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N EARLY 15,000 PEOPLE DIE EACH
year in the US in single-vehicle roadway-
departure crashes.! These accidents often
stem from driver inattention or impairment
(for example, fatigued or intoxicated dri-
vers). A system could eliminate many of
these crashes if it warned drivers when their
vehicle was departing the roadway and con-
trolled the vehicle’s lateral position to keep
it in its lane. Nearly 70% of such crashes
occur in rural or suburban settings on undi-
vided, two-lane roads.! Because these roads
will most likely not be upgraded in the fore-
seeable future, a crash-prevention system
must rely on the existing road structure.

In this article, we describe Ralph (Rapidly
Adapting Lateral Position Handler), a vision
system developed jointly by Carnegie Mel-
lon University and AssistWare Technology
Inc. Ralph decomposes vehicle steering into
three steps: sampling the image, determin-
ing the road curvature, and assessing the lat-
eral offset of the vehicle relative to the lane
center. Ralph combines the outputs of the lat-
ter two steps into a steering comumand, which
it can send to the steering motor on our
Navlab 5 testbed vehicle (see Figure 1) for
autonomous steering control.> As a road-
departure warning system, Ralph can also
compare this command with the human
driver’s steering direction.

THE RALPH VISION SYSTEM HELPS AUTOMOBILE DRIVERS
STEER, BY SAMPLING AN IMAGE, ASSESSING THE ROAD
CURVATURE, AND DETERMINING THE LATERAL OFFSET OF THE
VEHICLE RELATIVE TO THE LANE CENTER. RALPH HAS
PERFORMED WELL UNDER EXTENSIVE TESTS, INCLUDING A
COAST-TO-COAST, 2,850-MILE DRIVE.

Other steering systems

Research on other steering systems has fo-
cused on machine-vision techniques that de-
tect particular features in video images of the
road in front of the vehicle and determine the
desired vehicle trajectory on the basis of the
relative positions of these features. Many of
these systems track specific features, such as
lane markings, from one image to the next.>-%
Others detect regions of the image that rep-
resents the road on the basis of features such
as color”® or texture.’

Nevertheless, all of these systems share
one characteristic: They have a detailed, a
priori model of the road’s appearance, and
they locate specific features via hand-
programmed detection algorithms. Unfortu-
nately, roads are not always cooperative.
Road markings vary dramatically, depend-

ing on the type of road and the state or coun-
try where the road is located. For example,
many California freeways embed regularly
spaced reflectors—not painted markings—
to delineate lane boundaries. Further chal-
lenges arise from the environmental context,
which can greatly affect road appearance.
The road’s appearance often varies dramati-
cally because of changes in illumination due
to shadows, glare, or darkness and because
of obstructions by other vehicles, rain, snow,
salt, or other objects. These variations often
invalidate the assumptions underlying vision
algorithms, leading to poor road-detection
performance.

Alternative approaches combine machine-
vision and machine-learning techniques for
enhanced systems capable of handling vari-
ations in road appearance.*1%1! One such
system, Alvinn (which we’ve developed),
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(a)

Figure 1. The Navlab 5 testhed vehicle: {a) exterior; (b) inferior.
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Figure 2. (a) Forward-looking image; (b) Ralph’s sampling strategy.

uses an artificial neural network to learn-the
characteristic. features of particular roads
under specific conditions. Alvinn uses this
learned road model to determine how to steer
the vehicle to keep it in its lane.

Although systems of this type have been
quite successful at handling a wide variety
of road types under many different condi-
tions, they have several shortcomings. First,
the process of adapting to a new road requires
arelatively extended “retraining” period (at
least several minutes). While this adapta-
tion process is relatively quick by machine:
learning standards, it is' unquestionably too
long in domain-like autonomous driving,
where the vehicle may be traveling at nearly
30 meters per second. Second, the retraining
process invariably requires human interven-
tion of one form or another. These systems
employ a supervised learning technique such
as back propagation, where the driver must

physically demonstrate the correct steering
behavior for the system to learn.

A truly flexible system should exploit
whatever features are available to determine
vehicle location, adapt almost instantly when
the available features change, and perform
this adaptation without human supervision.
Ralph demonstrates these characteristics.

Ralph’s sensor configuration

Figure 2a depicts a typical scene of the
road ahead, as imaged by a video camera
mounted next to the rearview mirror on
Navlab 5. Ralph can use either black-and-
white or color images via a color-based con-
trast-enhancement technique.'® Obviously,
many parts of this image are not relevant to
the driving task (for example, the parts de-
picting the sky or showing the vehicle dash-

board). Ralph eliminates these parts, and
processes only the portions of the scene in-
side the red trapezoid. Although the lower
and upper boundaries of this trapezoid vary
with vehicle velocity (moving further ahead
of the vehicle, toward the top of the image, as
vehicle speed increases), they are typically
about 20 and 70 meters ahead of the vehicle,
respectively.

The second, and perhaps more important,
aspect of the trapezoid’s shape is its hori-
zontal extent. It is configured so that its width
on the ground plane is identical at each row
of the image. The horizontal distance that

each row of the trapezoid encompasses is ap-
proximately 7 meters, about twice the width,

of a typical lane. The trapezoid is selectively
sampled according to the strategy depicted
in Figure 2b. This sampling process creates
a Jow-resolution (30x32 pixels) image
where important features such as lane mark-
ings (which converge toward the top of the
original image) appear parallel. This image

resampling is a simple geometric trans-

formation and requires no explicit feature
detection.

Curvature calculation. The parallelization
of road features is crucial for the second step
of Ralph processing: curvature determina-
tion. To determine the curvature of the road
ahead, Ralph hypothesizes a possible curva-
ture, subtracts it from the parallelized low-
resolution image, and tests to see how well
the hypothesized curvature has “straighf-
ened” the image. k
Figure 3 depicts the process Ralph uses
to determine curvature. In this example,
Ralph has hypothesized five curvatures for
the original image. In each curvature, Ralph
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has differentially shifted the image’s rows
to “undo” the curve and straighten out the
image features. For left-curve hypotheses
Ralph shifts rows toward the right, and for
right-curve hypotheses it shifts rows toward
the left. For the more extreme hypothesized
curvatures (on the far left and right), Ralph
shifts the rows of the original image further
than for the less extreme curvatures (in the
middle). For all hypothesized curvatures,
Ralph shifts rows near the top of the image
(corresponding to regions on the ground
plane further ahead of the vehicle) further
horizontally than rows near the bottom of
the image. This differential shifting com-
pensates for the road’s greater displacement
at the top of the image (far ahead of the ve-
hicle) than at the bottom. The exact shift dis-
tance for each row in the transformed im-
ages depends on both the geometry of the
camera and the particular curvature hypoth-
esis being tested.

In Figure 3, the second curvature hypoth-
esis from the right (corresponding to a shal-
low right turn) yields a transformed image
with the straightest features and is, therefore,
the “winning” hypothesis. Figure 4 illus-
trates how Ralph scores the straightness of
each hypothesis. After differentially shift-
ing the rows of the image according to a par-
ticular hypothesis, Ralph vertically sums the
columns of the resulting transformed image
to create a scan-line intensity profile (shown
in the two curves at the bottom of Figure 4).
When the visible image features are cor-
rectly straightened, sharp discontinuities be-
tween adjacent columns occur in the image
(right scan-line intensity profile in the fig-
ure). In contrast, when the hypothesized cur-
vature has shifted the image features too
much or too little, there are smooth transi-
tions between adjacent columns of the scan-
line intensity profile (left profile in the fig-
ure). By summing the maximum absolute
differences between intensities of adjacent
columns in the scan-line intensity profile,
Ralph can quantify this property to deter-
mine the curvature hypothesis that best
straightens the image features.

An important attribute of this technique
for determining road curvature is that it is
entirely independent of the particular fea-
tures present in the image. As long as visi-
ble features run parallel to the road, this
technique exploits them to determine road
curvature. Those features need not be at any
particular position relative to the road, and
they need not have distinct boundaries

Original image .

Hold
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hypotheses

Transformed
images

Winner

Figure 3. Ralph’s curvature hypotheses.
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Figure 4. Ralph's curvature scoring fechnique.

(characteristics required by systems that
use detailed a priori road models and edge
detection).

Lateral offset calculation. Next, Ralph de-
termines the vehicle’s lateral position rela-
tive to the lane center. It uses a template-
matching approach on the scan-line intensity
profile generated in the curvature estimation
step. The scan-line intensity profile is a one-
dimensional representation of the road’s ap-
pearance as seen from the vehicle’s current
lateral position. By comparing this current
appearance with the appearance of a tem-
plate created when the vehicle was centered
in the lane, Ralph can estimate the vehicle’s
current lateral offset.

Figure 5 illustrates this lateral-offset esti-
mation procedure in more detail. The current
scan-line intensity profile is on the left, and
the template scan-line intensity profile (gen-
erated when the vehicle was centered in the

lane) is on the right. By iteratively shifting
the current profile to the left and right, the
system can determine the shift required to
maximize the match between the two pro-
files (as measured by the correlation between
the two curves). The shift distance required
to achieve the best match is proportional to
the vehicle’s current lateral offset.

As with curvature determination, this
process does not require that any particular -
features be present in the image. As long as
the visible features produce a distinct scan-
line intensity profile, the correlation-based
matching procedure can determine the ve-
hicle’s lateral offset. In particular, even fea-
tures without distinct edges, such as pave-
ment discoloration due to tire wear or oil
spots, generate identifiable profile varia-
tions that Ralph can exploit to determine lat-
eral offset. This is a performance feature
that edge-based road detection systems do
not share.
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Figure 5. Ralph’s technique for determining lateral offset.

Adaptation to changing conditions. An-
other important feature of Ralph stems from
the simplicity of its scan-line intensity pro-
file representation of road appearance. For
Ralph to handle a new road type, only the

32-element template profile vector need be-

modified, and this is extremely easy. In the
current Ralph implementation, there are four
ways to adapt the template to changing
conditions.

In the first method, the driver centers the
vehicle in its lane and presses a button to in-
dicate that Ralph should create a new tem-
plate. In under 100 milliseconds, Ralph per-
forms the processing steps described above
to create a scan-line intensity profile for the
current road, and then saves it as the tem-
plate. From that point on, Ralph can either
actively control the steering wheel (the dri-
ver lets go of the wheel) or warn the driver of
road-departure danger (the driver continues
to steer manually), using the newly created
template to determine the vehicle’s position
relative to the lane center. (In another warn-
ing mode, the driver continues steering man-
ually; but instead of merely warning the dri-
ver when the vehicle starts to drift off the
road, Ralph can give a momentary nudge to
the steering wheel to bring the vehicle back
into the lane.)

In the second method, Ralph selects the
template from a library of stored templates
recorded previously on various roads. Ralph
selects the best template for the current con-
ditions by testing several of these previously
recorded templates to determine which has
the highest correlation with the scan-line in-
tensity profile created for the current image.

The third method of template modifica-
tion occurs after an appropriate template has
been selected. During operation, Ralph
slowly evolves the current template by
adding a small percentage of the current pro-
file to the existing template. This lets the cur-
rent template adapt to gradual changes in the
road’s appearance, such as those caused by
changes in the sun’s angle.

Ralph handles more abrupt scene changes,
such as changes in lane-marker configura-
tion, via the final and most interesting tem-
plate-modification strategy. In this technique,
Ralph uses the appearance of the road just
ahead of the vehicle (the foreground) to de-
termine the vehicle’s current lateral offset
and the curvature of the road ahead. At the
same time, Ralph is constantly creating a
new rapidly adapting template based on the
appearance of the road far ahead (typically
70 to 100 meters) of the vehicle. Ralph cre-
ates this rapidly adapting template by pro-
cessing the top rows of the image, far ahead
of the vehicle, in the same manner as de-
scribed previously. Ralph assumes that the
road’s curvature between the foreground and
the backgrbund is nearly constant, so it can
project where the road will be and, hence,
what the new template should look like when
the vehicle is centered in its lane.

In places where the road’s appearance
changes dramatically, such as the entrance to
a tunnel or an on-ramp to a highway, Ralph
uses this technique to quickly create a tem-
plate appropriate for the new road appear-
ance. When the vehicle actually reaches the
new road, Ralph determines that the template
it was previously using is no longer appro-
priate, because it does not match the scan-
line intensity profile of the current image. It
therefore swaps in the rapidly adapting tem-
plate and continues driving. This rapid adap-
tation occurs in about 2 seconds without any
human intervention.

Ralph's performance

We have conducted extensive laboratory,
test-track, and on-road experiments with the
Ralph system as part of a program by the Na-
tional Highway Traffic Safety Administra-
tion (NHTSA) to assess roadway-departure
collision-avoidance systems.!2 The results
indicate that Ralph can accurately -estimate
a vehicle’s lateral position on the road along

with the curvature of the road ahead, under a
wide variety of conditions.

Laboratory tests. An important factor in
determining autonomous driving effective-
ness is the sensing system’s accuracy. The
crucial accuracy metric for Ralph is how
well it can estimate the location of the road
ahead of the vehicle, because road location
determines the direction in which to steer
the vehicle. )

To quantify Ralph’s capability to accu-
rately determine the position of the road
ahead, we conducted controlled laboratory
tests to accurately measure the road’s actaal’
location. To facilitate these measurements,
we collected high-quality video sequences of
road scenes, using a Umatic 3/4-inch VCR.
We gathered these scenes with the Navlab 5
test vehicle, using the same camera mounted
in the same location (next to the rearview mir-
ror) as in the on-vehicle experiments (de-
scribed later). These sequences included both
day and night operation as well as images of
various road types, including rural roads and
multilane divided highways. The test road se-
quences recorded on videotape were all be-
tween 4 and 9 miles long. While recording
the sequences; the driver repeatedly changed
the vehicle’s lateral position within the lane to
obtain a wide range of images.

After repla}//ing the video sequences in the
laboratory, we used Ralph to track the road.
More specifically, Ralph combined its esti-
mates of the vehicle’s lateral offset and the
curvature of the road ahead into an estimate
of the lane-center location at 1 second (about
25 meters) ahead of the vehicle.

In real time, we compared Ralph’s lane-
center position estimate with the estimate |
that the experimenter provided manually.
The experimenter continuously indicated his
estimate of the lane-center location, using a’
computer mouse to keep a crosshair centered
over the right-lane marking at 1 second ahead
of the vehicle in the image.

Table 1 summarizes the results of these
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tests. For each condition tested, the table
shows the mean and standard deviation of
the difference between Ralph’s and the ex-
perimenter’s estimate of the lane-center po-
sition. In general, Ralph’s performance was
quite good in all the conditions tested, with
a total mean disagreement between Ralph
and the experimenter of 13.2 cm—just
slightly larger than the width of a typical
lane-edge marker. -

As expected, we observed lower mean and
standard-deviation errors in the conditions
with the most consistent features. Figure 6
shows one such situation, depicting a day-
time highway scene where the lane markers
are clearly visible. Under these conditions,
the mean disagreement between Ralph and
the experimenter was 11.4 cm. The variance
of the disagreement was 14.3 cm. However,
we can attribute a substantial portion of the
disagreement to inconsistency in the exper-
imenter’s estimate of the lane-center posi-
tion. Using a mouse to accurately indicate
the lane position 20 meters ahead is difficult.
In fact, in a series of repeatability tests, we
determined that the experimenter’s estimate
of lane position over two different trials on
the same section of videotape varied by an
average of 7.3 cm.

On the same stretch of highway, under
conditions of heavy shadows (see Figure 7a),
the mean and standard deviation of Ralph’s
lane-position estimation error increased to
13.8 cm and 18.9 cm, respectively. These
error increases were due primarily to the
camera’s limited dynamic range, which
caused the shadowed regions of the image to
be black and the areas in the sunlight to be
saturated.

Ralph’s estimation of lane location on
the same stretch of highway at night im-
proved slightly. As Figure 7b shows, the
lane markers were very distinct in this sit-
uation, resulting in a mean error of 11.1 cm
and a standard deviation of 13.8 cm.

Ralph’s performance on rural roads such
as the one in Figure 7c¢ was fairly similar to
the highway results. The mean and standard
deviation under favorable daytime conditions
did increase slightly over the corresponding
figures for favorable daytime highway im-
ages, to 13.7 cm and 16.2 cm, respectively.

Two factors were primarily responsible for'

these increases. First, hills on the rural roads
changed the perspective of the camera rela-
tive to the road. This resulted in slight addi-
tional errors in lane-position estimation, par-
ticularly at grade transition points. Second,

Table 1. Accuracy of Ralph’s lane-location estimation.

Conpimion MeaN ERROR (cM) ERROR, STANDARD DEVIATION (ci)
Daytime highway 1.4 14.3
Daytime highway with shadows 13.8 18.9
Nighttime highway 11.1 13.8
Daytime rural road 137 16.2
Daytime rural road with glare 15.8 17.2
Nighttime rural road 13.8 16.8
Average 13.2 16.2

several cross streets intersected the section
of rural road tested, which occasionally re-
sulted in momentary inaccuracy when the
lane markers disappeared. Nevertheless, the
error increases due to these effects were
small, on the order of 2 cm.

One problem with lane-tracking systems
that rely exclusively on lane markers to lo-
cate the road ahead is that they sometimes
have difficulty when glare off the pavement
makes the markers hard to find. This type of
glare typically occurs when the pavement is
wet or the sun is low on the horizon. To
quantify how these conditions affect Ralph,
we collected a video sequence on the same
rural road during the early morning hours
heading into the rising sun. Figure 7d pre-
sents a sample image from this sequence. As
expected, the mean and standard deviation
of Ralph’s error increased to 15.8 cm and
17.2 cm. However these increases were
slight, again in the range of 2 cm. Ralph still

Figure 6. Ralph processing a daytime highway image.

accurately located the road ahead by adapt-
ing its processing to exploit the boundary
between the bright pavement and the dark
shoulder. This capability to adapt to chang-
ing conditions proved particularly valuable
in the on-road tests.

In summary, the laboratory tests indicate
that under various conditions, Ralph can lo-
calize the position of the road ahead of the
vehicle to approximately within the width of
a single lane marker. To further characterize
Ralph’s capability to perform repeatedly and
reliably, we also performed extensive test-
track and on-road experiments.

Test-track experiments. We conducted ad-
ditional controlled experiments on a road
segment outside of Pittsburgh that is often
used for testing. These tests involved re-
peatedly driving on the same stretch of road-
way at different speeds, with no other vehi-
cles around.
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Figure 7. Ralph processing (a} a daytime highway imuée with heavy shadows; (b) a nighnime highway image; (¢) a daytime rural-road image; {d) an early-morning, rural-road

image with glare off the road.

above, the goal was to quantify Ralph’s ca-
pability to project the position of the road |
ahcad by combining its estimate of the ve-
hicle’s lateral position and its estimate of

In the videotape experiments presented

the road’s curvature. In the first set of test-

track experiments, the goal was to tease

apart this combination and measure Ralph’s
capability to estimate the curvature. In this

experiment, we manually drove the Navlab ‘
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Figure 8. Experiment to assess Ralph's effectiveness in esfimating curvature: {a) S-cur
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Figure 8a.

Careful measurement of the first curve in-
dicated an average radius of curvature of ap-
proximately 343 meters. Figure 8b shows

4
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Ralph’s estimate of the road curvature during
two traversals of the entire S-curve at 55 mph.

Note the consistency in the curvature es-
timate between the two traversals. Ralph’s
mean estimate for radius of curvature during
the first traversal of the first curve was 373
meters, and the mean for the second traver-
sal was 374 meters. Not only are the two es-
timates extreinely close, but they correspond
quite closely with the measured radius of 343
meters. Moreover, we can at least partially
attribute the 30-meter discrepancy between
the measured curve radius and Ralph’s esti-
mate to uncertainty in the manual curvature
measurement.

The next set of experiments tested whether
Ralph could detect anomalous driver behav-
ior. This information is valuable not for au-
tonomous driving, but rather for determin-
ing Ralph’s applicability as a tool for
preventing - roadway departure crashes.

" Again, the driver drove twice through the S-
curve at 55 mph. The first time, the driver

concentrated on accurate driving. The sec- |

ond time, the driver was momentarily dis-
tracted by an in-cab distractor task, which re-
quired the driver to glance toward the back of
the vehicle for up to two seconds. The goal
was to determine if the lane-tracking output
that Ralph produces could detect the lane
deviations resulting from this momentary
inattention.

Figure 9 graphs Ralph’s estimate of the ve-
hicle’s lateral position, both during normal
driving and while the driver performed the
distractor task. As the graph indicates, the
relatively large magnitude of the lane devia-
tions resulting from momentary distraction
are clearly discernible compared with the dri-
ver’s normal lane deviations. This charac-
teristic is extremely useful when using Ralph
as a roadway-departure warning system.

The results of these test-track experiments
indicate that Ralph can repeatedly detect
both the curvature of the road ahead and
excessive lane deviation by the driver. How-
ever these experiments neglected two im-
portant aspects of the autonomous driving
task. First, in the test-track experiments,
Ralph was passively monitoring the vehicle’s
position on the roadway and the curvature of
the road ahead. These tests did not assess
Ralph’s capability to combine those mea-
surements into a command for the steering
wheel that would keep the vehicle centered
in its lane. Moreover, we conducted these ex-
periments under favorable weather and light-
ing conditions.

Open road tests. One
of the most significant
potential drawbacks of
driving systems that
rely on video cameras
for sensor input is their

100
0.00°

-1.00

Lane deviation {meters)

susceptibility to adverse 0

conditions. Systems that
rely on visible features

— Normal driving

Driving with A
distractor task

|
500 1,000 1,500
Distance traveled (meters)

to determine the vehi- -
cle’s position on the
road can have trouble
when these distinctions
become difficult to de-
tect because of adverse weather, poor light-
ing, or degraded pavement. To quantify this
effect, we conducted a series of on-road tests
of the Ralph system.

The culmination of these experiments was
a 2,850-mile drive from Washington, D.C.,
to San Diego, in which we used Ralph’s
steering commands to control the Navlab 5
testbed vehicle. Except for a few detours, the
trip exclusively involved highway driving.
The trip included many of the difficulties typ-
ically encountered during normal driving:
driving at night, during sunset when the sun
is low on the horizon, during rain storms, on
poorly marked roads, and through construc-
tion areas.

During the trip, we collected statistics on
Ralph’s driving performance. The primary
metric was the percent of the total trip dis-
tance for which Ralph was controlling the
steering wheel. To measure this value, we
assumed that if the steering wheel position
disagreed significantly from Ralph’s com-
manded position, the safety driver had taken
control of the wheel. Specifically, when the
steering direction suggested by Ralph dif-
fered from the actual steering wheel posi-
tion such that following Ralph’s steering arc
at the current speed would result in a dif-
ference in lateral acceleration of 0.04 g
(where 1 g =9.8 meters/second?) or greater,
then we judged that the safety driver had
overridden Ralph.

Overall, the results were quite encourag-
ing. Using the above metric, Ralph was able
to steer the vehicle autonomously for 98.1
percent (2,796/2,850 miles) of the trip. Be-
cause the system adapts to changing con-
ditions, Ralph was able to drive in situa-
tions that would be difficult for other lane-
keeping systems, particularly those that rely
on finding distinct lane markers. Figures 10
and 11 illustrate some of the different situa-
tions that Ralph handled.

Figure 9. Lane deviations in normal driving and when the driver is distracted.

Some of the roads were just as you might
expect for a major highway: nice pavement
and good lane markings. Even when the lane
markers were missing, Ralph continued dri-
ving by exploiting the boundary between the
pavement and the off-road area. However,
stretches of road without lane markers
proved quite difficult at night, when the edge
formed by the pavement boundary was no
longer visible. In particular, on the third night
of the trip, a 10-mile stretch of new, un-
painted highway accounted for a significant
portion of the 1.9% of the distance that Ralph
couldn’t drive. :

Rain proved to be less of a problem. Even
when the specular reflection off the wet pave-
ment obscured the lane markings, Ralph
keyed off other, more subtle variations in the
road’s appearance to determine how it should
steer. These additional features typically
formed from water pooling in ruts on the
road and by the tires of vehicles ahead leav-
ing tracks on the wet pavement.

West of the Rocky Mountains, there were
stretches of very poor roads, two of which
are shown in Figure 10. Often the lane mark-
ers were nearly invisible because of wear
(Figure 10a). And there were several long
stretches of construction where the road was
composed of very fine, packed gravel, with-
out any lane markings (Figure 10b). During
these stretches, Ralph continued driving by
exploiting the differences in appearance be-
tween the packed and loose gravel.

The freeways in California posed an in-
teresting challenge. Instead of having painted
markings to delineate lanes, they have re-
flectors that are nearly invisible during the
day. In these situations, Ralph followed the
diffuse discoloration from the oil spot down
the center of the lane. Ralph also performed
well on the Interstate-15 High Occupancy
Vehicle (carpool) lane into San Diego, which
has no visible lane markings but a strong
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boundary between the cement road surface
and the asphatlt shoulder.

The situation that most challenged the sys-
tem was in city traffic, when the road mark-
ings were either missing or obscured by other

vehicles (see Figure 11). In such cases, Ralph -

was often able to lock onto the vehicle ahead
and steer to follow it. In fact, Ralph used this
technique to follow two trucks around nearly
the entire Denver beltway. In the rare situa-
tions when Ralph became truly confused, it
typically recognized that it could not cor-
rectly steer and signaled to the safety driver
to take control.

|

EXTENSIVE TESTS OF THE RALPH
vision-based lane-position estimation system
indicate that it can accurately detect a vehi-
cle’s position and orientation relative to the
roadway in a wide variety of situations and
can use this information to steer our testbed
vehicle. Current work on Ralph focuses on
minimizing those few remaining conditions
that are difficult for Ralph. To help Ralph
overcome those difficulties, we are explor-
ing techniques such as active camera control
to focus the system’s attention on important
aspects of the scene. In addition, work is

RALPH
CALIBRATE SAVE nove SnEAR

TR tane N COLOR [

under way to develop techniques that will let
Ralph reliably determine error bounds as it
estimates the location of the road ahead.
The simplicity of the Ralph algorithm sug-
gests that a custom hardware implementa-
tion is feasible. This has the potential to dra-
matically reduce both the size and cost of
subsequent versions of Ralph. Our cventual
goal is to build a system that is small enough
to fit behind the rearview mirror and inex-
pensive enough to sell as an option on pas-
senger cars. Initially, such a system would
simply warn the driver when he is drifting
off the road. But. in time, a system might as-
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sume at least partial control, relieving the dri-
ver of the monotonous task of steering—just
as standard cruise control has done for main-
taining vehicle speed.
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