Introduction to Neural Networks

What are neural networks?

• Nonlinear function approximators

How do they relate to pattern recognition/classification?

- Nonlinear discriminant functions
- More complex decision boundaries than linear discriminant functions (e.g. Fisher, Gaussians with equal covariances)

Learning framework for NNs

Inputs/outputs

Definitions:

 $\mathbf{y} = G(\mathbf{x})$ (e.g discriminant function we want to learn)

$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T (n \text{ inputs})$$

$$\mathbf{y} = \begin{bmatrix} y_1 & y_2 & \dots & y_m \end{bmatrix}^T$$
 (m process outputs)

Trainable model:

$$\mathbf{z} = \Gamma(\mathbf{x}, \mathbf{w}) \ (\mathbf{w} = adjustable \ parameters)$$

$$\mathbf{z} = \begin{bmatrix} z_1 & z_2 & \dots & z_m \end{bmatrix}^T$$
 (m model outputs)

Learning goal:

Find w* such that:

$$E(\mathbf{w}^*) \leq E(\mathbf{w}), \ \forall \mathbf{w},$$

where $E(\mathbf{w}) = \mathbf{error}$ between G and Γ .

What should $E(\mathbf{w})$ be?

Error function (ideal)

Ideally,

$$E(\mathbf{w}) = \iint_{\mathbf{x}} |\mathbf{y} - \mathbf{z}|^2 p(\mathbf{x}) d\mathbf{x}$$

How to compute?

Error function (practical)

Input/output data: *p* **input-output training patterns**

$$\begin{bmatrix} \mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_p \\ \mathbf{y}_1 \ \mathbf{y}_2 \ \dots \ \mathbf{y}_p \end{bmatrix}$$

$$\mathbf{x}_i = \begin{bmatrix} x_{i1} & x_{i2} & \dots & x_{in} \end{bmatrix}^T$$

$$\mathbf{y}_i = \begin{bmatrix} y_{i1} & y_{i2} & \dots & y_{im} \end{bmatrix}^T, \ \mathbf{z}_i \equiv \Gamma(\mathbf{x}_i, \mathbf{w})$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{p} \|\mathbf{y}_{i} - \mathbf{z}_{i}\|^{2} = \frac{1}{2} \sum_{i=1}^{p} \sum_{j=1}^{m} (y_{ij} - z_{ij})^{2}$$

Artificial neural networks (NNs)

Neural networks are one type of parametric model $\,\Gamma_{}.\,$

- Nonlinear function approximators
- Adjustable (trainable) parameters **w** (weights)
- Map inputs to outputs

Why "Neural Network?"

Biological inspiration

- Structure and function loosely based on *biological* neural networks (e.g. brain).
- Relatively simple building blocks connected together in massive and parallel network.

What does a neuron do?

Neuron transfer function

Rough approximation: threshold function

Neural networks: crude emulation of biology

- Simple basic building blocks.
- Individual units are connected massively and in parallel.
- Individual units have threshold-type activation functions.
- Learning through adjustment of the strength of connection (weights) between individual units

<u>Caveat</u>: Artificial neural networks are much, much, much simpler than biological systems. Example: Human brain:

- 10^{10} neurons
- 10¹² connections

Basic building blocks of neural networks

Basic building block: the unit

$$\phi \equiv \left[\phi_0 \ \phi_1 \ \dots \ \phi_q\right]^T \text{ (scalar inputs)}$$

$$\mathbf{w} \equiv \begin{bmatrix} \omega_0 & \omega_1 & \dots & \omega_q \end{bmatrix}^T \text{ (weights)}$$

 γ = nonlinear activation function

$$\Psi \equiv \gamma(\mathbf{w} \cdot \mathbf{\phi}) = \gamma \left(\sum_{i=0}^{q} \omega_i \phi_i \right) \text{ (output)}$$

Perceptrons: the simplest "neural network"

What is this?

Threshold activation function

$$\gamma_t(u) = \begin{cases} 1 & u \ge \theta \\ 0 & u < \theta \end{cases}$$

Perceptron output

Perceptron mapping:

$$z = \begin{cases} 1 & \mathbf{w}^t \mathbf{x} \ge 0 \\ 0 & \mathbf{w}^t \mathbf{x} < 0 \end{cases}$$

where,

$$\mathbf{x} = \begin{bmatrix} 1 & x_1 & \dots & x_n \end{bmatrix}^T$$

$$\mathbf{w} = \left[\omega_0 \ \omega_1 \ \dots \ \omega_n\right]^T$$

Limited mapping capability

More general networks: activation function

$$\gamma(u) = \frac{1}{1 + e^{-u}}$$
 (sigmoid)

$$\gamma(u) = \frac{e^u - e^{-u}}{e^u + e^{-u}}$$
 (hyperbolic tangent)

More general networks: multilayer perceptrons (MLPs)

More general networks: multilayer perceptrons (MLPs)

MLP application example: ALVINN

A simple example

Derivation of function f(x)

$$f(x) = c[\gamma_t(x-a) - \gamma_t(x-b)]$$

$$f(x) = c\gamma_t(x-a) - c\gamma_t(x-b)$$

$$\gamma_t(u) \to \gamma(ku)$$
 as $k \to \infty$

$$f(x) \approx c\gamma [k(x-a)] - c\gamma [k(x-b)]$$
 for large k.

$$z = \omega_5 + \omega_6 \gamma(\omega_1 + \omega_2 x) + \omega_7 \gamma(\omega_3 + \omega_4 x)$$

Weight values for simple example

	ω_1	ω_2	ω_3	ω_4	ω_5	ω_6	ω_7
set #1	-kb	k	-ka	k	0	-c	c
set #2	-ka	k	-kb	k	0	С	- <i>c</i>

Some theoretical properties of NNs

Single-input functions: what does the previous example say about single-input functions?

Multi-input functions: universal function approximator?

Does the single-input example hold in general?

Neural networks in practice: 3 basic steps

- 1. Collect input/output training data.
- 2. Select an appropriate neural network architecture:
- Number of hidden layers
- Number of hidden units in each layer.
- 3. Train (adjust) the weights of the neural network to minimize the error measure,

$$E = \frac{1}{2} \sum_{i=1}^{p} \|\mathbf{y}_i - \mathbf{z}_i\|^2$$

Neural network training

Key problem: How to adjust w to minimize E?

Answer: use derivative information on error surface.

Gradient descent (one parameter)

- 1. Initialize ω to some random initial value.
- 2. Change ω iteratively at step t according to:

$$\omega(t+1) = \omega(t) - \eta \frac{dE}{d\omega(t)}$$

Implies local, not global minimum...

General gradient descent

- 1. Initialize w to some random initial value.
- 2. Change w iteratively at step t according to:

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \eta \nabla E[\mathbf{w}(t)]$$

$$\nabla E[\mathbf{w}(t)] = \left[\frac{\partial E}{\partial \omega_1(t)} \frac{\partial E}{\partial \omega_2(t)} \dots \frac{\partial E}{\partial \omega_q(t)} \right]^T$$

Simple example of gradient computation

Compute $\frac{\partial E}{\partial \omega_A}$ for the neural network below:

Derivation

Generalization to multiple training patterns:

$$\frac{\partial E}{\partial \omega_j} = \frac{\partial}{\partial \omega_j} \left[\frac{1}{2} \sum_{i=1}^p (y_i - z_i)^2 \right] = \sum_{i=1}^p \frac{\partial}{\partial \omega_j} \left[\frac{1}{2} (y_i - z_i)^2 \right].$$

Derivation

$$net_1 \equiv \omega_1 + \omega_2 x$$

$$net_2 \equiv \omega_3 + \omega_4 x$$

$$h_1 \equiv \gamma (net_1)$$

$$h_2 \equiv \gamma (net_2)$$

$$z = \omega_5 + \omega_6 h_1 + \omega_7 h_2$$

$$\frac{\partial E}{\partial \omega_4} = -(y - z) \frac{\partial z}{\partial \omega_4}$$

$$\frac{\partial E}{\partial \omega_4} = (z - y) \left(\frac{\partial z}{\partial h_2} \right) \left(\frac{\partial h_2}{\partial net_2} \right) \left(\frac{\partial net_2}{\partial \omega_4} \right)$$

Derivation

$$net_{1} \equiv \omega_{1} + \omega_{2}x$$

$$net_{2} \equiv \omega_{3} + \omega_{4}x$$

$$h_{1} \equiv \gamma(net_{1})$$

$$h_{2} \equiv \gamma(net_{2})$$

$$z = \omega_{5} + \omega_{6}h_{1} + \omega_{7}h_{2}$$

$$\frac{\partial E}{\partial \omega_{4}} = (z - y)\left(\frac{\partial z}{\partial h_{2}}\right)\left(\frac{\partial h_{2}}{\partial net_{2}}\right)\left(\frac{\partial net_{2}}{\partial \omega_{4}}\right)$$

$$x$$

$$\frac{\partial E}{\partial \omega_{4}} = (z - y)\omega_{7}\gamma'(net_{2})x$$

Generalization: Backpropagation

Key problem: Generalize specific result to compute derivatives in more general manner.

Answer: *Backpropagation algorithm* [Rumelhart and McClelland,1986].

- Efficient, algorithmic formulation for computing error derivatives
- Gradient computation without hardcoding derivatives (allows on-the-fly adjustment of NN architectures).

Backpropagation derivation

$$h_{j} \equiv \gamma(net_{j})$$

$$net_{j} \equiv \sum_{k} h_{k} \omega_{kj}$$

$$\frac{\partial E}{\partial \omega_{ij}} = \left(\frac{\partial E}{\partial net_{j}}\right) \left(\frac{\partial net_{j}}{\partial \omega_{ij}}\right)$$

$$\frac{\partial net_{j}}{\partial \omega_{ij}} = h_{i}$$

$$\delta_{j} \equiv \frac{\partial E}{\partial net_{j}}$$

$$\frac{\partial E}{\partial \omega_{ij}} = \delta_{j} h_{i}$$

$$\frac{\partial E}{\partial \omega_{ij}} = \delta_{j} h_{i}$$

Backpropagation derivation: output units

Backpropagation derivation: output units

Backpropagation derivation:output units

Backpropagation derivation: hidden units

Backpropagation derivation: hidden units

Backpropagation derivation: hidden units

$$\delta_j = \sum_{l} \delta_l \left(\frac{\partial net_l}{\partial net_j} \right)$$

$$net_l = \sum_{s} \omega_{sl} \gamma(net_s)$$

$$\frac{\partial net_l}{\partial net_j} = \omega_{jl} \gamma'(net_j)$$

$$\delta_j = \sum_l \delta_l \omega_{jl} \gamma'(net_j)$$

Backpropagation derivation: hidden units

$$\delta_{j} = \left(\sum_{l} \delta_{l} \omega_{jl}\right) \gamma'(net_{j})$$

$$\frac{\partial E}{\partial \omega_{ij}} = \delta_{j} h_{i}$$

$$\frac{\partial E}{\partial \omega_{ij}} = \delta_j h_i$$

Backpropagation summary

Output units:

$$\frac{\partial E}{\partial \omega_{jk}} = \delta_k h_j$$

$$\delta_k = (z_k - y_k) \gamma'(net_k)$$

Hidden units:

$$\frac{\partial E}{\partial \omega_{ij}} = \delta_j h_i$$

$$\delta_j = \left(\sum_l \delta_l \omega_{jl}\right) \gamma'(net_j)$$

Basic steps in using neural networks

- 1. Collect training data
- 2. Preprocess training data
- 3. Select neural network architecture
- 4. Select learning algorithm
- 5. Weight initialization
- 6. Forward pass
- 7. Backward pass
- 8. Repeat steps 6 and 7 until satisfactory model is reached.

The Forward Pass

- 1. Apply an input vector \mathbf{x}_i to network.
- **2.** Compute the net input to each hidden unit (net_i) .
- 3. Compute the hidden-unit outputs (h_i) ,
- 4. Compute the neural network outputs (z_k) .

The Backward Pass

1. Evaluate δ_k at the outputs, where,

$$\delta_k = \partial E / \partial net_k$$

for each output unit k.

- 2. Backpropagate the δ values from the outputs backwards through the neural network.
- 3. Compute $\partial E/\partial \omega_i$.
- 4. Update weights based on the computed gradient,

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \eta \nabla E[\mathbf{w}(t)].$$

Practical issues

- 1. What should your training data be?
- Sufficient training data?
- Biased training data?
- Deterministic/stochastic task?
- Stationary/non-stationary?
- 2. What should your neural network architecture be?
- 3. Preprocessing of data.
- 4. Weight initialization why small, random values?

Practical issues (continued)

5. Selecting the learning parameter

In gradient descent:

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \eta \nabla E[\mathbf{w}(t)]$$

what should η be?

Difficult question to answer...

Selecting the learning parameter: an example

Sample error surface: $E = 20\omega_1^2 + \omega_2^2$ (realistic?)

Selecting the learning parameter: an example

Where is the minimum of this "error surface?"

$$E = 20\omega_1^2 + \omega_2^2$$

How many steps to convergence? (\sqrt{E} < 10^{-6})

- Different initial weights
- Different learning rates

Deriving the gradient descent equations

$$E = 20\omega_1^2 + \omega_2^2$$

Gradient?

$$\frac{\partial E}{\partial \omega_1} = 40\omega_1$$

$$\frac{\partial E}{\partial \omega_2} = 2\omega_2$$

Gradient descent?

$$\omega_1(t+1) = \omega_1(t) - \eta \frac{\partial E}{\partial \omega_1(t)}$$

$$\omega_1(t+1) = \omega_1(t)(1-40\eta)$$

$$\omega_2(t+1) = \omega_2(t)(1-2\eta)$$

Convergence experiments

Initial weights: $(\omega_1, \omega_2) = (1, 2)$

A closer look

A closer look

A closer look

What happens at $\eta > 0.5$?

Gradient descent equations:

$$\omega_1(t+1) = \omega_1(t)(1-40\eta)$$

$$\omega_2(t+1) = \omega_2(t)(1-2\eta)$$

Similar to fixed-point iteration:

$$\omega(t+1) = c\omega(t)$$

- diverges for ||c|| > 1, $\omega(0) \neq 0$
- converges for ||c|| < 1.

Convergence of gradient descent equations

$$\omega_1(t+1) = \omega_1(t)(1-40\eta)$$

$$\omega_2(t+1) = \omega_2(t)(1-2\eta)$$

require that:

$$||1 - 40\eta|| < 1$$

 $-1 < 1 - 40\eta < 1$
 $0 < \eta < 0.05$

Why not $||1 - 2\eta|| < 1$?

Learning rate discussion

- Problematic error surfaces: "long, steep-sided valleys"
- If learning rate is too small, slow convergence. If learning rate is too large, possible divergence.
- Theoretical bounds not possible in general case (only for specific, trivial example).

Motivation for looking at more advanced training algorithms — doing more with the gradient information. Any thoughts?

Practical issues (continued)

6. Pattern vs. batch training

7. Good generalization

- Sufficiently constrained neural network architecture.
- Cross validation.

Good generalization: Two data sets

