EEL6825: Pattern Recognition Introduction to advanced parameter optimization

Introduction to advanced parameter optimization

1. Introduction

Thus fir, we hae studied (1) basic feedfoand neural netarks, and (2) one basic training algorithm for adjust-
ing the weights (parameters) in a neural mekw— namelygradient descentwhere thébadkpropagation algo-
rithm is used to compute the gradient of the neural-owtwerror with respect to the current weighist) ,
OE[w(t)], eficiently. Over the n&t few weeks, we will gtend our study of neural netwks by looking at (1)
adwanced training algorithms, and (2) adeptneural-netwrk architectures.

2. Heuristic extensions of gradient descent
A. Convergencein gradient descent

Recall that in the gradient-descent algorithm, we update weights dt ateprding to,

w(t+1) = w(t) + Aw(t) (1)
where,
Aw(t) = -nOE[w(t)], (2)

w(t) are the weights of the neural netk at stept, n is the fked learning-rate parametand OE[w(t)] is
the gradient of the neural neivk errorE with respect to the training datawaft) . There are tw main prob-
lems with this algorithm: (1) sl corvergence to a local minimum of the error swé, and (2) trial-and-error
selection of the learning ratg.

In actual neural-netark training, often 100,000s of steps,amods, of the gradient-descent algorithm are
required to coverge to a good local minimum. (An epoch is defl to be one complete presentation of the
training data.Advanced training algorithms that we willadop in the ngt several weeks can reduce this
large number of required epochs byeml orders of magnitude. Monegr, in some of these algorithms, we
will not have to hand-pick critical parametersdikhe learning ratq ; rather all necessary learning parame-
ters will be computed automatically as a function of the local second-order properties of the exwer surf

Below, we will study the corergence properties of the gradient-descent algorithm through a spzaifi-
ple; namelywe will reconsider the simple, badimensional quadratic “error” sade that we locdd at last
time,

E = 2007 + 3. (3)

Note, of course, that this could not possibly be a real neurabriewvror surfice, since a neural nairk
typically has may more weights than just tty morewer, a neural-netark error suréce is almost ner glo-
bally quadratic. Neertheless, the lessons that we learn about theegmnce properties of the gradient-
descent algorithm for this simple error suné will inform our deelopment of more adnced training algo-
rithms.A quadmatic error suréice like that in(3) can be especially instrueti, becausany arbitrary error sur
face can be approximated lasally quadratic near a local minimum of that error acef Just as a simple
one-dimensional functiorfi(x) can be approximated by its second-oftiylor series about some poiy,

f(x) = f(xg) + F'(Xp) (X—=X%p) + f"(xo)(x—xo)2 (4)
an error functiorE(w) can be approximated as,
1
E(w) = E(wg) + (W—wg)Tb + Q(W —wg) TH(W —w) (5)
about someectorw,, where,
b = OE(w), and, (6)

H = O[0OE(wg)], (7

EEL6825: Pattern Recognition Introduction to advanced parameter optimization

is theHessianmatrix of second partial destives @aluated atw .

Definition: The W x W Hessiammatrix H of a W-dimensional functiorE(w) is defhed as,

H = D[OE(w)] 8)
where,
T
w = [wl W, ... w\,@ . 9)
In other words, elemen(i, j) of theH matrix, is given by
_ 0°E
Hipy = 36200 (10)

In order to study the corrgence properties of the gradient-descent algorithm, we will requing deffini-
tions and results from linear algebra.

Definition: For aW x W square matribH , theeigervaluesA are the solution of,
Alw—H| =0 (11)
where| « | denotes the determinant, alg denotes th&V x W identity matrix.

Definition: A square matriXH is positive-defiite, if and only if all its eigevaluesA; are greater than zero. If
a matrix is positie-defnite, then,

vTHv>0, OvZ0. (12)

For a quadratic error sate,H is constant and is posié-defnite eserywhere. Br an arbitrary error suate,

H is positve-defnite near a local minimum of that error s.oé.
Now, let A;,, andA, .. denote the smallest anddast eigevalues, respeately, of the HessiarH with
respect to an error sade E(w) . Assuming that we are near a local minimum,

Amin>0, (13)

the gradient descent algorithm germges maximally at a rate proportional to,

(Ami n/)‘max) ' (14)
and the learning rate is bounded hy
0<n<—2 (15)
)‘max

for convergent (as opposed towdigent) behaior. As an &le, let us compute the eigatues ofH for
the error sudce in(3). The frst partial denatives are gien by

0E _ OE _
%, " 400, , %, 20, (16)

and the second partial deatives are gien by

2 2 2 2
0% - 40,25 =5 2E - 0E (17)
0ws w2 0w 00, 0W,0w;
Therefore, the Hessian is given by
H =400 (18)
02

EEL6825: Pattern Recognition Introduction to advanced parameter optimization

For this matrix, the eigemalues are easy to compute:

Al,—H| =0 (19)

L
01 |02

A-40 0 |_, 21)
0 A-=2

(A—40)(A-2) = 0 (22)

)‘min =2, }‘max =40 (23)

[Note: The determinant of @ x 2 matrix,

_|lab
A= L d} (24)

is given by|A = ad—cb.]
From equatior{15), the learning ratg is therefore bounded by

0<n <Z2(') = 0.05 (25)

[Note that the bound i(25) is equvalent to the one we deéad last time by directly looking at the gradient-
descent weight iteration equations,

oE

Wy (t+1) = wy(t)— nawl(t) (26)

wy(t+1) = wy(t)(1-40n) 27)

Wy(t+1) = wy(t)(1-2n). (28)
Both (27) and(28) are of the form,

w(t+1) = cw(t) (29)
which comwerges to zero for gnc such that,

-1<c<l1. (30)
Thus, from(27) we require that,

-1<1-40n<1 (31)

0<n<0.05 (32)

since equatiol28) leads to the weak bound0<n <1.]

Figure 1belov plots the trajectory of the gradient-descent algorithm for thrdereiift learning rates
{0.01,0.04,0.05} and initial weightg(w;, oo%) = (1, 2). Each trajectory is superimposed on top of a con-
tour plot of E and is stopped wheE <10® (except forn = 0.05, where gradient descerilf to con-
verge). From this simplexample, we see that the learning rgtean be critical to the rate of cagence in
gradient descenfin inappropriately small learning rate leads tonstmrvergence, while an inappropriately
large learning rate can lead toéigence.

EEL6825: Pattern Recognition Introduction to advanced parameter optimization

n = 0.02 n = 0.04 n = 0.05
2 2 2
15 15 15
1 1 1
W2 0 W2, = ,|
0 0 0
-05 -05 -05
-15 -1 -05 0 05 1 -15 -1 - 05 0 05 1 -15 -1 -05 0 05 1
Wy Wy Wy
719 steps 175 steps no corvergence
Figurel

The gradient descent algorithm is especially vulnerable o govergence where the error sack consists
of long \alleys with steep sides, as in thisaenple We see that the weight; quickly corverges to its appro-
priate \alue, while the weighto, takes much longer to reach its optimalue of zero. Let us characterize
mathematically what it means for an error aoef to consist of a “longalley with steep sidesGeometri-
cally, the lengths of the contour lines of the erroraefinFigure lare proportional to,

1/ A, i0{12}, (33)

where A; are the tw eigewalues ofH for the error sudce in equatiori3). In other vords, “long \alleys
with steep sides” in the error sack correspond to small ratios(idl), and, consequentlglown rates of con-
vergence. Br rggions of the error suate with small ratios,

A/ (34)

min max)’
rather than a single x&d learning rate along all dimensions of the erroraserfwe instead need féifent
learning rates for each weigh&ll the methods we will study from here on out can beveig as arying
attempts to implement dérent efective learning rates along téfent dimensions of the neural netk error

surface.

B. Gradient descent with momentum

One of the most often used heuristic madifions to basic gradient descent is the additionmbaentum
term which is intended to speed up gemyence of gradient descent. In gradient descent with momentum, we
update the weights at stémccording to,

w(t+1) = w(t) + Aw(t) (35)
where,
Aw(0) = —nDOE[w(0)] (36)
Aw(t) = —nOE[w(t)] + pAwW(t—1),t>0,0<p<1 (37)

Here,u is knovn as the momentum paramefdote that nw, the change of the weights at stejs not only

a function of the weights at, but also of the weights 4t —1) . Ideally the addition of the momentum term
leads to higher &ctive learning rates in shallodimensions of the weight space, while in steep dimensions
of the weight space, it has relatly little effect. Consider fst a shalla region of the weight space, where
we can assume that the gradient is approximately constant such that,

OE(w,) = DE(w) = g, t0{1,2, ...} (38)

EEL6825: Pattern Recognition Introduction to advanced parameter optimization

Then, from equation&36),

Aw(0) = —ng. (39)
From(37) and(38),

Aw(1)=-ng+ uaw(0) (40)

Aw(1)=-ng(1+n) (41)

Aw(2) =—-ng+ pAw(l). (42)
Substituting(40) into (41),

Aw(2)=—ng+u[-ng(1+p)] (43)

Aw(2) =-ng(l+p+p?). (44)
In general, fot =0,

i O —pt+l
AW(t) = — - _ 45
w(t) ngﬂgousg oo (45)

Taking the limit of equatio@45),

lim Aw(t) = —1—g. (46)

to oo (1-p)

Thus, in shaller regions of weight space, where the gradient does not change much from one iteration to the
next, the momentum term increases thfelive learning rate by an approximagetor of,

Syt @

over gradient descent alone. In steagars of weight space, on the other hand, where gradient descent tends
to oscillate, consecwie gradients will ealuate such that,

OE[w(t + 1)] = -OE[w(t)] (48)

so that the momentum term from one step to tixew# tend to cancel each other out (see, fareple, Fig-
ure 7.6 on pp. 268 ifil]). In other vords, in steep ggons of weight space, thefeftive learning rate is
approximately the same with and without momentum.

Thus, the main adntage of including a momentum term in neural pettraining is that it can increase the
rate of comergence in shalle regions of weight spacdhe main drevback is that it requires that another
parameter (in addition to the learning rate) be handepi¢tr a particular neural netwk training problem. If

K is not carefully chosen, momentum can do more harm than good, destabilizinguwhgeame of basic
gradient descenkEigure 2 for example, shwis the trajectory in weight space forfdient combinations of
(n, n) for the simple quadratic error sack in equatiof3) and equialent initial weights and terminating
condition as inFigure 1 Note fromFigure 2that while momentum can impre the rate of corergence, it
can also destabilize the trajectory in weight spageig set to be too high.

C. Conclusion

In the neural netark community the addition of momentum to gradient descent has beeiy,lilid most
popular modiftation to gradient desceit/hen carefully chosen, momentum can help improcoivergence.
At the same time, it introduces another parameter that has tweltaried for particular training problems.

There hae also been mgrother heuristic attempts to impegradient descer selection of these is sur
veyed in[1] (section 7.5.3, pp. 268-72) af#t]. Most of these methods are notwawer, well justified theo-
retically and often treat weights as independent from one an®thiglis often a &ry bad assumption that is

-5-

EEL6825: Pattern Recognition Introduction to advanced parameter optimization

n =20014u =00 n =004u =00
2 2
15 15
1 1
w w
2 05 2 05
0 0
-05 -05
15 1 0.5 0 05 1 -15 1 0.5 0 05 1
0 0y
719 steps 175 steps
n=200Lu=05 n =004pn =05
2 2
15 15
1 1
w w
2 05 2 05
0 0
-05 -05
-15 -1 -05 0 05 1 -15 -1 -05 0 05 1
0 0y
341 steps 60 steps
n =2001u =09 n =004pn =09
2 2
15
15
1
1
05
Wy o5 W7
0
0 -05
-1
-05 |
-15 -1 -05 0 05 1 -15 -1 -05 0 0.5 1
0 0y

Figure2

266 steps 272 steps

EEL6825: Pattern Recognition Introduction to advanced parameter optimization

the root of may neural netwrk training problemsTherefore, we ne begin to xamine the neural netwk
training problem in a more principledghion.This examination will ultimately lead us to tle®njugate ga-
dient algorithmfor training neural netarks.

3. Steepest descent
A. Introduction

Recall that in the gradient descent algorithm for training neuralonk$wwe update weights at stép
according to,

w(t+1) = w(t) + Aw(t) (49)
where,
Aw(t) = -nDE[w(1)], (50)

w(t) are the weights of the neural netlk at stept, n is a fked learning rate, andE[w(t)] is the gradient
of the neural netark error E with respect to the training dateaduated atwv(t) . One olvious modifcation
to basic gradient descent (which we will refer tosteepest descgnis to proceed as foles. First, set a
search directiond(t) in weight space,

d(t) = —OE[w(t)] (51)
as we do in gradient descent. Second, minimize,

E(n) =E[w(t) + nd(t)] (52)
with respect ta], such that,

E(nD<E(n), On. (53)
Finally, set the n& weights to be,

w(t+1) = w(t)+nld(t) (54)

That is, rather than ka n be fixed for all training iterations, we automatically gsetat each step tog us
the minimum along the directiah(t) = —OE[w(t)] . This one-dimensional minimization can be done with-
out computation of the destive dE/dn through a procedure knm asline seach or line minimizationAs

we shav below, a line search requires only that we be ablevéduateE(n) for different \alues off) . Since
w(t) andd(t) in equation52) are knevn vectors, this is not a problem.

The steepest descent algorithm depends on an accurate one-dimensional line search or minimization during
each training ste@A successful line search is usually performed io steps. First, we need to bratlhe
minimum. Second, we need to use that beatl zero in on that minimum. Be&lpwe discuss each of these

steps in someghat greater detail.

B. Bracketing the minimum
In steepest descent, wamt to fnd the alue nU of the learning parameter that minimiZe@) ,
E(n) = E[w(t) +nd(t)] (55)

E(nD) <E(M), On, (56)

wherew(t) is the current set of weights in the neural mekyvandd(t) = —OE[w(t)] . In order to perform
this minimization without computingE/ dn , we frst need to fid three alues ofn, {&a, b, c} , such that,

E(a) > E(b) andE(c) > E(b). (57)

In other words, we need tbracket the minimumFigure 3 for example, shas three points that satis{$7)
and(57) for a sample functiok(n) .

Below, we describe a simple algorithm for bratikg the minimum of an error functio®n) of form (55).

-7-

EEL6825: Pattern Recognition Introduction to advanced parameter optimization

IS
D
\

= ° \
o, P
C
1 b
1 2 3 4 5 6 7 8
n Figure3

1l.Leta = 0. Letb = ¢, wheree is some small posite constant. Note that since we are performing the
steepest-descent line search along tigative gradient—OE[w(t)], our initial choice o guarantees
thatE(a) > E(b) .

2.Letc = k(b—a) +a, wherek>1.
3. If E(c) > E(b), then we are done; else, ket= b andb = c. Repeat step.

Note that stef requires one e function ealuation (i.e.E(€)), sinceE(0) has already been computed
during the forvard pass of the backprogpn algorithm. Each iteration of stepsnd3 then requires only
one additional functionvaluation ofE(n) .

One popular choice fdr in step? is thegolden atio; that is,
k = 1+Tﬁ’ ~ 161803 (58)

which tends to generate “nice” brating intenals (a, b) and(b, c) . More on this a little lateFigure 4 for
example, illustrates the abe bracleting procedure for a sample one-dimensional fundtion.

Let us look at one morexample. Consider the twdimensional error function,
E(w;, w,) = 1—exp(—5wf-w3) (plotted inFigure § (59)

and initial weights(w;, w,) = (1, 2) . For this function, the gradient isvgin by

DE(0y, 0,) = [10w, exp(— 502 — w3), 2w,] exp(— 507 — w3) (60)
so that,
E(n) = 1—exp(—5(w; — 100, N exp(—50f — 13))2 — (0, — 20,1 exp(— 5w? — w3))?) . (61)

At (w;, w,) = (1, 2), equation(61) evaluates to,
E(n) = 1-exp(-5(1-10nexp(-9))?~(2-4nexp(-9))?). (62)

Figure 6plots equatior{62) and the three braeking \alues{ a, b, c} that were found using the al®algo-
rithm.

C. Lineminimization

Given the three braeking \alues{a, b, c} of n, we can nw zero in on the minimum using the follilng
simple algorithm:

1. In Figure 4 we use the additional meanism ofparabolic interpolationto generate the fist value ofc . For details,
consult section 10.1 if3] .

EEL6825: Pattern Recognition

Introduction to advanced parameter optimization

6 6
#1 / #2 /
5 Nax 5
4 / 4 /
—_ 3 ~ 3
= \ > \
o 2 o 2
1 1
1 2 3 8 1 2 3 4 5 6 7 8
n n
Figure4
6 6
5 5
4 / 4 /
—
oy 3 —~ 3
w 2 \ EJ/ 2
1 1
1 2 3 8 1 2 3 4 5 6 7 8
n n
Figure5
1P —]
0.98 L1
a C
0.96
—
=y
N
L
0.94
o]
0.92 o~
200 400 600 800 1000 1200 1400
n Figure6

EEL6825: Pattern Recognition Introduction to advanced parameter optimization

1. Pick aalue ofnp = x in the lager of the tw intenals (a, b) and(b, c) .

2.If (a, b) is the lager intenal, then set the mebracleting \alues to:

{x, b, c} if E(x)>E(b), (thatis, sea = x), or (63)

{a, x, b}, if E(b)>E(X), (thatis, set = b andb = x). (64)
Else, if (b, c) is the lager intenal, then set the mebracleting \alues to,

{a, b, x} if E(x)>E(b), (thatis, set = x), or (65)

{b,x,c},if E(b)>E(X), (thatis, sed = b andb = x). (66)

3. lterate step& and2 until (c—a) <0, where@ is some small number (e.#06).

4, Set,

nt = M_ (67)
2
In the aboe procedure, we euld like to pickx so that, onwerage, we reduce the brating intenals by the
largest amount possible for each iteratMfithout loss of generalifyet us assume théb, c) is the lager of
the two intenals.We then need to considentaonuch we reduce the braating intenal for both possibilities,

E(x) > E(b), and, (68)
E(x) <E(b). (69)
Let,
_(b-3a)
W = m and (70)
_ (c=b)
1-w = ca) (71)
Also let,
_ (x=b)
2= o) (72)

Depending on whether conditigd8) or (69) is true, our ne& intenal lengths will be either

(w+2z)(c—a) (if E(x) >E(b)), or, (73)
(1—w)(c—a) (if E(x) <E(b)). (74)
In order to minimize the wrst case possibilityve should set equatio(ia3) and(74) to be equal so that,
(w+2z)(c—a) = (1-w)(c—a) (75)
z=1-2w (76)

[Note that since we assumed tlfbt c) is the lager intenal, w<1/2 andz>0.]

Now, we also epect that the optimal ratios of smaller taglarintenal lengths be the same from one iteration
to the net; in other vords,

(x—b) _ (b-a)
(c—b) (c-a) (77)
i_Z_W = w. (78)

-10-

EEL6825: Pattern Recognition Introduction to advanced parameter optimization

Substituting equatio(76) into equation(78),
1-2w _

w2-3w+1 =0 (80)
w = 2(3- /5) = 0.381966 (81)

Thus, the optimal ratio of smaller toder intenal lengths is gien by(81). This means that thealue ofx
should be chosen so that,

x = 0.381966(c—b) + b (82)
when (b, ¢) is the lager intenal, and,

X = b—0.381966(b —a) (83)
when (a, b) is the lager interal. With the \alue for x in equationg82) and(83), we are guaranteed to
reduce the intead length by adctor of,

1

K 0.61803 (84)

wherek is the golden ratio defed in equatiorf58). Because of this, this line search algorithm isvkmas
the golden section sedn. Note that each step of this algorithm requires only one functialuagion of
E(n) (namely E(x)) and at no time do we)@ to compute the desrtive 0E/0n .

The rate of covergence for this algorithm can be further imyd through parabolic interpolation (Bremt’
method). Br details, seg3].

. Quadratic error function example
Let us reconsider the simple,awlimensional quadratic error sack that we loctd at last time,
E = 2007 + 3. (85)

For this error sudce and from initial weight$w,, w,) = (1, 2), Figure 7belav plots the trajectory in

weight space of the steepest descent algorithm, and the gradient descent algorithm (with a near optimal learn-
ing rate ofn = 0.04). Each trajectory is superimposed on top of a contour pl& ahd is stopped when

JE <1076 Note that steepest descent\amyes signiftantly faster than gradient descent.

2 2

»
"

W, 0
0, Wy
steepest descent gradient descengn = 0.04)
15 steps to coergence Figure7 175 steps to caergence

-11-

EEL6825: Pattern Recognition Introduction to advanced parameter optimization

E. Nonquadratic example
Here we agin consider the simple nonquadratic erroratef
E = 1-exp(-5wf —w3). (86)

For this error sudce and from initial weightgw;, w,) = (1, 2), Figure 8belav plots the trajectory in
weight space of the steepest descent algorithm, and the gradient descent algorithm (with a near optimal learn-
ing rate ofn = 0.2). Each trajectory is superimposed on top of a contour pl& ahd is stopped when
JE <108, Once agin, the steepest descent algorithmveayes signiftantly faster than gradient descent.

2 2

Wy 0,
Wy Wy

steepest descent gradient descent(n = 0.2)

24 steps to corrgence Figure8 456 steps to caergence

F. Computational complexity

The aboe examples she that steepest descent generallywemges in fever steps than gradient descent with
a fixed learning rate. Because of the line minimization procedure in each stepeheach steepest descent
step requires more computations; that is, each line minimization requires thaluwagesthe error function
for multiple values ofn . To compute the gradient in a neural netikvtakes approximatelybNW computa-
tions, whereN is the number of training patterns, awdis the total number of weighf§]. To compute the
error for a specifi set of weights tads approximatel2NW computationsAssuming approximately 10 addi-
tional error galuations for each line minimization, one steepest descent step theredsrappkoximately

5NW + 10(2NW) = 25NW computations/step (steepest descent). (87)

Gradient descent, on the other hand, requires only that the gradient be computed, so that one step of the gra-
dient descent algorithm requires approximately

5NW computations/step (gradient descent). (88)

Thus the computational cost of one steepest descent step is approximately 5 times that of one gradient
descent step. v with that additional computational comptg, however, steepest descent is still mor&-ef
cient for our &les abee.

G. Orthogonality of consecutive steps

Note from both Figure§ and8 that consecute search directions in the steepest descent algorithm are
orthogonalThis is so because at each step of the steepest descent algorithm, we minimize the error along our
current search directiod(t) = —OE[w(t)] . In other vords, the gradient in the direction dft) will have

been made zero at ounmeveight \aluesw(t + 1) . As an &le, let us erify this property for the fét step

of the steepest descent algorithm in our quadratic erracgustample abwe. For this error sudce [equa-

tion (85)], the current weightector is gien by

w(t) = (0, w,) (89)

-12-

EEL6825: Pattern Recognition Introduction to advanced parameter optimization

and the search direction at each stepvsrgby
d(t) = -OE[w(t)] = —(40w,, 2w,) = (—40w,;, —2w,) (90)

Thus, from equatio(62),

E(n) = E[(wy, w,) +N(-40w,, —2w,)] (91)
E(n) = E[(w1—40nw1), (002—2r1002)] (92)
E(n) = 20(w; —40nw,)? + (w, — 2nw,)>? (93)

With initial weights,
w(l) = (1,2), (94)
equation(94) simplifies to,

E(n) = 20(1-40n)2+(2-4n)? (95)
Instead of doing a line minimization, equati@3) is simple enough that we can safor nl explicitly:
0E/0n = 40(1-40n)(-40) +2(2—-4n)(-4) = 0 (96)
_ 101
4002 ©7)

Thus, our n& weight \alues are gen by

101 0 19 38000

w(2) = (1, 2)—m(40, 2) = 5001 200100 (98)
Let us nav denoteg(t) = OE[w(t)] . From equatioti89),

g(1) = (40,4), (99)

g(2) = (-760/2001, 7600/ 2001), (100)
so that,

9(1) ty(2) = 0. (101)

Since the dot product @f(1) andg(2) is equal to zero, the twgradient ectors are orthogonal.

H. Conclusion

Note that haing consecutie search directions be orthogonal is not a good thing. Progress madestthe
minimum in one step is partially undone in therywnet step. In other ards, steepest descent constructs
consecutie search directions that interfere with one anofkewe shall seever the course of the xieses-

eral lectures, there is a much betteyvio use gradient information to constronon-interfering seah direc-
tions on a locally quadratic error sade. This will lead us to theconjugate gadient algorithm which
requires ery little additional computation/step ymnd that required in steepest descent, yet typically con-
verges in may fewer steps.

[1] C. M. Bishop, “Chapter 7:d&ameter OptimizatioAlgorithms; Neurl Networks for Bttern Recgni-
tion, Oxford Unversity Press, Oxford, 1995.

[2] S.E.FRhimanAn Empirical Study of Learning Speed in B&ropagation NetworksCMU-CS-88-162,
Technical Report, Cargee Mellon Unversity School of Computer Science, 1988.

[3] W. H. Press, et. alNumerical Recipes in CfheArt of Scientit Computing 2nd. ed. pp. 397-405,
Cambridge Uniersity Press, Cambridge, 1992.

-13-

	1. Introduction
	2. Heuristic extensions of gradient descent
	A. Convergence in gradient descent
	B. Gradient descent with momentum
	C. Conclusion

	3. Steepest descent
	A. Introduction
	B. Bracketing the minimum
	C. Line minimization
	D. Quadratic error function example
	E. Nonquadratic example
	F. Computational complexity
	G. Orthogonality of consecutive steps
	H. Conclusion

