing the 
steepest-descent line search along the negative gradient, , our initial choice of  guarantees 
that .

2. Let , where .

3. If , then we are done; else, let  and . Repeat step 2.

Note that step 1 requires one new function evaluation (i.e. ), since  has already been computed
during the forward pass of the backpropagation algorithm. Each iteration of steps 2 and 3 then requires only
one additional function evaluation of .

One popular choice for  in step 2 is the 

 

golden ratio

 

; that is,

(58)

which tends to generate “nice” bracketing intervals  and . More on this a little later. Figure 4, for
example, illustrates the above bracketing procedure for a sample one-dimensional function.

 

1

 

 

Let us look at one more example. Consider the two-dimensional error function,

 (plotted in Figure 5) (59)

and initial weights . For this function, the gradient is given by,

(60)

so that,

. (61)

At , equation (61) evaluates to,

. (62)

Figure 6 plots equation (62) and the three bracketing values  that were found using the above algo-
rithm.

 

C. Line minimization

 

Given the three bracketing values  of , we can now zero in on the minimum using the following
simple algorithm:

 

1. In Figure 4, we use the additional mechanism of parabolic interpolation to generate the first value of . For details, 

consult section 10.1 in [3] .
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1. Pick a value of  in the larger of the two intervals  and .

2. If  is the larger interval, then set the new bracketing values to:

 if , (that is, set ), or (63)

, if , (that is, set  and ). (64)

Else, if  is the larger interval, then set the new bracketing values to,

 if , (that is, set ), or (65)

, if , (that is, set  and ). (66)

3. Iterate steps 1 and 2 until , where  is some small number (e.g. ).

4. Set,

. (67)

In the above procedure, we would like to pick  so that, on average, we reduce the bracketing intervals by the
largest amount possible for each iteration. Without loss of generality, let us assume that  is the larger of
the two intervals. We then need to consider how much we reduce the bracketing interval for both possibilities,

, and, (68)

. (69)

Let,

 and (70)

. (71)

Also let,

(72)

Depending on whether condition (68) or (69) is true, our new interval lengths will be either,

 (if ), or, (73)

 (if ). (74)

In order to minimize the worst case possibility, we should set equations (73) and (74) to be equal so that,

(75)

(76)

[Note that since we assumed that  is the larger interval,  and .]

Now, we also expect that the optimal ratios of smaller to larger interval lengths be the same from one iteration
to the next; in other words,

(77)

. (78)
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Substituting equation (76) into equation (78),

(79)

(80)

(81)

Thus, the optimal ratio of smaller to larger interval lengths is given by (81). This means that the value of 
should be chosen so that,

(82)

when  is the larger interval, and,

(83)

when  is the larger interval. With the value for  in equations (82) and (83), we are guaranteed to
reduce the interval length by a factor of,

(84)

where  is the golden ratio defined in equation (58). Because of this, this line search algorithm is known as
the 

 

golden section search

 

. Note that each step of this algorithm requires only one function evaluation of
 (namely, ) and at no time do we have to compute the derivative .

The rate of convergence for this algorithm can be further improved through parabolic interpolation (Brent’s
method). For details, see [3].

 

D. Quadratic error function example

 

Let us reconsider the simple, two-dimensional quadratic error surface that we looked at last time,

. (85)

For this error surface and from initial weights , Figure 7 below plots the trajectory in
weight space of the steepest descent algorithm, and the gradient descent algorithm (with a near optimal learn-
ing rate of ). Each trajectory is superimposed on top of a contour plot of  and is stopped when

. Note that steepest descent converges significantly faster than gradient descent.

 

1 2

 

w

 

–

 

1

 

w

 

–
----------------

 

w

 

=

 

w

 

2

 

3

 

w

 

–

 

1

 

+

 

0

 

=

 

w

 

1
2

 

---

 

3 5

 

–

 

( )

 

0.381966

 

≈

 

=

 

x

 

x

 

0.381966

 

c b

 

–

 

( )

 

b

 

+=

 

b c

 

,( )

 

x b

 

0.381966

 

b a

 

–

 

( )

 

–=

 

a b

 

,( )

 

x

 

1

 

k

 

---

 

0.61803

 

≈

 

k

 

E

 

η( )

 

E x

 

( )

 

∂

 

E

 

∂η⁄

 

E

 

20

 

ω

 

1
2

 

ω

 

2
2

 

+=

 

ω

 

1

 

ω

 

2

 

,( )

 

1 2

 

,( )

 

=

 

η

 

0.04

 

=

 

E

 

E

 

10

 

6

 

–

 

<

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

 

ω

 

2

 

ω

 

2

 

ω

 

1

 

Figure 7

 

ω

 

1

 

η

 

0.04

 

=

 

( )

 

steepest descent gradient descent
175 steps to convergence15 steps to convergence



 

EEL6825: Pattern Recognition Introduction to advanced parameter optimization

- 12 -

 

E. Nonquadratic example

 

Here we again consider the simple nonquadratic error surface,

. (86)

For this error surface and from initial weights , Figure 8 below plots the trajectory in
weight space of the steepest descent algorithm, and the gradient descent algorithm (with a near optimal learn-
ing rate of ). Each trajectory is superimposed on top of a contour plot of  and is stopped when

. Once again, the steepest descent algorithm converges significantly faster than gradient descent.

 

F. Computational complexity

 

The above examples show that steepest descent generally converges in fewer steps than gradient descent with
a fixed learning rate. Because of the line minimization procedure in each step, however, each steepest descent
step requires more computations; that is, each line minimization requires that we evaluate the error function
for multiple values of . To compute the gradient in a neural network takes approximately  computa-
tions, where  is the number of training patterns, and  is the total number of weights [1]. To compute the
error for a specific set of weights takes approximately  computations. Assuming approximately 10 addi-
tional error evaluations for each line minimization, one steepest descent step therefore takes approximately,

 computations/step (steepest descent). (87)

Gradient descent, on the other hand, requires only that the gradient be computed, so that one step of the gra-
dient descent algorithm requires approximately,

 computations/step (gradient descent). (88)

Thus the computational cost of one steepest descent step is approximately 5 times that of one gradient
descent step. Even with that additional computational complexity, however, steepest descent is still more effi-
cient for our examples above.

 

G. Orthogonality of consecutive steps

 

Note from both Figures 7 and 8 that consecutive search directions in the steepest descent algorithm are
orthogonal. This is so because at each step of the steepest descent algorithm, we minimize the error along our
current search direction . In other words, the gradient in the direction of  will have
been made zero at our new weight values . As an example, let us verify this property for the first step
of the steepest descent algorithm in our quadratic error surface example above. For this error surface [equa-
tion (85)], the current weight vector is given by,

(89)
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and the search direction at each step is given by,

(90)

Thus, from equation (52),

(91)

(92)

(93)

With initial weights,

, (94)

equation (94) simplifies to,

(95)

Instead of doing a line minimization, equation (95) is simple enough that we can solve for  explicitly:

(96)

(97)

Thus, our new weight values are given by,

(98)

Let us now denote . From equation (89),

, (99)

, (100)

so that,

. (101)

Since the dot product of  and  is equal to zero, the two gradient vectors are orthogonal.

 

H. Conclusion

 

Note that having consecutive search directions be orthogonal is not a good thing. Progress made towards the
minimum in one step is partially undone in the very next step. In other words, steepest descent constructs
consecutive search directions that interfere with one another. As we shall see over the course of the next sev-
eral lectures, there is a much better way to use gradient information to construct 

 

non-interfering search direc-
tions

 

 on a locally quadratic error surface. This will lead us to the 

 

conjugate gradient algorithm

 

, which
requires very little additional computation/step beyond that required in steepest descent, yet typically con-
verges in many fewer steps.
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