

Today’s Discussion

To date:

• Neural networks: what are they

• Backpropagation: efficient gradient computation

• Advanced training: conjugate gradient

Today:

• CG postscript: scaled conjugate gradients

• Adaptive architectures

• My favorite neural network learning environment

• Some applications

Conjugate gradient algorithm

1. Choose an initial weight vector and let .

2. Perform a line minimization along , such that:

, .

3. Let .

4. Evaluate .

5. Let where,

(Polak-Ribiere)

6. Let and go to step 2.

w

1

d

1

g

1

–=

d

j

E

w

j

α∗

d

j

+

()

E

w

j

α

d

j

+

()≤

η∀

w

j

1

+

w

j

α∗

d

j

+=

g

j

1

+

d

j

1

+

g

j

1

+

–

β

j

d

j

+=

β

j

g

j

1

+

T

g

j

1

+

g

j

–

()

g

j
T

g

j

--=

j j

1

+=

Scaled conjugate gradient algorithm

Basic idea: Replace line minimization:

, .

with:

Why #!@$ are we doing this? Didn’t we want to avoid
computation of ?

E

w

j

α∗

d

j

+

()

E

w

j

α

d

j

+

()≤

η∀

α

j

d

j
T

g

j

–

d

j
T

Hd

j

----------------=

H

Scaled conjugate gradient algorithm

Well, yes but:

• Line minimization can be computationally expensive.

• Don’t really have to compute ? Huh?

H

α

j

d

j
T

g

j

–

d

j
T

Hd

j

----------------=

A closer look at

Don’t have to compute , only .

Theorem

:

 = current -dimensional weight vector,

 = (gradient of at some vector), and,

 = Hessian of evaluated at ,

 = arbitrary -dimensional vector.

α

j

H

Hd

j

w

0

W

g w

()

E

w

()∇

E

w

H

E

w

0

d

W

Hd
g w

0

ε

d

+

()

g w

0

ε

d

–

()

–

2

ε

ε

0

→

lim

=

Computing

First-order Taylor expansion of about :

Hd

j

Hd
g w

0

ε

d

+

()

g w

0

ε

d

–

()

–

2

ε

ε

0

→

lim

=

g w

()

w

0

g w

()

g w

0

()

H w w

0

–

()

+

≈

g w

0

ε

d

+

()

g w

0

ε

d

–

()

–

2

ε

≈

g w

0

()

H

ε

d

()

+

[]

g w

0

()

H

ε

d

()

–

[]

–

2

ε

--

Computing

So:

now just requires two gradient evaluations...

Hd

j

g w

0

ε

d

+

()

g w

0

ε

d

–

()

–

2

ε

2

ε

Hd

2

ε

≈

g w

0

ε

d

+

()

g w

0

ε

d

–

()

–

2

ε

Hd

≈

Hd
g w

0

ε

d

+

()

g w

0

ε

d

–

()

–

2

ε

ε

0

→

lim

=

α

j

d

j
T

g

j

–

d

j
T

Hd

j

----------------=

New conjugate gradient algorithm

1. Choose an initial weight vector and let .

2. Compute :

, .

3. Let .

4. Evaluate .

5. Let where,

6. Let and go to step 2.

Any problems?

w

1

d

1

g

1

–=

α

j

α

j

d

j
T

g

j

–

d

j
T

Hd

j

⁄

=

η∀

w

j

1

+

w

j

α

j

d

j

+=

g

j

1

+

d

j

1

+

g

j

1

+

–

β

j

d

j

+=

β

j

g

j

1

+

T

g

j

1

+

g

j

–

()

g

j
T

g

j

⁄

=

j j

1

+=

What about ?

 might take uphill steps...

Idea:

• Replace with

• So:

What the #$@! is this?

H

0

<

α

j

d

j
T

g

j

–

d

j
T

Hd

j

⁄

=

H

H

λ

I

+

α

j

d

j
T

g

j

–

d

j
T

Hd

j

λ

d

j

2

+
---------------------------------------=

Examining

• What is the meaning of being very large?

• What is the meaning of being very small (i.e. zero)?

λ

α

j

d

j
T

g

j

–

d

j
T

Hd

j

λ

d

j

2

+
---------------------------------------=

λ

λ

Model trust regions

Question: When should we “trust”

?

α

j

d

j
T

g

j

–

d

j
T

Hd

j

----------------=

Model trust regions

Question: When should we “trust”

?

1. H is positive definite (denominator > 0)

2. Local quadratic assumption is good

α

j

d

j
T

g

j

–

d

j
T

Hd

j

----------------=

Near a mountain, not a valley

Look at denominator of:

If ,

increase

 to make denominator positive.

α

j

d

j
T

g

j

–

d

j
T

Hd

j

λ

d

j

2

+
---------------------------------------=

δ

d

j
T

Hd

j

λ

d

j

2

+=

δ

0

<

λ

How to increase ?

How about:

so that:

λ

λ

'

2

λ δ

d

j

2

------------–

 
 

=

δ

'

δ λ

'

λ

–

()

d

j

2

+=

δ

'

δ

2

λ δ

d

j

2

------------–

 
  λ

–

d

j

2

+=

δ

'

δ

2

δ

–

λ

d

j

2

+

δ

–

λ

d

j

2

+= =

New effective denominator value

So:

(what does this mean?)

λ

'

2

λ δ

d

j

2

------------–

 
 

=

δ

'

δ

–

λ

d

j

2

+=

δ

'

d

j
T

Hd

j

λ

d

j

2

+

()

–

λ

d

j

2

+=

δ

'

d

j
T

Hd

j

–=

Goin’ up? I’ll show you...

Since the new denominator is:

the new value of is:

δ

'

d

j
T

Hd

j

–=

α

j

α

j

'

d

j
T

g

j

–

d

j
T

Hd

j

–

d

j
T

g

j

d

j
T

Hd

j

----------------= =

H

0

<

H

0

>

α

j

α

j

α

j

'

α

j

'

α

j

–=

Model trust regions

Question: When should we “trust”

?

1. H is positive definite (denominator > 0)

2. Local quadratic assumption is good

α

j

d

j
T

g

j

–

d

j
T

Hd

j

----------------=

How to test local quadratic assumption?

Check:

What’s ?

So:

What does tell us?

∆

E

w

j

()

E

w

j

α

j

d

j

+

()

–

E

w

j

()

E

Q

w

j

α

j

d

j

+

()

–
--=

E

Q

E

Q

w

()

E

w

0

()

w w

0

–

()

T

b

1
2

w w

0

–

()

T

H

w w

0

–

()

+ +=

E

Q

w

j

α

j

d

j

+

()

E

w

j

() α

j

d

j
T

g

j

1
2

α

j

2

d

j
T

Hd

j

+ +=

∆

Local quadratic test

Adjustment of trust region:

• If then decrease (e.g.)

• If then increase (e.g.)

• Otherwise, leave unchanged

∆

E

w

j

()

E

w

j

α

j

d

j

+

()

–

E

w

j

()

E

Q

w

j

α

j

d

j

+

()

–
--=

∆

0.75

>

λ

λ λ

2

⁄

=

∆

0.25

<

λ

λ

4

λ

=

λ

Scaled conjugate gradient algorithm ()

1. Compute .

2. If , set .

3. Compute .

4. Compute :

5.

6. If , set , else if , set .

α

j

λ,

δ

d

j
T

Hd

j

λ

d

j

2

+=

δ

0

<

λ

2

λ δ

d

j

2

⁄

–

()

=

α

j

d

j
T

g

j

d

j
T

Hd

j

λ

d

j

2

+

()⁄

–=

∆

∆

E

w

j

()

E

w

j

α

j

d

j

+

()

–

E

w

j

()

E

Q

w

j

α

j

d

j

+

()

–
--=

∆

0.75

>

λ λ

2

⁄

=

∆

0.25

<

λ

4

λ

=

Scaled conjugate gradient algorithm

1. Choose an initial weight vector and let .

2. Compute :

, .

3. Let .

4. Evaluate .

5. Let where,

6. Let and go to step 2.

w

1

d

1

g

1

–=

α

j

λ,

α

j

d

j
T

g

j

–

d

j
T

Hd

j

λ

d

j

2

+
---------------------------------------=

η∀

w

j

1

+

w

j

α

j

d

j

+=

g

j

1

+

d

j

1

+

g

j

1

+

–

β

j

d

j

+=

β

j

g

j

1

+

T

g

j

1

+

g

j

–

()

g

j
T

g

j

⁄

=

j j

1

+=

Today’s Discussion

To date:

• Neural networks: what are they

• Backpropagation: efficient gradient computation

• Advanced training: conjugate gradient

Today:

• CG postscript: scaled conjugate gradients

• Adaptive architectures

• My favorite neural network learning environment

• Some applications

Adaptive architectures

Standard learning:

• Select neural network architecture

• Train neural network

• If failure, go back to first step

Better approach:

• Adapt neural network architecture as function of training

Adaptive architectures

Standard learning:

Adaptive approach:

training

training

Adaptive architectures

Problem: How do we do this?

Two main approaches:

• Pruning (destructive algorithms)

• Growing (constructive algorithms)

Pruning algorithms

Basic idea:

• Start with really “big” network

• Eliminate “unimportant” weights/nodes

• Retrain neural network

Advantages?

Disadvantages?

Problems?

Pruning algorithms

Basic idea:

• Start with really “big” network

• Eliminate “unimportant” weights/nodes

• Retrain neural network

Advantages?

(smaller final architectures)

Disadvantages?

(training cost of large network, retraining)

Problems?

(what is “unimportant?”)

Weight elimination schemes

Idea: eliminate weights based on “saliency.”

Definition:

saliency

 = relative importance of weight

Any suggestions?

S

i

ω

i

Saliency

First guess:

Will this work?

S

i

ω

i

=

Why won’t this measure of saliency work

x

1

x

1

z

2

1

1

1

–

0.01

0.01

A better idea for saliency

Try to find relationship:

How can we do this?

• Brute force:

(problems?)

δ

E

δ

w

=

δ

E

i

E

w

()

E

w

δ

w

i

+

()

–=

δ

w

i

0

…

0

ω

i

–

0

…

0

, , , , , ,[]

=

More on saliency

Use ol’ reliable: 2nd order Taylor approximation

Now:

(what are and ?)

Can we simply this?

E

w

()

E

w

0

()

w w

0

–

()

T

E

w

0

()∇

1
2

w w

0

–

()

T

H

w w

0

–

()

+ +=

δ

w w

1

w

0

–=

w

1

w

0

δ

E E

w

1

()

E

w

0

()

–

δ

w

T

E

w

0

()∇

1
2

δ

w

T

H

δ

w

+= =

Optimal Brain Damage

1. Idea: assume Hessian is diagonal

2. Resulting saliency:

3. Eliminate weights with smallest saliency

4. Retrain remaining weights

δ

E

1
2

δ

w

T

H

δ

w

=

δ

E

1
2

H

ii

δω

i

2

i

∑

=

S

i

H

ii

ω

i

2

2

---------------=

Optimal Brain Surgery

• Smarter idea: don’t assume Hessian is diagonal

• Eliminate need for retraining

Now, assume you want to remove weight :

We want to minimize,

subject to constraint

(why?)

ω

i

δ

E

1
2

δ

w

T

H

δ

w

=

δω

i

ω

i

–=

Optimal Brain Surgery

Use Lagrange multipliers:

• We can minimize subject to constraint by
minimizing

• = Lagrange multiplier

For our case:

f

x

()

g

x

()

0

=

L f

x

() λ

g

x

()

+=

λ

f

x

() δ

E

1
2

δ

w

T

H

δ

w

= =

g

x

() δω

i

ω

i

+=

Optimal Brain Surgery

Minimize:

...

Solution:

(what’s the problem?)

L

1
2

δ

w

T

H

δ

w

λ δω

i

ω

i

+

()

+=

δ

w

ω

i

H

1

–

[]

ii

H

1

–

u

i

–=

δ

E

i

1
2

ω

i

2

H

1

–

[]

ii

------------------=

Optimal Brain Surgery

1. Evaluate the inverse Hessian .

2. Evaluate:

3. Eliminate weight , , .

4. Update all weights (no retraining)

H

1

–

δ

E

i

1
2

ω

i

2

H

1

–

[]

ii

------------------=

ω

i

δ

E

i

δ

E

j

<

i j

≠

δ

w

ω

i

H

1

–

[]

ii

H

1

–

u

i

–=

Node elimination scheme

Idea: Node pruning — need saliency of node, not weight

Define:

(output of unit with addition of)

Then:

z

j

γ α

j

ω

ij

z

i
i

∑

 
 

=

j

α

j

s

j

E

α

j

1

=

()

E

α

j

0

=

()

–=

s

j

∂

E

∂α

j

⁄

j

1

=

≈

Pruning algorithms: key issues

• Large network to small network

• Need definition of saliency

• May need retraining step

Big problem:

lots of wasted training effort

Growing algorithms

Basic idea:

• Start with really small network

• Add hidden units as required

Advantages?

Disadvantages?

Problems?

Growing algorithms

Basic idea:

• Start with really small network

• Add hidden units as required

Advantages?

(reduced training cost, optimized networks)

Disadvantages?

(?)

Problems?

(arrangement of added weights/nodes)

Cascade growing: initial network

Cascade growing: first hidden unit

training

Cascade growing: second hidden unit

frozen

Cascade growing: alternative visualization

Cascade growing: alternative visualization

Cascade growing: alternative visualization

Cascade neural networks

Do you ever need deeply nested structure?

Two-spiral problem: best fixed architecture

input layer (2 inputs)

first hidden layer (5 hidden units)

second hidden layer (5 hidden units)

third hidden layer (5 hidden units)

Two-spiral problem: cascade architecture

Two-spiral problem: cascade architecture

Today’s Discussion

To date:

• Neural networks: what are they

• Backpropagation: efficient gradient computation

• Advanced training: conjugate gradient

Today:

• CG postscript: scaled conjugate gradients

• Adaptive architectures

• My favorite neural network learning environment

• Some applications

NN environment that rocks...

Two problems with traditional neural networks:

•

Fixed

 architecture

• Difficult to guess “appropriate” architecture
• Functional complexity requirements can vary widely

•

Slow

 learning algorithms (e.g. backprop, quickprop)

My neural network approach:

•

Flexible

 architecture

• Cascade neural networks
• Variable activation functions

•

Fast

 learning algorithm (e.g. NDEKF)

Cascade neural networks with node-
decoupled extended Kalman filtering

(NDEKF)

Types of problems investigated:

• Continuous function approximation

• Dynamic system modeling

Cascade learning and NDEKF combine to result in better
error convergence.

A sneak peak at results

Fixed architecture
Quickprop

Cascade learning
Quickprop

Fixed architecture
NDEKF

Cascade learning
NDEKF

Performance (Error convergence)

Additional flexibility: variable activations

Cascade neural networks already offer great flexibility...

However, why restrict candidate activation functions?

• Sigmoidal activation functions may not offer best results.

• Sinusoidals and/or others may be more appropriate:

1

e

x

–

–

1

e

x

–

+

1 2

⁄

–

x

2

()

exp

x

()

sin

2

x

()

sin

J

0

x

()

J

1

x

()

Additional flexibility: variable activations

For continuous mapping problems:

• Variable networks converge to better minima.

• Sinusoidal networks — about same as variable networks.

Better learning: extended Kalman filtering

View neural network training problem as

system
identification problem

.

• Let weights of neural network represent

state

 of nonlinear
dynamic system.

• Let neural network be that nonlinear system.

Extended Kalman filter training:

•

Advantage

: Explicitly accounts for pairwise
interdependence of weights with conditional error
covariance matrix.

•

Disadvantage

: computational complexity, where

W

is number of weights in network.

O W

2

()

Decoupled extended Kalman filtering

Key insight:

• Some weights are more interdependent than others.

• Group weights into groups.

• Ignore interdependence between groups of weights (block
diagonalize conditional error covariance matrix).

Even better idea: Group weights by node!

Node-decoupled extended Kalman filtering

Key insight: Decouple (group) weights by node:

Natural
formulation for cascade learning

• One weight group for current hidden unit

• One additional weight group for each output unit

• Matrix operations reduce to vector operations.

• Computational complexity reduces to .

O W

i

2

i

∑

 
 

Computational complexity

NDEKF requires inversion of an matrix, (=
number of outputs)

Cascade learning with NDEKF typically requires less than
10 epochs/hidden unit.

• Several orders of magnitude less than backprop or
quickprop approaches.

• Computational complexity similar to fixed-architecture
networks trained with NDEKF.

m m

×

m

Computational complexity

Ratio of computational cost between a cascade/NDEKF
epoch and an equivalent fixed-architecture/backprop epoch
(for few outputs):

• Example: for 400 inputs and 20 hidden units ratio is less
than 100.

• Example: for 20 or less inputs, ratio is less than 10.

Experimental studies

Four learning approaches:

Symbol Explanation

Fq fixed-architecture training with quickprop

Cq cascade-network training with quickprop

Fk fixed-architecture training with NDEKF

Ck cascade-network training with NDEKF

Experimental studies

Key questions:

• Do we improve learning using NDEKF by going from
fixed-architecture networks to cascade-type learning?

• Do we improve cascade learning by switching from
quickprop (simple training) to NDEKF?

• Are any of more advanced methods (

Cq

,

Fk

,

Ck

) an
improvement over baseline

Fq

 (fixed-architecture/
quickprop) training method?

Five learning problems

Problem (A):

smooth, continuous FA

Problem (B):

nonsmooth, continuous FA

f

1

x y z

, ,()

z

π

y

()

sin

x

+=

f

2

x y z

, ,()

z

2

π

xy

()

cos

y

2

–+=

0 5 10 15 20

-0.4

-0.2

0

0.2

0.4

f
x

(
)

x

Five learning problems

Problem (C):

deterministic dynamic system

Problems (D) & (E):

chaotic Mackey-Glass dynamic system

(t+6)

 and

(t+84)

u k

1

+

()

f u k

()

u k

1

–

()

u k

2

–

()

x k

()

x k

1

–

(), , , ,[]

=

f x

1

x

2

x

3

x

4

x

5

, , , ,[]

x

1

x

2

x

3

x

5

x

3

1

–

()

x

4

+

1

x

3
2

x

2
2

+ +
---=

0.4 0.6 0.8 1 1.2
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

x

˙

t

(
)

x t

()

Learning results (avg. RMS error)

Ck Fk Cq Fq

(A)

42.1 (4.2)
127.1
(37.3)

94.5 (6.2) N/A

(B)

7.4 (2.0) 12.4 (3.2) 14.5 (4.0) 65.0 (18.2)

(C)

15.6 (1.5) 20.7 (4.8) 29.9 (2.0) N/A

(D)

4.6 (0.6) 10.2 (4.0) 9.4 (2.7) 16.7 (2.2)

(E)

42.0 (5.9) 60.5 (3.1) 72.6 (16.3) 90.3 (8.3)

Learning results

0

50

100

150

200

250

(A) (B) (C) (D) (E)

%

N
/A

N
/A

77
8%

% difference in RMS error
between cascade/NDEKF and
fixed-architecture/NDEKF

% difference in RMS error
between cascade/NDEKF and
cascade/quickprop

% difference in RMS error
between cascade/NDEKF and
fixed-architecture/quickprop

Why is

Ck

 better than

Fk

?

“NDEKF at times requires a small amount of redundancy in
network in terms of total number of nodes in order to avoid

poor local minima...” — [Puskorius & Feldkamp, 1991]

0

0.05

0.1

0.15

0.2

0.25

e

R
M

S

Cq Fk sn

()

CkFk sg

()

bad local minima

Problem (A)

Why is

Ck

 better than

Cq

?

As hidden units are added in cascade learning, NDEKF is
better equipped to handle increasingly correlated weights
to new hidden units.

0 2 4 6 8 10 12 14

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14
0.01

0.02

0.03

0.04

0.05

0.06

hidden units

Cq

Ck

hidden units

Problem (C)

Cascade/NDEKF advantages/disadvantages

• Cascade learning and NDEKF complement each other well.

• Cascade learning minimizes the potentially detrimental
effect of node-decoupling.

• Cascade learning minimizes the problem of poor local
minima in NDEKF.

• NDEKF better handles the increased correlation of weights
as the number of hidden units increases in cascade learning.

• NDEKF requires no learning parameter tuning.

• Cascade/NDEKF converges efficiently to better local
minima than either cascade or NDEKF by themselves.

•

Disadvantage:

 computationally efficient with few outputs.

Today’s Discussion

To date:

• Neural networks: what are they

• Backpropagation: efficient gradient computation

• Advanced training: conjugate gradient

Today:

• CG postscript: scaled conjugate gradients

• Adaptive architectures

• My favorite neural network learning environment

• Some applications

