Today’s Discussion

To date:
e Neural networks: what are they
e Backpropagation: efficient gradient computation

* Advanced training: conjugate gradient

Today:

* CG postscript: scaled conjugate gradients

e Adaptive architectures

e My favorite neural network learning environment

* Some applications

Conjugate gradient algorithm
1. Choose an initial weight vector w; andlet d; = —g;.
2. Perform a line minimization along d s such that:
E(wj + oc*dj) < E(wj + ocdj) , V.

3. Let Wig = wj+oc*dj.
4. Evaluate i1
5.Letd;, = -8 ,,+ Bjdj where,
gl 1(g,1-8)

ge
6. Let j = j+ 1 and go to step 2.

B ;= (Polak-Ribiere)

Scaled conjugate gradient algorithm
Basic idea: Replace line minimization:
E(wj + oc*dj) < E(wj + ocdj) , V.
with:

_AaT
_ djg

o. =
7 dTHA.
J J

Why #!@$ are we doing this? Didn’t we want to avoid
computation of H ?

Scaled conjugate gradient algorithm

Well, yes but:

* Line minimization can be computationally expensive.

* Don’treally have to compute H ? Huh?

_AaT
_ dg

J d/Hd,

A closer look at o,
Don’t have to compute H, only Hd It
Theorem:

w(, = current W -dimensional weight vector,

g(w) = VE(w) (gradient of E at some vector w), and,

H = Hessian of E evaluated at W,

d = arbitrary W -dimensional vector.

g(wy+ed)—g(w,—ed)
Hd = lim e

e—>0

Computing Hd,

g(w,+ed)-g(w,—ed)
Hd = lim e

e—>0

First-order Taylor expansion of g(w) about w:
g(w) = g(wy) + H(w—w)

g(w,+ed)-g(w,—ed) ~
2¢ -

[g(w) + H(ed)] - [g(W,) - H(ed)]

2¢€

Computing Hd,

g(wy +ed)-g(wy—ed) 2¢Hq
2¢ T 2¢

g(w,+ed)—g(w,—ed) ~

e Hd

So:

g(w,+ed)-g(w,—¢ed)
Hd = lim e

e—0

_dT
g

o, = ——= now just requires two gradient evaluations...

I d J.Tde

New conjugate gradient algorithm
1. Choose an initial weight vector w, and letd; = -g; .
2. Compute Q:

— _qT T

o = dj gj/dj de, v .

3. Let Wig = wj+ocjdj.

4. Evaluate gii1-

5.Letd;, | =-g;, ,+ Bjdj where,

— oT T

Bi=2/,1(8,,-8)/8'¢g;

6. Let j = j+ 1 and go to step 2.

Any problems?

What about H<0?

J

Idea:
* Replace H with H+ AI
e So:

_dTg.
& = -7 Y 2
77 afHa aj

What the #$@! is this?

o, = —djng/ djTde might take uphill steps...

Examining A

_dTg.
O = s
'7 ama i)

* What is the meaning of A being very large?

e What is the meaning of A being very small (i.e. zero)?

Model trust regions

Question: When should we ““trust”

_AaT
_ 4ig,

(0. :
7 dTHA.
J J

Model trust regions

Question: When should we ““trust”

T
o - 38,
7 dTHA.
J J

1. H is positive definite (denominator > ()

2. Local quadratic assumption is good

Near a mountain, not a valley

Look at denominator of:
T
o - %
/" dTHd. + \J|d |2
jHd; +2[d)|

S = djTde+7L||dj||2

If 6 <0, increase A to make denominator positive.

How to increase A\ ?

How about:

¥ =2)

so that
S = 8+(k‘—k)||dj||2
5 = 84212 - ja)?
;>
d = 8—26+7»||dj||2 = —8+7\,||dj||2

New effective denominator value

¥ =2l

5 =5+
So:
§ = - (dfHd; +1|d|*) +A|d)|?
o = —d /-THd/. (what does this mean?)

Goin’ up? I'll show you...
Since the new denominator is:
o = —djTde
the new value of Qo is:

T T,
oo g _ 4
7~ _dTHd. d7Hd

jad; 4y Hd;

H>0

Model trust regions

Question: When should we ““trust”

_AaT
_d'g

(0. :
7 dTHA.
J J

1. H is positive definite (denominator > ()

2. Local quadratic assumption is good

How to test local quadratic assumption?

Check:
_ E(wj) — E(wj + ocjdj)
E(wj) - EQ(wj + ocjdj)
What’s EQ ?

Ey(w) = E(wg) + (W - wo) b + %(W —wo)TH(wW—w)
So:

1
_ T Lo2ar
EQ(wj+ocjdj) = E(wj)+ocjdj gj+20cj dj de

What does A tell us?

Local quadratic test

_ E(w)-E(w;+ad)
- E(W)—Epy(w;+a,d)

Adjustment of trust region:

e If A>0.75 then decrease A (e.g. A = A/2)
e If A<0.25 thenincrease A (e.g. A = 41)

e Otherwise, leave A unchanged

Scaled conjugate gradient algorithm (o, 1)
1. Compute § = djTHdJ.+ k||dj||2.
2.If3<0,set A = 2(A— 8/||dj||2).
_ 2
3. Compute a; = —djng/(djTde+ Adj*) -
4. Compute A:

5 A - E(wj)—E(Wj+ocjdj)
E(wj) —EQ(WJ-+ ocjdj)

6. If A>0.75,set AL = A/2,elseif A<0.25,set A = 4A.

Scaled conjugate gradient algorithm

1. Choose an initial weight vector w, and letd; = -g, .

2. Compute o, P A

_djng
o. = S
J d,.THd.+x||d.||2
. J J

vn.
3. Let Wiy = Wj+0(.jdj.
4. Evaluate g1

5.Letd;, | =-g;,,+ Bjdj where,

B, =gl (g, -8)g'g
6. Let j = j+ 1 and go to step 2.

Today’s Discussion

To date:

Neural networks: what are they
Backpropagation: efficient gradient computation

Advanced training: conjugate gradient

Today:

CG postscript: scaled conjugate gradients
Adaptive architectures
My favorite neural network learning environment

Some applications

Adaptive architectures

Standard learning:
e Select neural network architecture
e Train neural network

e If failure, go back to first step

Better approach:

e Adapt neural network architecture as function of training

Adaptive architectures

Standard learning:

n
(O

\

training

‘ \

e
\!
D

:;
\

'.

@)
(O

AN

training

(O

Adaptive architectures

Problem: How do we do this?

Two main approaches:
e Pruning (destructive algorithms)

e Growing (constructive algorithms)

Pruning algorithms

Basic idea:
» Start with really “big” network
* Eliminate “unimportant” weights/nodes

e Retrain neural network

Advantages?
Disadvantages?

Problems?

Pruning algorithms

Basic idea:
e Start with really “big” network
e Eliminate “unimportant” weights/nodes

e Retrain neural network

Advantages? (smaller final architectures)

Disadvantages? (training cost of large network, retraining)

Problems? (what is “unimportant?”)

Weight elimination schemes

Idea: eliminate weights based on “‘saliency.”

Definition: saliency S; = relative importance of weight o,

Any suggestions?

Saliency

First guess: S, = ||col||

Will this work?

Why won’t this measure of saliency work

A better idea for saliency
Try to find relationship:

OFE = dw

How can we do this?

e Brute force:

OF; = ||E(w) —E(w+ Swi)”

SWi = [0,...,0,-®.,0, ...,0] (problems?)

More on saliency

Use ol’ reliable: 2nd order Taylor approximation

E(w) = E(w0)+(w—wO)TVE(w0)+%(W—WO)TH(W—WO)

Now:

OW = w, —w, (what are w, and W ?)

8E = E(w,)—E(w,) = SWIVE(w,) +%5WTH8W

Can we simply this?

Optimal Brain Damage
BE = 15w HSw
1. Idea: assume Hessian is diagonal
8E = %ZHHS(DI-Z
i
2. Resulting saliency:
_ H;o7

S; = >

3. Eliminate weights with smallest saliency

4. Retrain remaining weights

Optimal Brain Surgery

* Smarter idea: don’t assume Hessian is diagonal

* Eliminate need for retraining
Now, assume you want to remove weight ©, :

We want to minimize,
3E = 3owHdw

subject to constraint

0w, = —; (why?)

Optimal Brain Surgery

Use Lagrange multipliers:

e We can minimize f(x) subject to constraint g(x) = 0 by

minimizing L = f(x) + Ag(X)

e A =Lagrange multiplier

For our case:
f(x) = 8E = %SWTHSW

g(x) = 0, + O,

Optimal Brain Surgery
Minimize:

L = %SWTHSW +M(30; + ;)

Solution:

1
- H lu.
[H_l]ii '

ow =

l

_1
LT 2[H]

(what’s the problem?)

o2
1.
ii

Optimal Brain Surgery

1. Evaluate the inverse Hessian H-! .

2. Evaluate:

| o7
Ei = E 1
[H™];;

3. Eliminate weight 0., 8E; < SEj, E
4. Update all weights (no retraining)

.
=

ow=—— u.
[H_l]ii '

Node elimination scheme

Idea: Node pruning — need saliency of node, not weight

Define:
Z = y(ochcoijzi) (output of unit j with addition of Otj)
l
Then:
S; = E(ocj = 1)—E(ocj =0)
s;= aE/aocj|j o

Pruning algorithms: key issues

* Large network to small network
* Need definition of saliency

* May need retraining step

Big problem: lots of wasted training effort

Growing algorithms

Basic idea:
e Start with really small network

e Add hidden units as required

Advantages?
Disadvantages?

Problems?

Growing algorithms Cascade growing: initial network

Basic idea:

e Start with really small network

* Add hidden units as required

Advantages? (reduced training cost, optimized networks)
Disadvantages? (?)

Problems? (arrangement of added weights/nodes)

Cascade growing: first hidden unit Cascade growing: second hidden unit

~
~N O~
N ~

training E

Cascade growing: alternative visualization

Cascade growing: alternative visualization

® . ° °
® . °
[o ® ®

Cascade growing: alternative visualization

Cascade neural networks

Do you ever need deeply nested structure?

as Two Spirals = A

Two-spiral problem: best fixed architecture

third hidden layer (5 hidden units)

second hidden layer (5 hidden units)

first hidden layer (5 hidden units))

< input layer (2 inputs)

Two-spiral problem: cascade

Dut.

architecture

= Wigoen Unit 4 BEEES D]

Duteut.

Two-spiral problem: cascade architecture

[l HGTCEE

n Unit 7 S R Duteut. © Units BN o BE Hicoen Unit 10 Dmme o

Today’s Discussion
To date:

* Neural networks: what are they
* Backpropagation: efficient gradient computation

* Advanced training: conjugate gradient

Today:

* CG postscript: scaled conjugate gradients

e Adaptive architectures

e My favorite neural network learning environment

* Some applications

NN environment that rocks...

Two problems with traditional neural networks:
* Fixed architecture

* Difficult to guess “appropriate” architecture
* Functional complexity requirements can vary widely

* Slow learning algorithms (e.g. backprop, quickprop)
My neural network approach:
e Flexible architecture

e (Cascade neural networks
e Variable activation functions

* Fast learning algorithm (e.g. NDEKF)

Cascade neural networks with node-
decoupled extended Kalman filtering
(NDEKF)

Types of problems investigated:
* Continuous function approximation

* Dynamic system modeling

Cascade learning and NDEKF combine to result in better
error convergence.

A sneak peak at results

Fixed architecture
Quickprop
Cascade learning
Quickprop

Fixed architecture
NDEKF

Cascade learning
NDEKF

L
Performance (Error convergence)

Additional flexibility: variable activations

Cascade neural networks already offer great flexibility...
However, why restrict candidate activation functions?
* Sigmoidal activation functions may not offer best results.
* Sinusoidals and/or others may be more appropriate:
/ :‘ ll N
_

sin(x) exp(-1/2x2) 1-e™

flpo afia

Ji(x) Jo(x) sin(2x)

Additional flexibility: variable activations

For continuous mapping problems:
e Variable networks converge to better minima.

¢ Sinusoidal networks — about same as variable networks.

Better learning: extended Kalman filtering

View neural network training problem as system
identification problem.

* Let weights of neural network represent state of nonlinear
dynamic system.

* Let neural network be that nonlinear system.
Extended Kalman filter training:

* Advantage: Explicitly accounts for pairwise
interdependence of weights with conditional error
covariance matrix.

* Disadvantage: O(W2) computational complexity, where
W is number of weights in network.

Decoupled extended Kalman filtering
Key insight:
* Some weights are more interdependent than others.
* Group weights into groups.

* Ignore interdependence between groups of weights (block
diagonalize conditional error covariance matrix).

Even better idea: Group weights by node!

Node-decoupled extended Kalman filtering

Key insight: Decouple (group) weights by node: Natural
Jformulation for cascade learning

* One weight group for current hidden unit

* One additional weight group for each output unit

* Matrix operations reduce to vector operations.

* Computational complexity reduces to O(Z le)

l

Computational complexity Computational complexity

o . . Ratio of computational cost between a cascade/NDEKF
NDEKF requires inversion of an m X m matrix, (m = epoch and an equivalent fixed-architecture/backprop epoch
number of outputs) (for few outputs):

* Example: for 400 inputs and 20 hidden units ratio is less

than 100.
Cascade learning with NDEKF typically requires less than _ o
* Example: for 20 or less inputs, ratio is less than 10.

10 epochs/hidden unit.

e Several orders of magnitude less than backprop or
quickprop approaches.

e Computational complexity similar to fixed-architecture
networks trained with NDEKF.

Experimental studies Experimental studies
Four learning approaches: Key questions:
Svmbol o) * Do we improve learning using NDEKF by going from
ymoo Aptanation fixed-architecture networks to cascade-type learning?
Fq fixed-architecture training with quickprop * Do we improve cascade learning by switching from
quickprop (simple training) to NDEKF?
Cq cascade-network training with quickprop * Are any of more advanced methods (Cq, Fk, Ck) an
improvement over baseline Fgq (fixed-architecture/
Fk fixed-architecture training with NDEKF quickprop) training method?

Ck cascade-network training with NDEKF

Five learning problems
Problem (A): smooth, continuous FA

fi1(x,y,2) = zsin(my) +x

fo(x,y,2) = 22+ cos(mxy) — y?

Problem (B): nonsmooth, continuous FA

: Al
\/

-0.2

J(x)

-0.4

Five learning problems
Problem (C): deterministic dynamic system

ulk+1) = flu(k), u(k—1), u(k-2), x(k), x(k—1)]
X XyX3Xs(x3—1) +x,

X715 Xoy Xa, X4, X<] =
P23 7S 1+x%+x%

Problems (D) & (E): chaotic Mackey-Glass dynamic system
(t+6) and (t+84)

x(1)

x(1)

Learning results (avg. RMS error)

Ck Fk Cq Fq
(A) | 42.1(4.2) (]32773]) 94.5 (6.2) N/A
(B) | 74(20) | 124(32) | 14.5(4.0) | 65.0(18.2)
(©) | 15.6(1.5) | 20.7(4.8) | 29.9(2.0) N/A
(D) | 4.6(0.6) | 102(40) | 94(2.7) | 16.7(2.2)
(E) | 42.0(5.9) | 60.5(3.1) | 72.6(16.3) = 90.3(8.3)

Learning results

250 =
2
200 - &
150
% I
100 —
IR <
= 2 [] % difference in RMS error
0 n N C) between cascade/NDEKF and
(4) (B) (© (D) fixed-architecture/NDEKF

[] % difference in RMS error
between cascade/NDEKF and
cascade/quickprop

B % difference in RMS error
between cascade/NDEKF and
fixed-architecture/quickprop

Why is Ck better than Fk? Why is Ck better than Cq?

“NDEKF at times requires a small amount of redundancy in As hidden units are added in cascade learning, NDEKEF is
network in terms of total number of nodes in order to avoid better equipped to handle increasingly correlated weights
poor local minima...” — [Puskorius & Feldkamp, 1991] to new hidden units.
bad local minima v
0.25 2
02 L5 — [
0.15 0.5 | 0.06
%) . -
E 0.1 0o 2 4 6 8 10 12 4 0.05
Q,)m ' # hidden units
0.05 " CZ]\\
, Problem (C) o
Cq Fk(sn) Fk(sg) Ck [):01 Ck—
Problem (A) C T e "
Cascade/NDEKF advantages/disadvantages Today’s Discussion
e (Cascade learning and NDEKF complement each other well. To date:
 Cascade learning minimizes the potentially detrimental * Neural networks: what are they

effect of node-decoupling. * Backpropagation: efficient gradient computation

e (Cascade learning minimizes the problem of poor local .

Advanced training: conjugate gradient
minima in NDEKF.

» NDEKF better handles the increased correlation of weights
as the number of hidden units increases in cascade learning. Today:

* NDEKEF requires no learning parameter tuning. * CG postscript: scaled conjugate gradients

» (Cascade/NDEKF converges efficiently to better local * Adaptive architectures

minima than either cascade or NDEKF by themselves. * My favorite neural network learning environment

* Disadvantage: computationally efficient with few outputs. * Some applications

