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Abstract

The ALVINN (Autonomous Land Vehicle In a Neural Network) project ad-
dresses the problem of training arti�cial neural networks in real time to perform
di�cult perception tasks. ALVINN is a back-propagation network designed to
drive the CMU Navlab, a modi�ed Chevy van. This paper describes the training
techniques which allow ALVINN to learn in under 5 minutes to autonomously
control the Navlab by watching a human driver's reactions. Using these tech-
niques ALVINN has been trained to drive in a variety of circumstances including
single-lane paved and unpaved roads, and multi-lane lined and unlined roads,
at speeds of up to 20 miles per hour.

1 Introduction

Arti�cial neural networks sometimes require prohibitively long training times
and large training data sets to learn interesting tasks. As a result, few attempts
have been made to apply arti�cial neural networks to complex real-world per-
ception problems. In those domains where connectionist techniques have been
applied successfully, such as phoneme recognition [Waibel et al., 1988] and char-
acter recognition [LeCun et al., 1989] [Pawlicki et al., 1988], results have come
only after careful preprocessing of the input to segment and label the training
exemplars. In short, arti�cial neural networks have never before been success-
fully trained using sensor data in real time to perform a real-world perception
task.

The ALVINN (Autonomous Land Vehicle In a Neural Network) system reme-
dies this shortcoming. ALVINN is a back-propagation network designed to drive
the CMU Navlab, a modi�ed Chevy van (See Figure 1). Using real time train-
ing techniques, the system quickly learns to autonomously control the Navlab
by watching a human driver's reactions. ALVINN has been trained to drive in
a variety of circumstances including single-lane paved and unpaved roads, and
multi-lane lined and unlined roads, at speeds of up to 20 miles per hour.
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Figure 1: The CMU Navlab Autonomous Navigation Testbed

2 Network Architecture

ALVINN's current architecture consists of a single hidden layer back-propagation
network (See Figure 2). The input layer of the network consists of a 30x32 unit
\retina" onto which a video camera image is projected. Each of the 960 units in
the input retina is fully connected to the hidden layer of 5 units, which in turn
is fully connected to the output layer. The output layer consists of 30 units and
is a linear representation of the direction the vehicle should travel in order to
keep the vehicle on the road. The centermost output unit represents the \travel
straight ahead" condition, while units to the left and right of center represent
successively sharper left and right turns.

To drive the Navlab, a video image from the onboard camera is reduced to
a low-resolution 30x32 pixel image and projected onto the input layer. After
completing a forward pass through the network, a steering command is read o�
the output layer. The steering direction dictated by the network is taken to be
the center of mass of the \hill" of activation surrounding the output unit with
the highest activation level. Using the center of mass of activation instead of
the most active output unit when determining the direction to steer permits
�ner steering corrections, thus improving ALVINN's driving accuracy.

3 Training

To train ALVINN, the network is presented with road images as input and the
corresponding correct steering direction as the desired output. The weights
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Figure 2: ALVINN Architecture

in the network are altered using the back-propagation algorithm so that the
network's output more closely corresponds to the correct steering direction.
The only modi�cations to the standard back-propagation algorithm used in this
work are a weight change momentum factor which is steadily increased during
training, and a learning rate constant for each weight which is scaled by the fan-
in of the unit to which the weight projects. ALVINN's ability to learn quickly
results from the output representation and the exemplar presentation scheme.

Instead of training the network to activate only a single output unit, ALVINN
is trained to produce a gaussian distribution of activation centered around the
steering direction which will keep the vehicle centered on the road. As in the
decode stage, this steering direction may fall between the directions represented
by two output units. The following approximation to a gaussian equation is
used to precisely interpolate the correct output activation levels:

xi = e
�

d
2

i

10

where xi represents the desired activation level for unit i and di is the ith unit's
distance from the correct steering direction point along the output vector. The
constant 10 in the above equation is an empirically determined scale factor that
controls the number of output units the gaussian encompasses.
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As an example, consider the situation in which the correct steering direction
falls halfway between the steering directions represented by output units j and
j+1. Using the above equation, the desired output activation levels for the units
successively farther to the left and the right of the correct steering direction will
fall o� rapidly with the values 0.98, 0.80, 0.54, 0.29, 0.13, 0.04, 0.01, etc.

This gaussian desired output vector can be thought of as representing the
probability density function for the correct steering direction, in which a unit's
probability of being correct decreases with distance from the gaussian's center.
By requiring the network to produce a probability distribution as output, instead
of a \one of N" classi�cation, the learning task is made easier since slightly
di�erent road images require the network to respond with only slightly di�erent
output vectors. This is in contrast to the highly non-linear output requirement
of the \one of N" representation in which the network must signi�cantly alter
its output vector (from having one unit on and the rest o� to having a di�erent
unit on and the rest o�) on the basis of �ne distinctions between slightly shifted
road scenes.

3.1 Original Training Scheme

The source of training data has evolved substantially over the course of the
project. Training was originally performed using simulated road images designed
to portray roads under a wide variety of weather and lighting conditions. The
network was repeatedly presented with 1200 synthetic road scenes and the corre-
sponding correct output vectors, while the weights between units in the network
were adjusted with the back-propagation algorithm [Pomerleau et. al., 1988].
The network required between 30 and 40 presentations of these 1200 synthetic
road images in order to develop a representation capable of accurately driving
over the single-lane Navlab test road. Once trained, the network was able to
drive the Navlab at up to 1.8 meters per second (3.5 mph) along a 400 meter
path through a wooded area of the CMU campus under a variety of weather
conditions including snowy, rainy, sunny and cloudy situations.

Despite its apparent success, this training paradigm had serious drawbacks.
From a purely logistical standpoint, generating the synthetic road scenes was
quite time consuming, requiring approximately 6 hours of Sun-4 CPU time.
Once the road scenes were generated, training the network required an addi-
tional 45 minutes of computation time useing the Warp systolic array super-
computer onboard the Navlab. In addition, di�erences between the synthetic
road images on which the network was trained and the real images on which
the network was tested often resulted in poor performance in actual driving sit-
uations. For example, when the network was trained on synthetic road images
which were less curved than the test road, the network would become confused
when presented with a sharp curve during testing. Finally, while e�ective at
training the network to drive under the limited conditions of a single-lane road,
it became apparent that extending the synthetic training paradigm to deal with
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more complex driving situations, like multi-lane and o�-road driving, would
require prohibitively complex arti�cial road generators.

3.2 Training \On-the-y"

To deal with these problems, I have developed a scheme, called training \on-
the-y", which involves teaching the network to imitate a human driver under
actual driving conditions. As a person drives the Navlab, back-propagation is
used to train the network with the current video camera image as input and the
direction in which the person is currently steering as the desired output.

There are two potential problems associated with this scheme. First, since
the human driver steers the vehicle down the center of the road during training,
the network will never be presented with situations where it must recover from
misalignment errors. When driving for itself, the network may occasionally
stray from the road center, so it must be prepared to recover by steering the
vehicle back to the center of the road. The second problem is that naively
training the network with only the current video image and steering direction
runs the risk of overlearning from repetitive inputs. If the human driver takes
the Navlab down a straight stretch of road during part of a training run, the
network will be presented with a long sequence of similar images. This sustained
lack of diversity in the training set will cause the network to \forget" what it
had learned about driving on curved roads and instead learn to always steer
straight ahead.

Both problems associated with training on-the-y stem from the fact that
back-propagation requires training data which is representative of full task to
be learned. To provide the necessary variety of exemplars while still training on
real data, the simple training on-the-y scheme described above must be modi-
�ed. Instead of presenting the network with only the current video image and
steering direction, each original image is laterally shifted in software to create 14
additional images in which the vehicle appears to be shifted by various amounts
relative to the road center (See Figure 3). The shifting scheme maintains the
correct perspective by shifting nearby pixels at the bottom of the image more
than far away pixels at the top of the image as illustrated in Figure 3. The
correct steering direction as dictated by the driver for the original image is al-
tered for each of the shifted images in order to account for the extra lateral
vehicle displacement in each. The use of shifted training exemplars eliminates
the problem of the network never learning about situations from which recovery
is required. Also, overtraining on repetitive images is less of a problem, since
the shifted training exemplars add variety to the training set. However as ad-
ditional insurance against the e�ects of repetitive exemplars, the training set
diversity is further increased by maintaining a bu�er of recently encountered
road scenes.

In practice, training on-the-y works as follows. A video image is digitized
and reduced to the low resolution image required by the network. This single
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Figure 3: The single original video image is laterally shifted to create multi-
ple training exemplars in which the vehicle appears to be a di�erent locations
relative to the road.

original image is shifted 7 times to the left and 7 times to the right in 0.25 meter
increments to create 15 new training exemplars. Fifteen old patterns from the
current training set of 200 road scenes are chosen and replaced by the 15 new
exemplars. The 15 patterns to be replaced in the training set are chosen in the
following manner. The 10 tokens in the training set with the lowest error are
replaced in order to prevent the network from overlearning frequently encoun-
tered situations such as straight stretches of road. The other 5 exemplars to be
replaced are chosen randomly from the training set. This random replacement
is done to prevent the training set from becoming �lled with erroneous patterns
which the network is unable to correctly learn. These erroneous exemplars result
from occasional momentary incorrect steering directions by the human driver.

After this replacement process, one forward and one backward sweep of
the back-propagation algorithm is performed on these 200 exemplars to incre-
mentally update the network's weights, and then the process is repeated. The
network requires approximately 50 iterations through this digitize-replace-train
cycle to learn to drive on the roads that have been tested. Running on a Sun-4,
this takes approximately �ve minutes during which a person drives at about 4
miles per hour over the test road. After this training phase, not only can the
network imitate the person's driving along the same stretch of road, it can also
generalize to drive along parts of the road it has never encountered, under a
wide variety of weather conditions. In addition, since determining the steer-
ing direction from the input image merely involves a forward sweep through
the network, the system is able to process 25 images per second, allowing it
to drive at up to the Navlab's maximum speed of 20 miles per hour1. This is

1The Navlab has a hydraulic drive system which allows for very precise speed control, but which
prevents the vehicle from driving over 20 miles per hour.
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Figure 4: Video images taken on three of the test roads ALVINN has been
trained to drive on. They are, from left to right, a single lane dirt access road,
a single lane paved bicycle path, and a lined two-lane highway.

over twice as fast as any other sensor-based autonomous system has driven the
Navlab [Crisman and Thorpe, 1990] [Kluge and Thorpe, 1990].

4 Discussion

The training on-the-y scheme gives ALVINN a exibility which is novel among
autonomous navigation systems. It has allowed me to successfully train individ-
ual networks to drive in a variety of situations, including a single lane dirt access
road, a single-lane paved bicycle path, a two-lane suburban neighborhood street,
and a lined two-lane highway (See Figure 4). ALVINN networks have driven in
each of these situations for up to 1/2 mile, until reaching the end of the road or
a di�cult intersection. The development of a system for each of these domains
using the "traditional approach" to autonomous navigation would require the
programmer to 1) determine what features are important for the particular task,
2) program detectors (using statistical or symbolic techniques) for �nding these
important features and 3) develop an algorithm for determining which direction
to steer from the location of the detected features.

An illustrative example of the traditional approach to autonomous naviga-
tion is the work of Dickmanns [Dickmann and Zapp, 1987] on high speed high-
way driving. Using specially designed hardware and software to track program-
mer chosen features such as the lines painted on the road, Dickmanns' system is
capable of driving at up to 60 miles per hour on the German autobahn. However
to achieve these results in a hand-coded system, Dickmanns has had to sacri�ce
much in the way of generality. Dickmanns emphasizes acccurate vehicle control
in the limited domain of highway driving which in his words, \put relatively low
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requirements on image processing."
In contrast, ALVINN is able to learn for each new domain what image fea-

tures are important, how to detect them and how to use their position to steer
the vehicle. Analysis of the hidden unit representations developed in di�erent
driving situations shows that the network forms detectors for the image features
which correlate with the correct steering direction. When trained on multi-lane
roads, the network develops hidden unit feature detectors for the lines painted
on the road, while in single-lane driving situations, the detectors developed are
sensitive to road edges and road shaped regions of similar intensity in the im-
age. Figure 5 illustrates the evolution of the weights projecting to the 5 hidden
units in the network from the input retina during training on a lined two-lane
highway. For a more detailed analysis of ALVINN's internal representations
see [Pomerleau, 1990] [Pomerleau, 1989].

As a result of this exibility, ALVINN has been able to drive in a wider
variety of situations than any other autonomous navigation system. ALVINN
has not yet achieved the impressive speed of Dickmanns' system on highway
driving, but the primary barrier preventing faster driving is the Navlab's phys-
ical speed limitation. In fact, at 25 frames per second, ALVINN cycles twice
as fast as Dickmanns' system. A new vehicle that will allow ALVINN to drive
signi�cantly faster is currently being built at CMU.

Other improvements I am developing include connectionist and non-connectionist
techniques for combining networks trained for di�erent driving situations into a
single system. In addition, I am integrating symbolic knowledge sources capa-
ble of planning a route and maintaining the vehicle's position on a map. These
modules will allow ALVINN to make high level, goal oriented decisions such
as which way to turn at intersections and when to stop at a predetermined
destination.
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