# **Today's Discussion**

### To date:

- Neural networks: what are they
- Backpropagation: efficient gradient computation
- Advanced training: conjugate gradient

# Today:

- CG postscript: scaled conjugate gradients
- Adaptive architectures
- My favorite neural network learning environment
- Some applications

# Scaled conjugate gradient algorithm

**Basic idea: Replace line minimization:** 

$$E(\mathbf{w}_j + \alpha^* \mathbf{d}_j) \le E(\mathbf{w}_j + \alpha \mathbf{d}_j), \ \forall \eta.$$

with:

$$\alpha_j = \frac{-\mathbf{d}_j^T \mathbf{g}_j}{\mathbf{d}_j^T \mathbf{H} \mathbf{d}_j}$$

Why #!@\$ are we doing this? Didn't we want to avoid computation of H ?

# Conjugate gradient algorithm

- 1. Choose an initial weight vector  $\mathbf{w}_1$  and let  $\mathbf{d}_1 = -\mathbf{g}_1$ .
- 2. Perform a line minimization along  $\mathbf{d}_i$ , such that:

 $E(\mathbf{w}_{j} + \alpha^{*}\mathbf{d}_{j}) \leq E(\mathbf{w}_{j} + \alpha\mathbf{d}_{j}), \forall \eta.$ 

- 3. Let  $\mathbf{w}_{j+1} = \mathbf{w}_j + \alpha^* \mathbf{d}_j$ .
- 4. Evaluate  $\mathbf{g}_{j+1}$ .

5. Let 
$$\mathbf{d}_{j+1} = -\mathbf{g}_{j+1} + \beta_j \mathbf{d}_j$$
 where,

$$\beta_j = \frac{\mathbf{g}_{j+1}^T (\mathbf{g}_{j+1} - \mathbf{g}_j)}{\mathbf{g}_j^T \mathbf{g}_j}$$
(Polak-Ribiere)

6. Let j = j + 1 and go to step 2.

# Scaled conjugate gradient algorithm

### Well, yes but:

- Line minimization can be computationally expensive.
- Don't really have to compute **H**? Huh?

$$\alpha_j = \frac{-\mathbf{d}_j^T \mathbf{g}_j}{\mathbf{d}_j^T \mathbf{H} \mathbf{d}_j}$$

# A closer look at $\alpha_i$

Don't have to compute H, only Hd<sub>i</sub>.

### Theorem:

- $\mathbf{w}_0$  = current *W*-dimensional weight vector,
- $\mathbf{g}(\mathbf{w}) = \nabla E(\mathbf{w})$  (gradient of *E* at some vector  $\mathbf{w}$ ), and,
- $\mathbf{H}$  = Hessian of *E* evaluated at  $\mathbf{w}_0$ ,
- $\mathbf{d}$  = arbitrary *W*-dimensional vector.

$$\mathbf{H}\mathbf{d} = \lim_{\varepsilon \to 0} \frac{\mathbf{g}(\mathbf{w}_0 + \varepsilon \mathbf{d}) - \mathbf{g}(\mathbf{w}_0 - \varepsilon \mathbf{d})}{2\varepsilon}$$

# Computing Hd<sub>i</sub>

$$\frac{\mathbf{g}(\mathbf{w}_0 + \varepsilon \mathbf{d}) - \mathbf{g}(\mathbf{w}_0 - \varepsilon \mathbf{d})}{2\varepsilon} \approx \frac{2\varepsilon \mathbf{H} \mathbf{d}}{2\varepsilon}$$
$$\frac{\mathbf{g}(\mathbf{w}_0 + \varepsilon \mathbf{d}) - \mathbf{g}(\mathbf{w}_0 - \varepsilon \mathbf{d})}{2\varepsilon} \approx \mathbf{H} \mathbf{d}$$

So:

$$\mathbf{Hd} = \lim_{\varepsilon \to 0} \frac{\mathbf{g}(\mathbf{w}_0 + \varepsilon \mathbf{d}) - \mathbf{g}(\mathbf{w}_0 - \varepsilon \mathbf{d})}{2\varepsilon}$$

 $\alpha_j = \frac{-\mathbf{d}_j^T \mathbf{g}_j}{\mathbf{d}_j^T \mathbf{H} \mathbf{d}_j}$  now just requires two gradient evaluations...

# **Computing** Hd<sub>*i*</sub>

$$\mathbf{Hd} = \lim_{\varepsilon \to 0} \frac{\mathbf{g}(\mathbf{w}_0 + \varepsilon \mathbf{d}) - \mathbf{g}(\mathbf{w}_0 - \varepsilon \mathbf{d})}{2\varepsilon}$$

**First-order Taylor expansion of g(w) about w\_0:** 

$$\mathbf{g}(\mathbf{w}) \approx \mathbf{g}(\mathbf{w}_0) + \mathbf{H}(\mathbf{w} - \mathbf{w}_0)$$

$$\frac{\mathbf{g}(\mathbf{w}_0 + \varepsilon \mathbf{d}) - \mathbf{g}(\mathbf{w}_0 - \varepsilon \mathbf{d})}{2\varepsilon} \approx \frac{[\mathbf{g}(\mathbf{w}_0) + \mathbf{H}(\varepsilon \mathbf{d})] - [\mathbf{g}(\mathbf{w}_0) - \mathbf{H}(\varepsilon \mathbf{d})]}{2\varepsilon}$$

# New conjugate gradient algorithm

- 1. Choose an initial weight vector  $\mathbf{w}_1$  and let  $\mathbf{d}_1 = -\mathbf{g}_1$ .
- 2. Compute  $\alpha_i$ :

 $\alpha_{j} = -\mathbf{d}_{j}^{T}\mathbf{g}_{j}/\mathbf{d}_{j}^{T}\mathbf{H}\mathbf{d}_{j}, \forall \eta.$ 3. Let  $\mathbf{w}_{j+1} = \mathbf{w}_{j} + \alpha_{j}\mathbf{d}_{j}.$ 4. Evaluate  $\mathbf{g}_{j+1}.$ 5. Let  $\mathbf{d}_{j+1} = -\mathbf{g}_{j+1} + \beta_{j}\mathbf{d}_{j}$  where,  $\beta_{j} = \mathbf{g}_{j+1}^{T}(\mathbf{g}_{j+1} - \mathbf{g}_{j})/\mathbf{g}_{j}^{T}\mathbf{g}_{j}$ 6. Let j = j+1 and go to step 2. Any problems?

# What about H < 0?

 $\alpha_j = -\mathbf{d}_j^T \mathbf{g}_j / \mathbf{d}_j^T \mathbf{H} \mathbf{d}_j$  might take uphill steps...

### Idea:

- Replace **H** with  $\mathbf{H} + \lambda \mathbf{I}$
- So:

$$\alpha_j = \frac{-\mathbf{d}_j^T \mathbf{g}_j}{\mathbf{d}_j^T \mathbf{H} \mathbf{d}_j + \lambda \|\mathbf{d}_j\|^2}$$

What the #\$@! is this?

# Model trust regions

**Question: When should we "trust"** 

$$\alpha_j = \frac{-\mathbf{d}_j^T \mathbf{g}_j}{\mathbf{d}_j^T \mathbf{H} \mathbf{d}_j}$$
?

# **Examining** $\lambda$

$$\boldsymbol{\alpha}_{j} = \frac{-\mathbf{d}_{j}^{T}\mathbf{g}_{j}}{\mathbf{d}_{j}^{T}\mathbf{H}\mathbf{d}_{j} + \lambda \|\mathbf{d}_{j}\|^{2}}$$

- What is the meaning of  $\lambda$  being very large?
- What is the meaning of  $\lambda$  being very small (i.e. zero)?

# **Model trust regions**

Question: When should we "trust"

$$\alpha_j = \frac{-\mathbf{d}_j^T \mathbf{g}_j}{\mathbf{d}_j^T \mathbf{H} \mathbf{d}_j}?$$

- **1. H** is positive definite (denominator > 0)
- 2. Local quadratic assumption is good

# Near a mountain, not a valley

Look at denominator of:

$$\alpha_j = \frac{-\mathbf{d}_j^T \mathbf{g}_j}{\mathbf{d}_j^T \mathbf{H} \mathbf{d}_j + \lambda \|\mathbf{d}_j\|^2}$$
$$\delta = \mathbf{d}_j^T \mathbf{H} \mathbf{d}_j + \lambda \|\mathbf{d}_j\|^2$$

If  $\delta < 0$ , *increase*  $\lambda$  to make denominator positive.

# How to increase $\lambda$ ?

### How about:

$$\lambda' = 2\left(\lambda - \frac{\delta}{\|\mathbf{d}_j\|^2}\right)$$

so that:

$$\delta' = \delta + (\lambda' - \lambda) \|\mathbf{d}_j\|^2$$
$$\delta' = \delta + \left[2\left(\lambda - \frac{\delta}{\|\mathbf{d}_j\|^2}\right) - \lambda\right] \|\mathbf{d}_j\|^2$$
$$\delta' = \delta - 2\delta + \lambda \|\mathbf{d}_j\|^2 = -\delta + \lambda \|\mathbf{d}_j\|^2$$

# New effective denominator value

$$\lambda' = 2\left(\lambda - \frac{\delta}{\|\mathbf{d}_j\|^2}\right)$$
$$\delta' = -\delta + \lambda \|\mathbf{d}_j\|^2$$

So:

$$\delta' = -\left(\mathbf{d}_{j}^{T}\mathbf{H}\mathbf{d}_{j} + \lambda \|\mathbf{d}_{j}\|^{2}\right) + \lambda \|\mathbf{d}_{j}\|^{2}$$

 $\delta' = -\mathbf{d}_j^T \mathbf{H} \mathbf{d}_j$  (what does this mean?)

# Goin' up? I'll show you...

Since the new denominator is:

$$\delta' = -\mathbf{d}_j^T \mathbf{H} \mathbf{d}_j$$

the new value of  $\alpha_j$  is:

$$\alpha_{j}' = \frac{-\mathbf{d}_{j}^{T}\mathbf{g}_{j}}{-\mathbf{d}_{j}^{T}\mathbf{H}\mathbf{d}_{j}} = \frac{\mathbf{d}_{j}^{T}\mathbf{g}_{j}}{\mathbf{d}_{j}^{T}\mathbf{H}\mathbf{d}_{j}}$$

$$\alpha_{j}' = -\alpha_{j}$$

$$\mathbf{H} > 0$$

$$\alpha_{j}'$$

$$\mathbf{H} < 0$$

# **Model trust regions**

**Question: When should we "trust"** 

$$\alpha_j = \frac{-\mathbf{d}_j^T \mathbf{g}_j}{\mathbf{d}_j^T \mathbf{H} \mathbf{d}_j}?$$

- **1.** H is positive definite (denominator > 0)
- 2. Local quadratic assumption is good

# How to test local quadratic assumption?

Check:

$$\Delta = \frac{E(\mathbf{w}_j) - E(\mathbf{w}_j + \alpha_j \mathbf{d}_j)}{E(\mathbf{w}_j) - E_Q(\mathbf{w}_j + \alpha_j \mathbf{d}_j)}$$

What's  $E_Q$ ?

$$E_{Q}(\mathbf{w}) = E(\mathbf{w}_{0}) + (\mathbf{w} - \mathbf{w}_{0})^{T}\mathbf{b} + \frac{1}{2}(\mathbf{w} - \mathbf{w}_{0})^{T}H(\mathbf{w} - \mathbf{w}_{0})$$

So:

$$E_{Q}(\mathbf{w}_{j} + \alpha_{j}\mathbf{d}_{j}) = E(\mathbf{w}_{j}) + \alpha_{j}\mathbf{d}_{j}^{T}\mathbf{g}_{j} + \frac{1}{2}\alpha_{j}^{2}\mathbf{d}_{j}^{T}\mathbf{H}\mathbf{d}_{j}$$

What does  $\Delta$  tell us?

# Local quadratic test

$$\Delta = \frac{E(\mathbf{w}_j) - E(\mathbf{w}_j + \alpha_j \mathbf{d}_j)}{E(\mathbf{w}_j) - E_Q(\mathbf{w}_j + \alpha_j \mathbf{d}_j)}$$

### Adjustment of trust region:

- If  $\Delta > 0.75$  then decrease  $\lambda$  (e.g.  $\lambda = \lambda/2$ )
- If  $\Delta < 0.25$  then increase  $\lambda$  (e.g.  $\lambda = 4\lambda$ )
- Otherwise, leave  $\lambda$  unchanged

Scaled conjugate gradient algorithm ( $\alpha_{j}, \lambda$ )

- **1. Compute**  $\delta = \mathbf{d}_j^T \mathbf{H} \mathbf{d}_j + \lambda \|\mathbf{d}_j\|^2$ .
- 2. If  $\delta < 0$ , set  $\lambda = 2(\lambda \delta / \|\mathbf{d}_j\|^2)$ .
- 3. Compute  $\alpha_j = -\mathbf{d}_j^T \mathbf{g}_j / (\mathbf{d}_j^T \mathbf{H} \mathbf{d}_j + \lambda \|\mathbf{d}_j\|^2)$ .
- **4.** Compute  $\Delta$ :

5. 
$$\Delta = \frac{E(\mathbf{w}_j) - E(\mathbf{w}_j + \alpha_j \mathbf{d}_j)}{E(\mathbf{w}_j) - E_Q(\mathbf{w}_j + \alpha_j \mathbf{d}_j)}$$

6. If 
$$\Delta > 0.75$$
, set  $\lambda = \lambda/2$ , else if  $\Delta < 0.25$ , set  $\lambda = 4\lambda$ .

# Scaled conjugate gradient algorithm

- 1. Choose an initial weight vector  $\mathbf{w}_1$  and let  $\mathbf{d}_1 = -\mathbf{g}_1$ .
- 2. Compute  $\alpha_i$ ,  $\lambda$ :

$$\alpha_j = \frac{-\mathbf{d}_j^T \mathbf{g}_j}{\mathbf{d}_j^T \mathbf{H} \mathbf{d}_j + \lambda \|\mathbf{d}_j\|^2}, \ \forall \eta$$

- 3. Let  $\mathbf{w}_{j+1} = \mathbf{w}_j + \alpha_j \mathbf{d}_j$ .
- 4. Evaluate  $\mathbf{g}_{j+1}$ .
- 5. Let  $\mathbf{d}_{j+1} = -\mathbf{g}_{j+1} + \beta_j \mathbf{d}_j$  where,  $\beta_j = \mathbf{g}_{j+1}^T (\mathbf{g}_{j+1} - \mathbf{g}_j) / \mathbf{g}_j^T \mathbf{g}_j$ 6. Let j = j+1 and go to step 2.

# Adaptive architectures

### **Standard learning:**

- Select neural network architecture
- Train neural network
- If failure, go back to first step

### Better approach:

• Adapt neural network architecture as function of training

# **Today's Discussion**

### To date:

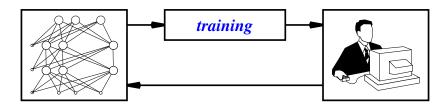
- Neural networks: what are they
- Backpropagation: efficient gradient computation
- Advanced training: conjugate gradient

### **Today:**

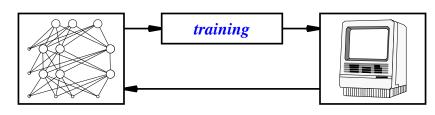
- CG postscript: scaled conjugate gradients
- Adaptive architectures
- My favorite neural network learning environment
- Some applications

# Adaptive architectures

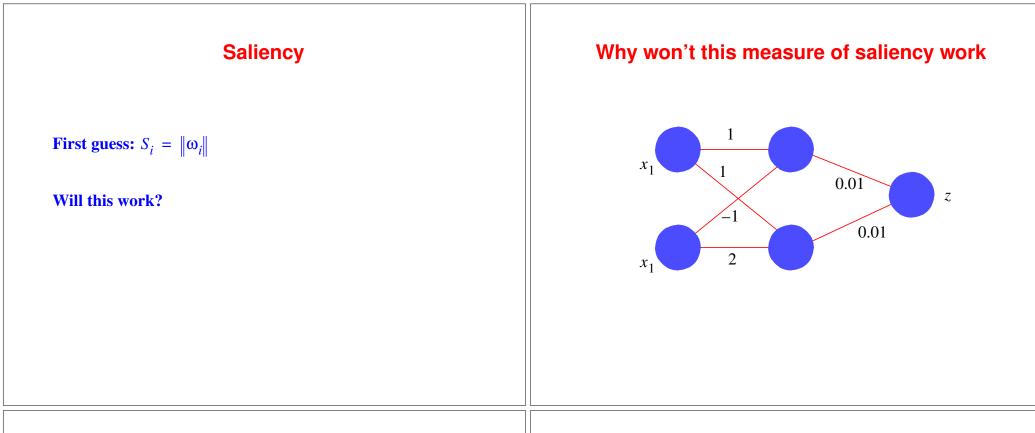
### **Standard learning:**



### **Adaptive approach:**



# **Adaptive architectures Pruning algorithms Basic idea: Problem:** How do we do this? Start with really "big" network ٠ Eliminate "unimportant" weights/nodes Two main approaches: • Pruning (destructive algorithms) Retrain neural network • Growing (constructive algorithms) • **Advantages? Disadvantages? Problems? Pruning algorithms** Weight elimination schemes **Basic idea:** Idea: eliminate weights based on "saliency." Start with really "big" network • Eliminate "unimportant" weights/nodes **Definition:** saliency $S_i$ = relative importance of weight $\omega_i$ • Retrain neural network **Any suggestions? Advantages?** (smaller final architectures) **Disadvantages?** (training cost of large network, retraining) **Problems?** (what is "unimportant?")



# A better idea for saliency

### Try to find relationship:

 $\delta E = \delta \mathbf{w}$ 

### How can we do this?

• Brute force:

 $\delta E_i = \left\| E(\mathbf{w}) - E(\mathbf{w} + \delta \mathbf{w}_i) \right\|$ 

 $\delta \mathbf{w}_i = [0, ..., 0, -\omega_i, 0, ..., 0] (problems?)$ 

# More on saliency

### Use ol' reliable: 2nd order Taylor approximation

$$E(\mathbf{w}) = E(\mathbf{w}_0) + (\mathbf{w} - \mathbf{w}_0)^T \nabla E(\mathbf{w}_0) + \frac{1}{2} (\mathbf{w} - \mathbf{w}_0)^T H(\mathbf{w} - \mathbf{w}_0)$$

### Now:

$$\delta \mathbf{w} = \mathbf{w}_1 - \mathbf{w}_0 \text{ (what are } \mathbf{w}_1 \text{ and } \mathbf{w}_0 \text{?)}$$

$$\delta E = E(\mathbf{w}_1) - E(\mathbf{w}_0) = \delta \mathbf{w}^T \nabla E(\mathbf{w}_0) + \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \delta \mathbf{w}$$

### Can we simply this?

# **Optimal Brain Damage**

$$\delta E = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \delta \mathbf{w}$$

1. Idea: assume Hessian is diagonal

$$\delta E = \frac{1}{2} \sum_{i} H_{ii} \delta \omega_i^2$$

2. Resulting saliency:

$$S_i = \frac{H_{ii}\omega_i^2}{2}$$

- 3. Eliminate weights with smallest saliency
- 4. Retrain remaining weights

# **Optimal Brain Surgery**

- Smarter idea: don't assume Hessian is diagonal
- Eliminate need for retraining

Now, assume you want to remove weight  $\omega_i$ :

We want to minimize,

$$\delta E = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \delta \mathbf{w}$$

subject to constraint

 $\delta \omega_i = -\omega_i (why?)$ 

# **Optimal Brain Surgery**

### **Use Lagrange multipliers:**

- We can minimize f(x) subject to constraint g(x) = 0 by minimizing L = f(x) + λg(x)
- $\lambda = \text{Lagrange multiplier}$

### For our case:

$$f(\mathbf{x}) = \delta E = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \delta \mathbf{w}$$

 $g(\mathbf{x}) = \delta \omega_i + \omega_i$ 

# **Optimal Brain Surgery**

### Minimize:

$$L = \frac{1}{2} \delta \mathbf{w}^T \mathbf{H} \delta \mathbf{w} + \lambda (\delta \omega_i + \omega_i)$$

•••

### **Solution:**

$$\delta \mathbf{w} = -\frac{\omega_i}{[\mathbf{H}^{-1}]_{ii}} \mathbf{H}^{-1} \mathbf{u}_i$$

 $\delta E_i = \frac{1}{2} \frac{\omega_i^2}{[\mathbf{H}^{-1}]_{ii}}$ (what's the problem?)

# **Optimal Brain Surgery**

**1.** Evaluate the inverse Hessian  $\mathbf{H}^{-1}$ .

2. Evaluate:

$$\delta E_i = \frac{1}{2} \frac{\omega_i^2}{[\mathbf{H}^{-1}]_{ii}}$$

- **3. Eliminate weight**  $\omega_i$ ,  $\delta E_i < \delta E_j$ ,  $i \neq j$ .
- 4. Update all weights (no retraining)

$$\delta \mathbf{w} = -\frac{\omega_i}{[\mathbf{H}^{-1}]_{ii}} \mathbf{H}^{-1} \mathbf{u}_i$$

# Pruning algorithms: key issues

- Large network to small network
- Need definition of saliency
- May need retraining step

**Big problem:** *lots of wasted training effort* 

# **Node** elimination scheme

Idea: Node pruning — need saliency of node, not weight

### **Define:**

$$z_j = \gamma \left( \alpha_j \sum_i \omega_{ij} z_i \right)$$
 (output of unit j with addition of  $\alpha_j$ )

Then:

$$s_j = E(\alpha_j = 1) - E(\alpha_j = 0)$$
  
 $s_j \approx \partial E / \partial \alpha_j |_{j=1}$ 

# **Growing algorithms**

### **Basic idea:**

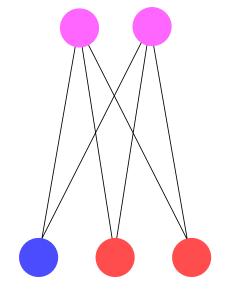
- Start with really small network
- Add hidden units as required

Advantages? Disadvantages? Problems?

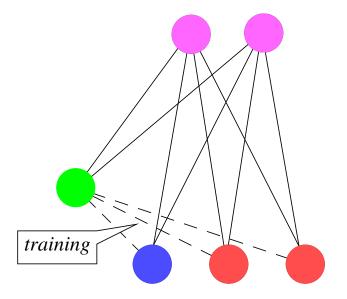
# Growing algorithmsCascadeBasic idea:• Start with really small network• Add hidden units as required

Advantages? (reduced training cost, optimized networks) Disadvantages? (?) Problems? (arrangement of added weights/nodes)

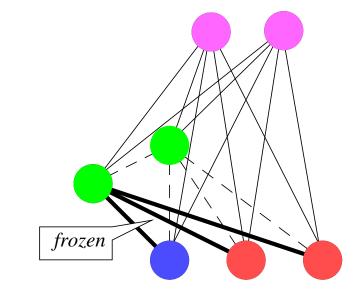
# **Cascade growing: initial network**

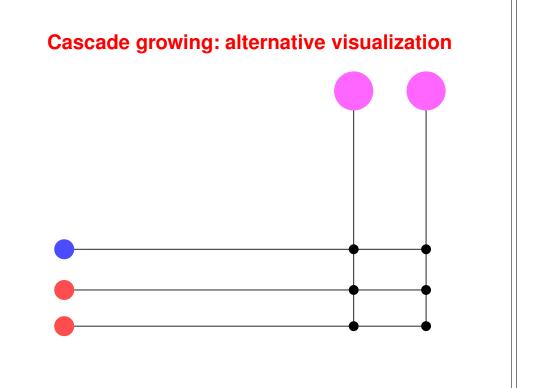


# Cascade growing: first hidden unit

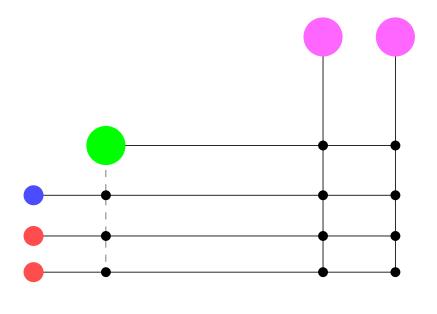


# Cascade growing: second hidden unit

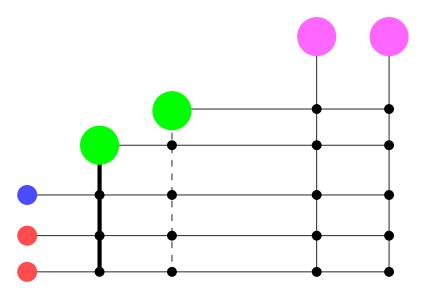




# Cascade growing: alternative visualization

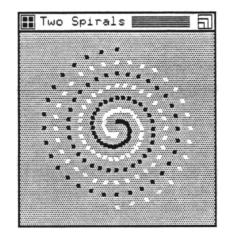


# Cascade growing: alternative visualization

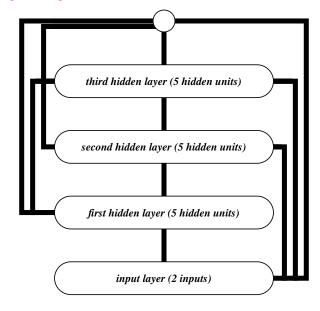


# **Cascade neural networks**

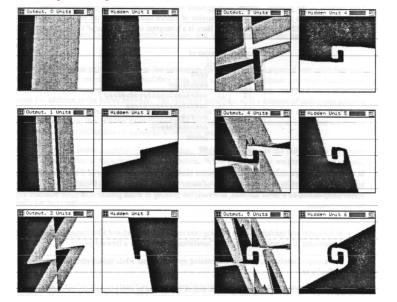
### Do you ever need deeply nested structure?



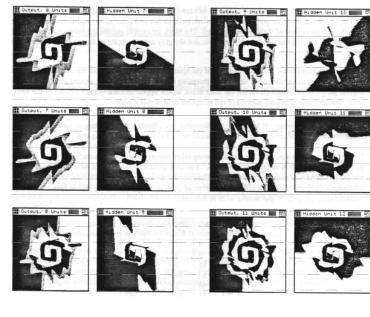
# Two-spiral problem: best fixed architecture



# Two-spiral problem: cascade architecture



# Two-spiral problem: cascade architecture



# **Today's Discussion**

### To date:

- Neural networks: what are they
- Backpropagation: efficient gradient computation
- Advanced training: conjugate gradient

### **Today:**

- CG postscript: scaled conjugate gradients
- Adaptive architectures
- My favorite neural network learning environment
- Some applications

# NN environment that rocks...

### Two problems with traditional neural networks:

- *Fixed* architecture
  - Difficult to guess "appropriate" architecture
  - Functional complexity requirements can vary widely
- *Slow* learning algorithms (e.g. backprop, quickprop)

# My neural network approach:

- *Flexible* architecture
  - Cascade neural networks
  - Variable activation functions
- *Fast* learning algorithm (e.g. NDEKF)

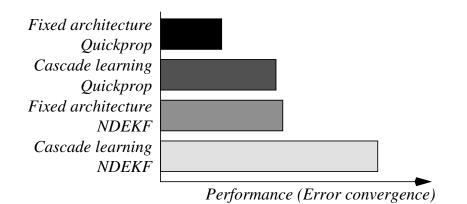
# Cascade neural networks with nodedecoupled extended Kalman filtering (NDEKF)

# Types of problems investigated:

- Continuous function approximation
- Dynamic system modeling

Cascade learning and NDEKF combine to result in better error convergence.

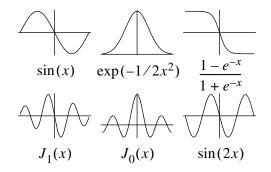
# A sneak peak at results



Additional flexibility: variable activations

Cascade neural networks already offer great flexibility... However, why restrict candidate activation functions?

- Sigmoidal activation functions may not offer best results.
- Sinusoidals and/or others may be more appropriate:



# Additional flexibility: variable activations

### For continuous mapping problems:

- Variable networks converge to better minima.
- Sinusoidal networks about same as variable networks.

# Better learning: extended Kalman filtering

# View neural network training problem as system identification problem.

- Let weights of neural network represent *state* of nonlinear dynamic system.
- Let neural network be that nonlinear system.

### **Extended Kalman filter training:**

- <u>Advantage</u>: Explicitly accounts for pairwise interdependence of weights with conditional error covariance matrix.
- <u>*Disadvantage*</u>:  $O(W^2)$  computational complexity, where *W* is number of weights in network.

# **Decoupled extended Kalman filtering**

### Key insight:

- Some weights are more interdependent than others.
- Group weights into groups.
- Ignore interdependence between groups of weights (block diagonalize conditional error covariance matrix).

### Even better idea: Group weights by node!

# Node-decoupled extended Kalman filtering

# Key insight: Decouple (group) weights by node: Natural formulation for cascade learning

- One weight group for current hidden unit
- One additional weight group for each output unit



- Matrix operations reduce to vector operations.
- Computational complexity reduces to  $O\left(\sum W_i^2\right)$

| Computational complexity                                                                                    |                                            |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|
| <b>NDEKF requires inversion of an</b> $m \times m$ <b>matrix,</b> ( $m =$ <b>number of outputs</b> )        |                                            |  |  |  |  |
| Cascade learning with NDEKF typically requires less than 10 epochs/hidden unit.                             |                                            |  |  |  |  |
| • Several orders of magnitude less than backprop or quickprop approaches.                                   |                                            |  |  |  |  |
| <ul> <li>Computational complexity similar to fixed-architecture<br/>networks trained with NDEKF.</li> </ul> |                                            |  |  |  |  |
| Experimental studies Four learning approaches:                                                              |                                            |  |  |  |  |
| Symbol                                                                                                      | Explanation                                |  |  |  |  |
| Fq                                                                                                          | fixed-architecture training with quickprop |  |  |  |  |
| Cq                                                                                                          | cascade-network training with quickprop    |  |  |  |  |
| Fk                                                                                                          | fixed-architecture training with NDEKF     |  |  |  |  |

cascade-network training with NDEKF

Ck

Ratio of computational cost between a cascade/NDEKF epoch and an equivalent fixed-architecture/backprop epoch (for few outputs):

**Computational complexity** 

- Example: for 400 inputs and 20 hidden units ratio is less than 100.
- Example: for 20 or less inputs, ratio is less than 10.

# **Experimental studies**

# **Key questions:**

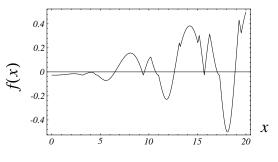
- Do we improve learning using NDEKF by going from fixed-architecture networks to cascade-type learning?
- Do we improve cascade learning by switching from quickprop (simple training) to NDEKF?
- Are any of more advanced methods (*Cq*, *Fk*, *Ck*) an improvement over baseline *Fq* (fixed-architecture/ quickprop) training method?

# **Five learning problems**

### Problem (A): smooth, continuous FA

 $f_1(x, y, z) = z\sin(\pi y) + x$  $f_2(x, y, z) = z^2 + \cos(\pi x y) - y^2$ 

### Problem (B): nonsmooth, continuous FA



# Learning results (avg. RMS error)

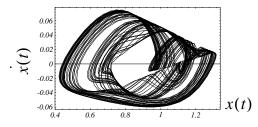
|              | Ck         | Fk              | Cq          | Fq          |
|--------------|------------|-----------------|-------------|-------------|
| (A)          | 42.1 (4.2) | 127.1<br>(37.3) | 94.5 (6.2)  | N/A         |
| <b>(B)</b>   | 7.4 (2.0)  | 12.4 (3.2)      | 14.5 (4.0)  | 65.0 (18.2) |
| ( <b>C</b> ) | 15.6 (1.5) | 20.7 (4.8)      | 29.9 (2.0)  | N/A         |
| ( <b>D</b> ) | 4.6 (0.6)  | 10.2 (4.0)      | 9.4 (2.7)   | 16.7 (2.2)  |
| (E)          | 42.0 (5.9) | 60.5 (3.1)      | 72.6 (16.3) | 90.3 (8.3)  |

# **Five learning problems**

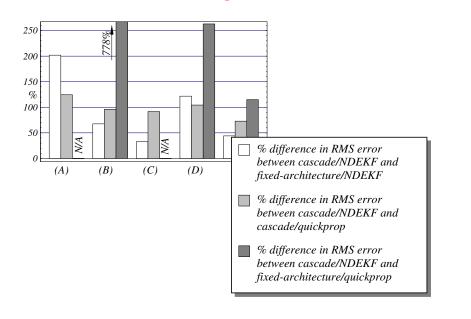
### Problem (C): deterministic dynamic system

$$\begin{split} u(k+1) &= f[u(k), u(k-1), u(k-2), x(k), x(k-1)] \\ f[x_1, x_2, x_3, x_4, x_5] &= \frac{x_1 x_2 x_3 x_5 (x_3-1) + x_4}{1 + x_3^2 + x_2^2} \end{split}$$

**Problems (D) & (E):** *chaotic Mackey-Glass dynamic system* (*t*+6) and (*t*+84)

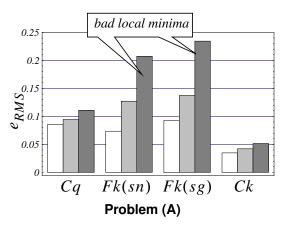


# Learning results



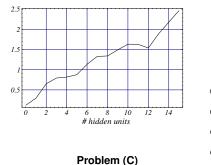
# Why is Ck better than Fk?

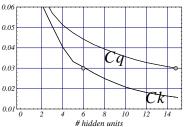
"NDEKF at times requires a small amount of redundancy in network in terms of total number of nodes in order to avoid poor local minima..." — [Puskorius & Feldkamp, 1991]



# Why is *Ck* better than *Cq*?

As hidden units are added in cascade learning, NDEKF is better equipped to handle increasingly correlated weights to new hidden units.





# Cascade/NDEKF advantages/disadvantages

- Cascade learning and NDEKF complement each other well.
- Cascade learning minimizes the potentially detrimental effect of node-decoupling.
- Cascade learning minimizes the problem of poor local minima in NDEKF.
- NDEKF better handles the increased correlation of weights as the number of hidden units increases in cascade learning.
- NDEKF requires no learning parameter tuning.
- Cascade/NDEKF converges efficiently to better local minima than either cascade or NDEKF by themselves.
- *Disadvantage:* computationally efficient with few outputs.

# **Today's Discussion**

### To date:

- Neural networks: what are they
- Backpropagation: efficient gradient computation
- Advanced training: conjugate gradient

# **Today:**

- CG postscript: scaled conjugate gradients
- Adaptive architectures
- My favorite neural network learning environment
- Some applications