
Cascade Neural Networks with Node-Decoupled Extended Kalman Filtering

Michael C. Nechyba and Yangsheng Xu

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Proc. IEEE Int. Symposium on Computational Intelligence in Robotics and Automation, vol. 1, pp. 214-9, 1997.

Abstract

Most neural networks used today rely on rigid, fixed-architec-
ture networks and/or slow, gradient descent-based training algo-
rithms (e. g. backpropagation). In this paper, we propose a new
neural network learning architecture to counter these problems.
Namely, we combine (1) flexible cascade neural networks, which
dynamically adjust the size of the neural network as part of the
learning process, and (2) node-decoupled extended Kalman fil-
tering (NDEKF), a fast converging alternative to backpropaga-
tion. In this paper, we first summarize how learning proceeds in
cascade neural networks. We then show how NDEKF fits seam-
lessly into the cascade learning framework, and how cascade
learning addresses the poor local minima problem of NDEKF re-
ported in [1]. We analyze the computational complexity of our ap-
proach and compare it to fixed-architecture training paradigms.
Finally, we report learning results for continuous function ap-
proximation and dynamic system identification — results which
show substantial improvement in learning speed and error con-
vergence over other neural network training methods.

1. Introduction

In recent years, artificial neural networks have shown great
promise in identifying complex nonlinear mappings from ob-
served data and have found many applications in robotics and oth-
er nonlinear control problems. Despite significant progress in the
application of neural networks to many real-world problems,
however, the vast majority of neural network research still relies
on fixed-architecture networks trained throughbackpropagation
or some other slightly enhanced gradient descent algorithm.There
are two main problems with this prevailing approach. First, the
“appropriate” network architecture varies from application to ap-
plication; yet, it is difficult to guess this architecture — the num-
ber of hidden units and number of layers —a priori for a specific
application without some trial and error. Even within the same ap-
plication, functional complexity requirements can vary widely, as
is the case, for example, in modeling human control strategies
from different individuals [2]. Second, backpropagation and other
gradient descent techniques tend to converge rather slowly, often
exhibit oscillatory behavior, and frequently convergence to poor
local minima [3].

To address the problem of fixed architectures in neural net-
works, we look towards flexible cascade neural networks [4]. In
cascade learning, the network topology is not fixed prior to learn-
ing, but rather adjusts dynamically as a function of learning, as
hidden units are added to a minimal network one at a time.

To address the second problem — slow convergence with gra-
dient-descent training algorithms — we look towardsextended
Kalman filtering (EKF). What makes EKF algorithms attractive is
that, unlike backpropagation, they explicitly account for the pair-
wise interdependence of the weights in the neural network during
training. Singhal and Wu [5] were the first to show how the EKF
algorithm can be used for neural network training. While con-
verging to better local minima in many fewer epochs than back-
propagation, theirglobal extended Kalman filtering (GEKF)
approach, carries a heavy computational toll. GEKF’s computa-
tional complexity is , wherem is the number of weights in
the neural network. This is prohibitive, even for moderately sized
neural networks, where the weights can easily number in the thou-
sands.

To address this problem, Puskorius and Feldkamp [1], propose
node-decoupled extended Kalman filtering (NDEKF), which con-
siders only the pairwise interdependence of weights feeding into
the same node, rather than the interdependence of all the weights
in the network. While this approach is computationally tractable
through a significant reduction in the computational complexity,
the authors report that NDEKF tends to converge to poor local
minima, for network architectures not carefully selected to have
little redundancy (i.e. few excess free parameters).

In this paper we show that combining cascade neural networks
with NDEKF solves the problem of poor local minima reported in
[1], and that the resulting learning architecture substantially out-
performs other neural network training paradigms in learning
speed and/or error convergence for learning tasks important in
control problems. We first summarize how learning proceeds in
cascade neural networks. We then show how NDEKF fits seam-
lessly into the cascade learning framework, and how cascade
learning addresses the poor local minima problem of NDEKF. We
analyze the computational complexity of our approach and com-
pare it to fixed-architecture training paradigms. Finally, we report
learning results for continuous function approximation and dy-
namic system identification.

2. Cascade neural networks
Below, we briefly summarize the cascade neural network

training algorithm, as formulated in [4]. Further details, which are
omitted here for space reasons, may be found in [2,4,6].

Initially, there are no hidden units in the network, only direct
input-output connections which are trained first using the quick-
prop algorithm [3]. When no appreciable error reduction occurs,
a first hidden unit is added to the network from a pool ofcandi-
date units, which are trained independently and in parallel with
different random initial weights. Once installed, the hidden unit
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input weights are frozen, while the weights to the output units are
retrained. This process is repeated with each additional hidden
unit, which receives input connections from both the inputs and
all previous hidden units, resulting in a cascaded structure. Figure
1, for example, illustrates how a two-input, single-output network
grows as two hidden units are added. Thus, a cascade network
with  inputs,  hidden units and  outputs, has  connec-
tions where,

(Eq. 1)

We can further relaxa priori assumptions about functional
form by allowing new hidden units to have variable activation
functions [2, 7]. During candidate training, the algorithm will se-
lect for installment whichever candidate unit reduces the error for
the training data the most. Typical alternatives to the sigmoidal
activation function are the Gaussian function, Bessel functions,
and sinusoidal functions of various frequency [6].

3. Node-decoupled extended Kalman filtering
While quickprop is an improvement over standard backpropa-

gation it can still require many iterations until satisfactory conver-
gence is reached [3, 5]. Thus, we modify standard cascade
learning by replacing the quickprop algorithm withnode-decou-
pled extended Kalman filtering (NDEKF), which has been shown
to have better convergence properties and faster training times
than gradient-descent techniques for fixed-architecture multi-lay-
er feedforward networks [1].

3.1 Learning architecture
In general extended Kalman filtering (GEKF) [5], an

conditional error covariance matrixP, which stores the interde-
pendence of each pair ofm weights in a given neural network is
explicitly generated. NDEKF reduces this computational and
storage complexity by — as the name suggests — decoupling
weights by node, so that we consider only the interdependence of
weights feeding into the same unit (or node). This, of course, is a
natural formulation for cascade learning, since we only train the
input-side weights of one hidden unit and the output units at any
one time; we can partition them weights by unit into
groups — one group for the current hidden unit,  groups for the
output units. In fact, by iteratively training one hidden unit at a

time and then freezing that unit’s weights, we minimize the poten-
tially detrimental effect of the node-decoupling.

Denote  as the input-side weight vector of length  at it-
erationk, for unit , where  corresponds
to the current hidden unit being trained, and  cor-
responds to theith output unit, and

(Eq. 2)

The NDEKF weight-update recursion is then given by,

(Eq. 3)

where  is the -dimensional error vector for the current train-
ing pattern,  is the -dimensional vector of partial deriva-
tives of the network’s output unit signals with respect to theith
unit’s net input, and

(Eq. 4)

(Eq. 5)

(Eq. 6)

(Eq. 7)

where  is the -dimensional input vector for theith unit, and
 is the  approximate conditional error covariance ma-

trix for theith unit. We include the parameter  in (Eq. 6) to al-
leviate singularity problems for  [1]. In (Eq. 3) through (Eq. 6),
{}’s, ()’s, and []’s evaluate to scalars, vectors and matrices, re-
spectively.

The  vector is easy to compute within the cascade frame-
work. Let  be the value of theith output node,  be its cor-
responding activation function,  be its net activation,
be the activation function for the current hidden unit being
trained, and  be its net activation. Then,

, (Eq. 8)

(Eq. 9)

(Eq. 10)

wherew is the weight connecting the current hidden unit to theith
output unit.

Throughout this paper, we will use the short-hand notation in
Table 1 to describe the various different learning techniques.

a. All weights are trained simultaneously.
b. Hidden units are added and trained one at a time.
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Fig. 1: The cascade learning architecture adds hidden units
one at a time to an initially minimal network.
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Table 1:  Notation

Symbol Methodology Training algorithm

Fq Fixed architecturea quickprop

Cq Cascade learningb quickprop

Fk Fixed architecture NDEKF

Ck Cascade learning NDEKF
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3.2 Computational complexity
The computational complexity for cascade learning with

NDEKF is given by,

(Eq. 11)

The  computational complexity caused by the matrix in-
version in (Eq. 5) restricts this approach to applications where the
number of outputs is relatively few. Below, we compare the com-
putational complexity of our proposed learning architecture to
two other regimes: (1) layered feedforward neural networks
trained with backpropagation (pattern-wise update), and (2)
NDEKF alone (i.e. used on fixed-architecture networks).

First, consider the computational cost (per training pattern) of
training one candidate unit for a network with  input units,

 hidden units, and  output units( ):

•  (  symmetric matrix),

•  multiplications,

•  additions,

•  function evaluations

For comparison with backpropagation, we look at the compu-
tational cost (per training pattern) for a two-layered neural net-
work with  input units,  hidden units in both hidden
layers, and  output units:

•  multiplications,

•  additions,

•  function evaluations

To arrive at a composite cost for each method, we weigh multipli-
cations and additions by a factor of 1.0, and function evaluations
by a factor of 5.0. In addition, we multiply the composite cost for
the cascade/NDEKF method by , a typical number for the
pool of candidate units and average the cost over all

. Let  denote the average computational
cost per training pattern for our method, and let  denote the
computational cost per training pattern for training the two-lay-
ered network with backpropagation. We are interested in the ratio,

(Eq. 12)

for equivalently sized neural networks. Byequivalently sized, we
mean neural networks with approximately the same final number
of weights, such that,

(Eq. 13)

In general, therefore, . Figure 2, for example, plots  for
, , and .

We note that for , and , the ratio is upper
bounded by . In other words, if our approach reduces the
number of epochs by a factor of 100 over standard backpropaga-
tion, our approach will be more efficient even for very large input
spaces. Moreover, for small input spaces, a mere factor of 5 re-
duction in the number of epochs will result in increased computa-
tional efficiency.

Second, we consider the difference in computational cost be-
tween our approach (Ck) and using NDEKF alone (Fk). Let
denote the cost per epoch of training theith hidden unit; let
denote the total cost of training theCk network (  final hidden
units and  candidate units per hidden unit); let  denote the
number of epochs required to train theith hidden unit; and let
denote the total number of epochs. Also, let  denote the cost
per epoch of training theFk network; let  denote the total cost
of training theFk network (  total hidden units); and let  de-
note the total number of epochs for training theFk network. Thus,

(Eq. 14)

(Eq. 15)

Now, we assume that,

, (Eq. 16)

so that (Eq. 14) becomes,

(Eq. 17)

Our experience justifies the approximation in (Eq. 16), which
states that all hidden units require approximately the same num-
ber of epochs. Furthermore, neglecting differences in derivative
calculations between methodsCk andFk, we assume that,

(Eq. 18)

We can now get a relationship between  and  correspond-
ing to equivalent costs between methodsCk andFk. Setting (Eq.
14) and (Eq. 15) equal to each other and using approximations
(Eq. 16) and (Eq. 18), we get that,

(Eq. 19)

In other words, using the cascade/NDEKF (Ck) algorithm, we can
use approximately  as many epochs as for NDEKF alone
(Fk) for the same computational cost.
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Fig. 2: Ratio of computational costs for various network sizes
and one output unit. (Higher curves reflect ratios for larger
number of inputs).
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4. Experiments

4.1 Problem descriptions
In this section, we present learning results for five different

problems in continuous function approximation and dynamic sys-
tem modeling. For the first problem (A), we want to approximate
the following 3-to-2smooth, continuous-valued mapping,

(Eq. 20)

(Eq. 21)

in the interval . The training set consists of 1000
random points; the cross validation set consists of an additional
1000 random points; and our test set consists of another 2000 ran-
dom points.

Our second problem (B) is taken from [4]. We want to approx-
imate the following 1-to-1nonsmooth, continuous-valued map-
ping (see Figure 3),

(Eq. 22)

for , and . Our training, cross vali-
dation, and test sets are identical to those in [4] and consist of the
following: (1) 4000 evenly spaced points are generated in the in-
terval ; (2) 968 of those points are randomly chosen for
the training set; (3) 968 are randomly chosen from the remaining
3032 points for the cross validation set; and (4) the remaining
2064 points make up the test set.

Our third problem (C) is taken from [1]. We want to model the
following dynamic system,

(Eq. 23)

where,

(Eq. 24)

and the input  is randomly generated in the interval
. We use a 2500-length sequence for training, an-

other 2500-length sequence for cross validation, and another
5000-length sequence for testing.

Finally, our last two problems are taken once again from [4].
Here, we want to predict the chaotic Mackey-Glass time series
[8], widely studied in the literature and described by,

(Eq. 25)

for , , and . While the Mackey-Glass
differential equation has infinite degrees of freedom (due to the
time delay ), it’s stationary trajectory lies on a low-dimensional
attractor (as shown in Figure 4). We present

(Eq. 26)

as the four inputs to the neural network, while the goal of this task
is to predict  for . We will refer to  as
problem (D) and  as problem (E). Our training, cross val-
idation, and test sets are once again identical to those in [4]. The
training set consists of the 500 data points from time  to

; the cross validation set consists of the 500 data points
from time  to ; and the test set consists of the
500 points from time  to .

For problems (A) and (C) above, we train over 25 trials to 15
hidden units for each method . By fixing the net-
work architecture prior to training forFk, it is not possible to as-
sign variable activation functions to each hidden unit; the space of
all possible permutations of variable activation functions is too
large to explore. Therefore, we try two different networks for
methodFk — one with sigmoidal activation functions, and the
other with sinusoidal activation functions. In previous work [6],
we have shown that neural networks with sinusoidal activation
functions perform approximately as well as those with variable
activation functions. Both have been shown to outperform sig-
moidal networks for continuous function approximation.

For problems (B), (D), and (E), taken from [4], we follow the
same procedure in training with methods , as Fahlman,
et. al., follow in training with methods . In [4],Cq neu-
ral networks are allowed to grow to a maximum of 50 hidden units
in 15 separate trials for each problem. For each trial, the best RMS
error over the test set is recorded. Equivalently sizedFq networks
are also trained, for up to 60,000 epochs per trial. The 60,000 fig-
ure is chosen to be approximately three times the maximum num-
ber of epochs required for any of theCq training runs. Again, the
best RMS error for the test set is recorded for each trial.

For the learning results in this paper involving NDEKF, we
use the following parameter settings throughout:

, (Eq. 27)

In Ck, we upper-bound the number of epochs to 10 per hidden
unit, while forFk, we upper-bound the total number of epochs to
150. Finally, for the cascade methods , we use eight
candidate units, the same as in [4].
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Fig. 3: Nonsmooth, continuous function for problem (B).
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4.2 Results

Table 2 reports the average RMS error ( ) over the test
sets for problems (A) through (E). We note that in all cases, our
cascade/NDEKF (Ck) approach outperforms the other three meth-
ods. Figure 5 reports the percentage difference in  between
our approach and competing training regimes.

Method Fq (fixed-architecture/quickprop) shows by far the
worst performance, yet we use 120 times fewer epochs forCk (ap-
proximately 500 for problems (B), (D), and (E)). Using Figure 2
as an approximate guide to the computational difference between
Ck andFq, we see that, for a 50-hidden unit network with relative-
ly few inputs, aCk epoch is no more than 10 times as computa-
tionally expensive as anFq epoch. Hence, not only does our
cascade/NDEKF approach generate better learning results, it is
also more efficient than the fixed-architecture/quickprop ap-
proach.

MethodFk also performs worse than ourCk approach, despite
allowingFk to compute as much as twice as long asCk. For prob-
lems (A) and (C), for example, the number of epochs required to
train to 15 hidden units forCk is approximately 140. Since we use
eight candidate units, a roughly equivalent number of epochs in
terms of computational cost forFk is (from (Eq. 19)),

(Eq. 28)

Yet, we allowFk to compute twice that amount — 150 epochs.

One reason,Fk shows worse performance is its susceptibility
to getting stuck in bad local minima. As the authors note in [1],
“NDEKF at times requires a small amount of redundancy in the
network in terms of the total number of nodes in order to avoid
poor local minima for certain problems, which [they attribute] to
high effective learning rates at the onset of training [1].” Consid-
er, for example, Figure 6 below. While the minimum  for
the Fk network is below that of theCq network, its maximum

 is much worse than eitherCk or Cq. On the other hand,Ck

avoids the bad local minima problem by iteratively training only
a small number of weights in the network at once.

Finally, we look at the difference between theCk and Cq
methods. First, we note thatCq requires about 15 to 25 times as
many epochs as doesCk. Since eachCq epoch is much less com-
putationally expensive, however,Cq consumes only about 2/3 the
time compared toCk for the problems studied in this paper. On the
other hand,Ck is able to achieve local minima comparable toCq’s
with fewer hidden units, and therefore requires significantly less
time thanCq to reach the same average RMS error. Consider, for
example, Figure 7. At the onset of training,  forCk andCq
training is approximately equal (4% difference). As hidden units
are added, however, we see that  diverges for the two train-
ing algorithms. Since each hidden unit receives input from all pre-
vious hidden units, the input-side weights of the hidden units
become increasingly correlated. Figure 8, for example, plots

(Eq. 29)
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Fig. 5: Cascade/NDEKF significantly outperforms the other
learning methods for each problem.
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Table 2: Average RMS Error over test sets. a

Ck ( ) Fk ( )b Cq ( ) Fq ( )

(A) 42.1 (4.2) 127.1 (37.3) 94.5 (6.2) N/A

(B) 7.4 (2.0) 12.4 (3.2) 14.5 (4.0) 65.0 (18.2)

(C) 15.6 (1.5) 20.7 (4.8)c 29.9 (2.0) N/A

(D) 4.6 (0.6) 10.2 (4.0) 9.4 (2.7) 16.7 (2.2)

(E) 42.0 (5.9) 60.5 (3.1) 72.6 (16.3) 90.3 (8.3)
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Fig. 6: Fk can get stuck in bad local minima, as witnessed by
the large maximum RMS errors observed for problem (A).
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(i.e. the ratio of off-diagonal terms to diagonal terms in the error
covariance matrixP) for one trial in problem (C). By explicitly
storing the interdependence of these weights in the conditional er-
ror covariance matrix, cascade/NDEKF copes better with this in-
creasing correlation than does the cascade/quickprop algorithm.

4.3 Discussion

For the problems studied here, we see a significant improve-
ment in learning times and error convergence with cascade/NDE-
KF over the other methods. Moreover, we see that incremental
cascade learning and node-decoupled extended Kalman filtering
complement each other well by compensating for each other’s
weakness. On the one hand, the idea of training one hidden unit at
a time and adding hidden units in a cascading fashion offers a
good alternative to thead hoc selection of a network architecture.
Quickprop and other gradient-descent techniques, however, be-
come less efficient in optimizing increasingly correlated weights
as the number of hidden units rises. This is where NDEKF can
perform much better through the conditional error covariance ma-
trix. On the other hand, NDEKF can easily become trapped in bad
local minima if a network architecture is too redundant. Cascade
learning accommodates this well by training only a small subset
of all the weights at one time.

Second, throughout the paper we use identical parameter set-
tings for ourCk method (Eq. 27). This stands in sharp contrast to
the gradient-descent methods (i.e.Cq andFq), for which learning

parameters were tuned for each particular problem in order to
achieve good results [4]. The NDEKF weight-update recursion in
(Eq. 3) can be thought of as an adaptive learning rate, which ob-
viates the need for parameter tuning; thus, in our approach we
need not waste time tuning parameters or network architectures.

Finally, while our approach performs well for the problems
studied in this paper, it is clearly impractical for applications
which have a large number of inputs and/or outputs. This tends to
exclude vision-based tasks, where the input and/or output spaces
are typically greater than 1000. Applications with inputs number-
ing in the low hundreds, however, are not excluded. For example,
we are currently applying cascade/NDEKF learning successfully
to modeling human control strategy, where the number of inputs
typically range from 100 to 200.

5. Conclusion
In this paper, we have developed a new learning architecture

for continuous-valued function approximation and dynamic sys-
tem identification, which combines cascade neural networks and
node-decoupled extended Kalman filtering. We show that incre-
mental cascade learning and NDEKF complement each other well
by compensating the other’s weakness, and that the combination
forms a powerful learning architecture, which records quicker
convergence to better local minima than related neural-network
training paradigms.
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Fig. 7: Ck converges to approximately the same avg. RMS
error with 6 hidden units (63 weights) as Cq does with 15
hidden units (216 weights) for problem (C).
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