
 

Today’s Discussion

 

To date:

 

• Neural networks: what are they

• Backpropagation: efficient gradient computation

• Advanced training: conjugate gradient

 

Today:

 

• CG postscript: scaled conjugate gradients

• Adaptive architectures

• My favorite neural network learning environment

• Some applications

 

Conjugate gradient algorithm

 

1. Choose an initial weight vector  and let .

2. Perform a line minimization along , such that:

, .

3. Let .

4. Evaluate .

5. Let  where,

 

 

(Polak-Ribiere)

 

6. Let  and go to step 2.
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Scaled conjugate gradient algorithm

 

Basic idea: Replace line minimization:

 

, .

 

with:

Why #!@$ are we doing this? Didn’t we want to avoid 
computation of ?
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Scaled conjugate gradient algorithm

 

Well, yes but:

 

• Line minimization can be computationally expensive.

• Don’t really have to compute ? Huh?
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A closer look at 

 

Don’t have to compute , only .

 

Theorem

 

:

 

 = current -dimensional weight vector,

 =  (gradient of  at some vector ), and,

 = Hessian of  evaluated at ,

 = arbitrary -dimensional vector.
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Computing 

 

First-order Taylor expansion of  about : 
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Computing 

 

So:

 

 

 

now just requires two gradient evaluations...
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New conjugate gradient algorithm

 

1. Choose an initial weight vector  and let .

2. Compute :

, .

3. Let .

4. Evaluate .

5. Let  where,

6. Let  and go to step 2.

 

Any problems?
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What about ?

 

 might take uphill steps...

Idea:

 

• Replace  with 

• So:

 

What the #$@! is this?
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Examining 

 

• What is the meaning of  being very large?

• What is the meaning of  being very small (i.e. zero)?
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Model trust regions

 

Question: When should we “trust”

?
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Model trust regions

 

Question: When should we “trust”

?

1. H is positive definite (denominator > 0)

2. Local quadratic assumption is good
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Near a mountain, not a valley

 

Look at denominator of:

If , 

 

increase

 

  to make denominator positive.
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How to increase ?

 

How about:

so that:
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New effective denominator value

 

So:

 

 

 

(what does this mean?)
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Goin’ up? I’ll show you...

 

Since the new denominator is:

the new value of  is:
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Model trust regions

 

Question: When should we “trust”

?

1. H is positive definite (denominator > 0) 

2. Local quadratic assumption is good
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How to test local quadratic assumption?

 

Check:

What’s ?

So:

What does  tell us?

 

∆

 

E

 

w

 

j

 

( )

 

E

 

w

 

j

 

α

 

j

 

d

 

j

 

+

 

( )

 

–

 

E

 

w

 

j

 

( )

 

E

 

Q

 

w

 

j

 

α

 

j

 

d

 

j

 

+

 

( )

 

–
--------------------------------------------------------=

 

E

 

Q

 

E

 

Q

 

w

 

( )

 

E

 

w

 

0

 

( )

 

w w

 

0

 

–

 

( )

 

T

 

b

 

1
2

 

---

 

w w

 

0

 

–

 

( )

 

T

 

H

 

w w

 

0

 

–

 

( )

 

+ +=

 

E

 

Q

 

w

 

j

 

α

 

j

 

d

 

j

 

+

 

( )

 

E

 

w

 

j

 

( ) α

 

j

 

d

 

j
T

 

g

 

j

 

1
2

 

---

 

α

 

j

 

2

 

d

 

j
T

 

Hd

 

j

 

+ +=

 

∆

 

Local quadratic test

 

Adjustment of trust region:

 

• If  then decrease  (e.g. )

• If  then increase  (e.g. )

• Otherwise, leave  unchanged
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Scaled conjugate gradient algorithm ( )

 

1. Compute .

2. If , set .

3. Compute .

4. Compute :

5.

6. If , set , else if , set .
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Scaled conjugate gradient algorithm

 

1. Choose an initial weight vector  and let .

2. Compute :

, .

3. Let .

4. Evaluate .

5. Let  where,

6. Let  and go to step 2.

 

w

 

1

 

d

 

1

 

g

 

1

 

–=

 

α

 

j

 

λ,

 

α

 

j

 

d

 

j
T

 

g

 

j

 

–

 

d

 

j
T

 

Hd

 

j

 

λ

 

d

 

j

 

2

 

+
---------------------------------------=

 

η∀

 

w

 

j

 

1

 

+

 

w

 

j

 

α

 

j

 

d

 

j

 

+=

 

g

 

j

 

1

 

+

 

d

 

j

 

1

 

+

 

g

 

j

 

1

 

+

 

–

 

β

 

j

 

d

 

j

 

+=

 

β

 

j

 

g

 

j

 

1

 

+

 

T

 

g

 

j

 

1

 

+

 

g

 

j

 

–

 

( )

 

g

 

j
T

 

g

 

j

 

⁄

 

=

 

j j

 

1

 

+=

 

Today’s Discussion

 

To date:

 

• Neural networks: what are they

• Backpropagation: efficient gradient computation

• Advanced training: conjugate gradient

 

Today:

 

• CG postscript: scaled conjugate gradients

• Adaptive architectures

• My favorite neural network learning environment

• Some applications

 

Adaptive architectures

 

Standard learning:

 

• Select neural network architecture

• Train neural network

• If failure, go back to first step

 

Better approach:

 

• Adapt neural network architecture as function of training

 

Adaptive architectures

 

Standard learning:

Adaptive approach:

 

training

 

training



 

Adaptive architectures

 

Problem: How do we do this?

Two main approaches:

 

• Pruning (destructive algorithms)

• Growing (constructive algorithms)

 

Pruning algorithms

 

Basic idea:

 

• Start with really “big” network

• Eliminate “unimportant” weights/nodes

• Retrain neural network

 

Advantages? 

Disadvantages?

Problems? 

 

Pruning algorithms

 

Basic idea:

 

• Start with really “big” network

• Eliminate “unimportant” weights/nodes

• Retrain neural network

 

Advantages? 

 

(smaller final architectures)

 

Disadvantages? 

 

(training cost of large network, retraining)

 

Problems? 

 

(what is “unimportant?”)

 

Weight elimination schemes

 

Idea: eliminate weights based on “saliency.”

Definition: 

 

saliency

 

  = relative importance of weight 

Any suggestions?
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Saliency

 

First guess: 

Will this work?
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Why won’t this measure of saliency work
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A better idea for saliency

 

Try to find relationship:

How can we do this?

 

• Brute force:

 

 

(problems?)
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More on saliency

 

Use ol’ reliable: 2nd order Taylor approximation

Now:

 

 

 

(what are  and ?)

 

Can we simply this?
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Optimal Brain Damage

 

1. Idea: assume Hessian is diagonal

2. Resulting saliency:

3. Eliminate weights with smallest saliency

4. Retrain remaining weights
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Optimal Brain Surgery

 

• Smarter idea: don’t assume Hessian is diagonal

• Eliminate need for retraining

 

Now, assume you want to remove weight :

We want to minimize,

subject to constraint

 

 

 

(why?)
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Optimal Brain Surgery

 

Use Lagrange multipliers:

 

• We can minimize  subject to constraint  by 
minimizing 

•  = Lagrange multiplier

 

For our case:
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Optimal Brain Surgery

 

Minimize:

...

Solution:

 

 

 

(what’s the problem?)
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Optimal Brain Surgery

 

1. Evaluate the inverse Hessian .

2. Evaluate:

3. Eliminate weight , , .

4. Update all weights (no retraining)
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Node elimination scheme

 

Idea: Node pruning — need saliency of node, not weight

Define:

 

 

 

(output of unit  with addition of )

 

Then:
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Pruning algorithms: key issues

 

• Large network to small network

• Need definition of saliency

• May need retraining step

Big problem: 

 

lots of wasted training effort

 

Growing algorithms

 

Basic idea:

 

• Start with really small network

• Add hidden units as required

 

Advantages?

Disadvantages?

Problems?



 

Growing algorithms

 

Basic idea:

 

• Start with really small network

• Add hidden units as required

 

Advantages? 

 

(reduced training cost, optimized networks)

 

Disadvantages? 

 

(?)

 

Problems? 

 

(arrangement of added weights/nodes)

 

Cascade growing: initial network

 

Cascade growing: first hidden unit

 

training

 

Cascade growing: second hidden unit

 

frozen



 

Cascade growing: alternative visualization

 

Cascade growing: alternative visualization

 

Cascade growing: alternative visualization

 

Cascade neural networks

 

Do you ever need deeply nested structure?



 

Two-spiral problem: best fixed architecture

 

input layer (2 inputs)

first hidden layer (5 hidden units)

second hidden layer (5 hidden units)

third hidden layer (5 hidden units)

 

Two-spiral problem: cascade architecture

 

Two-spiral problem: cascade architecture

 

Today’s Discussion

 

To date:

 

• Neural networks: what are they

• Backpropagation: efficient gradient computation

• Advanced training: conjugate gradient

 

Today:

 

• CG postscript: scaled conjugate gradients

• Adaptive architectures

• My favorite neural network learning environment

• Some applications



 

NN environment that rocks...

 

Two problems with traditional neural networks:

 

•

 

Fixed

 

 architecture

• Difficult to guess “appropriate” architecture 
• Functional complexity requirements can vary widely

•

 

Slow

 

 learning algorithms (e.g. backprop, quickprop)

 

My neural network approach:

 

•

 

Flexible

 

 architecture

• Cascade neural networks
• Variable activation functions

•

 

Fast

 

 learning algorithm (e.g. NDEKF)

 

Cascade neural networks with node-
decoupled extended Kalman filtering 

(NDEKF)

 

Types of problems investigated:

 

• Continuous function approximation

• Dynamic system modeling

 

Cascade learning and NDEKF combine to result in better 
error convergence.

 

A sneak peak at results

 

Fixed architecture
Quickprop

Cascade learning
Quickprop

Fixed architecture
NDEKF

Cascade learning
NDEKF

Performance (Error convergence)

 

Additional flexibility: variable activations

 

Cascade neural networks already offer great flexibility...

However, why restrict candidate activation functions?

 

• Sigmoidal activation functions may not offer best results.

• Sinusoidals and/or others may be more appropriate:
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Additional flexibility: variable activations

 

For continuous mapping problems:

 

• Variable networks converge to better minima.

• Sinusoidal networks — about same as variable networks.

 

Better learning: extended Kalman filtering

 

View neural network training problem as 

 

system 
identification problem

 

.

 

• Let weights of neural network represent 

 

state

 

 of nonlinear 
dynamic system.

• Let neural network be that nonlinear system.

 

Extended Kalman filter training:

 

•

 

Advantage

 

: Explicitly accounts for pairwise 
interdependence of weights with conditional error 
covariance matrix.

•

 

Disadvantage

 

:  computational complexity, where 

 

W 

 

is number of weights in network.
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Decoupled extended Kalman filtering

 

Key insight:

 

• Some weights are more interdependent than others.

• Group weights into groups.

• Ignore interdependence between groups of weights (block 
diagonalize conditional error covariance matrix).

 

Even better idea: Group weights by node!

 

Node-decoupled extended Kalman filtering

 

Key insight: Decouple (group) weights by node: 

 

Natural 
formulation for cascade learning

 

• One weight group for  current hidden unit

• One additional weight group for each output unit

• Matrix operations reduce to vector operations.

• Computational complexity reduces to .

 

O W

 

i

 

2

 

i

 

∑

 

 
 



 

Computational complexity

 

NDEKF requires inversion of an  matrix, (  = 
number of outputs)

Cascade learning with NDEKF typically requires less than 
10 epochs/hidden unit.

 

• Several orders of magnitude less than backprop or 
quickprop approaches.

• Computational complexity similar to fixed-architecture 
networks trained with NDEKF.
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Computational complexity

 

Ratio of computational cost between a cascade/NDEKF 
epoch and an equivalent fixed-architecture/backprop epoch 
(for few outputs):

 

• Example: for 400 inputs and 20 hidden units  ratio is less 
than 100.

• Example: for 20 or less inputs,  ratio is less than 10.

 

Experimental studies

 

Four learning approaches:

 

Symbol Explanation

Fq fixed-architecture training with quickprop

Cq cascade-network training with quickprop

Fk fixed-architecture training with NDEKF

Ck cascade-network training with NDEKF

 

Experimental studies

 

Key questions:

 

• Do we improve learning using NDEKF by going from 
fixed-architecture networks to cascade-type learning?

• Do we improve cascade learning by switching from 
quickprop (simple training) to NDEKF?

• Are any of  more advanced methods (

 

Cq

 

, 

 

Fk

 

, 

 

Ck

 

) an 
improvement over  baseline 

 

Fq

 

 (fixed-architecture/
quickprop) training method?



 

Five learning problems

 

Problem (A): 

 

smooth, continuous FA

 

Problem (B):

 

 

 

nonsmooth, continuous FA
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Five learning problems

 

Problem (C): 

 

deterministic dynamic system

 

Problems (D) & (E): 

 

chaotic Mackey-Glass dynamic system
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 and 

 

(t+84)
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Learning results (avg. RMS error)

 

Ck Fk Cq Fq

 

(A)

 

42.1 (4.2)
127.1 
(37.3)

94.5 (6.2) N/A

 

(B)

 

7.4 (2.0) 12.4 (3.2) 14.5 (4.0) 65.0 (18.2)

 

(C)

 

15.6 (1.5) 20.7 (4.8) 29.9 (2.0) N/A

 

(D)

 

4.6 (0.6) 10.2 (4.0) 9.4 (2.7) 16.7 (2.2)

 

(E)

 

42.0 (5.9) 60.5 (3.1) 72.6 (16.3) 90.3 (8.3)

 

Learning results 
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Why is 

 

Ck

 

 better than 

 

Fk

 

?

 

“NDEKF at times requires a small amount of redundancy in  
network in terms of  total number of nodes in order to avoid 

poor local minima...” — [Puskorius & Feldkamp, 1991]
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Problem (A)

 

Why is 

 

Ck

 

 better than 

 

Cq

 

?

 

As hidden units are added in cascade learning, NDEKF is 
better equipped to handle  increasingly correlated weights 
to new hidden units.
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Problem (C)

 

Cascade/NDEKF advantages/disadvantages

 

• Cascade learning and NDEKF complement each other well.

• Cascade learning minimizes the potentially detrimental 
effect of node-decoupling.

• Cascade learning minimizes the problem of poor local 
minima in NDEKF.

• NDEKF better handles the increased correlation of weights 
as the number of hidden units increases in cascade learning.

• NDEKF requires no learning parameter tuning.

• Cascade/NDEKF converges efficiently to better local 
minima than either cascade or NDEKF by themselves.

•

 

Disadvantage:

 

 computationally efficient with few outputs.

 

Today’s Discussion

 

To date:

 

• Neural networks: what are they

• Backpropagation: efficient gradient computation

• Advanced training: conjugate gradient

 

Today:

 

• CG postscript: scaled conjugate gradients

• Adaptive architectures

• My favorite neural network learning environment

• Some applications


