Today's Discussion

To date:

- Neural networks: what are they
- Backpropagation: efficient gradient computation
- Advanced training: conjugate gradient

Today:

- CG postscript: scaled conjugate gradients
- Adaptive architectures
- My favorite neural network learning environment
- Some applications

Conjugate gradient algorithm

1. Choose an initial weight vector \mathbf{w}_{1} and let $\mathbf{d}_{1}=-\mathbf{g}_{1}$.
2. Perform a line minimization along \mathbf{d}_{j}, such that:

$$
E\left(\mathbf{w}_{j}+\alpha^{*} \mathbf{d}_{j}\right) \leq E\left(\mathbf{w}_{j}+\alpha \mathbf{d}_{j}\right), \forall \eta
$$

3. Let $\mathbf{w}_{j+1}=\mathbf{w}_{j}+\alpha^{*} \mathbf{d}_{j}$.
4. Evaluate \mathbf{g}_{j+1}.
5. Let $\mathbf{d}_{j+1}=-\mathbf{g}_{j+1}+\beta_{j} \mathbf{d}_{j}$ where,

$$
\beta_{j}=\frac{\mathbf{g}_{j+1}^{T}\left(\mathbf{g}_{j+1}-\mathbf{g}_{j}\right)}{\mathbf{g}_{j}^{T} \mathbf{g}_{j}}(\text { Polak-Ribiere })
$$

6. Let $j=j+1$ and go to step 2 .

Scaled conjugate gradient algorithm

Basic idea: Replace line minimization:

$$
E\left(\mathbf{w}_{j}+\alpha^{*} \mathbf{d}_{j}\right) \leq E\left(\mathbf{w}_{j}+\alpha \mathbf{d}_{j}\right), \forall \eta
$$

with:

$$
\alpha_{j}=\frac{-\mathbf{d}_{j}^{T} \mathbf{g}_{j}}{\mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}}
$$

Scaled conjugate gradient algorithm

Well, yes but:

- Line minimization can be computationally expensive.
- Don't really have to compute H ? Huh?

$$
\alpha_{j}=\frac{-\mathbf{d}_{j}^{T} \mathbf{g}_{j}}{\mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}}
$$

A closer look at α_{j}

Don't have to compute \mathbf{H}, only Hd_{j}.
Theorem:
$\mathbf{w}_{0}=$ current W-dimensional weight vector,
$\mathbf{g}(\mathbf{w})=\nabla E(\mathbf{w})$ (gradient of E at some vector \mathbf{w}), and,
$\mathbf{H}=$ Hessian of E evaluated at \mathbf{w}_{0},
$\mathbf{d}=$ arbitrary W-dimensional vector.

$$
\mathbf{H d}=\lim _{\varepsilon \rightarrow 0} \frac{\mathbf{g}\left(\mathbf{w}_{0}+\varepsilon \mathbf{d}\right)-\mathbf{g}\left(\mathbf{w}_{0}-\varepsilon \mathbf{d}\right)}{2 \varepsilon}
$$

Computing Hd_{j}

$$
\mathbf{H d}=\lim _{\varepsilon \rightarrow 0} \frac{\mathbf{g}\left(\mathbf{w}_{0}+\varepsilon \mathbf{d}\right)-\mathbf{g}\left(\mathbf{w}_{0}-\varepsilon \mathbf{d}\right)}{2 \varepsilon}
$$

First-order Taylor expansion of $\mathbf{g}(\mathbf{w})$ about \mathbf{w}_{0} :

$$
\begin{aligned}
& \mathbf{g (\mathbf { w }) \approx \mathbf { g } (\mathbf { w } _ { 0 }) + \mathbf { H } (\mathbf { w } - \mathbf { w } _ { 0 })} \\
& \frac{\mathbf{g}\left(\mathbf{w}_{0}+\varepsilon \mathbf{d}\right)-\mathbf{g}\left(\mathbf{w}_{0}-\varepsilon \mathbf{d}\right)}{2 \varepsilon} \approx \\
& \frac{\left[\mathbf{g}\left(\mathbf{w}_{0}\right)+\mathbf{H}(\varepsilon \mathbf{d})\right]-\left[\mathbf{g}\left(\mathbf{w}_{0}\right)-\mathbf{H}(\varepsilon \mathbf{d})\right]}{2 \varepsilon}
\end{aligned}
$$

Computing Hd_{j}

$$
\begin{aligned}
& \frac{\mathbf{g}\left(\mathbf{w}_{0}+\varepsilon \mathbf{d}\right)-\mathbf{g}\left(\mathbf{w}_{0}-\varepsilon \mathbf{d}\right)}{2 \varepsilon} \approx \frac{2 \varepsilon \mathbf{H d}}{2 \varepsilon} \\
& \frac{\mathbf{g}\left(\mathbf{w}_{0}+\varepsilon \mathbf{d}\right)-\mathbf{g}\left(\mathbf{w}_{0}-\varepsilon \mathbf{d}\right)}{2 \varepsilon} \approx \mathbf{H d}
\end{aligned}
$$

So:

$$
\mathbf{H d}=\lim _{\varepsilon \rightarrow 0} \frac{\mathbf{g}\left(\mathbf{w}_{0}+\varepsilon \mathbf{d}\right)-\mathbf{g}\left(\mathbf{w}_{0}-\varepsilon \mathbf{d}\right)}{2 \varepsilon}
$$

$\alpha_{j}=\frac{-\mathbf{d}_{j}^{T} \mathbf{g}_{j}}{\mathbf{d}_{j}^{T} \mathbf{H d}}{ }_{j}$ now just requires two gradient evaluations...

New conjugate gradient algorithm

1. Choose an initial weight vector \mathbf{w}_{1} and let $\mathbf{d}_{1}=-\mathbf{g}_{1}$.
2. Compute α_{j} :

$$
\alpha_{j}=-\mathbf{d}_{j}^{T} \mathbf{g}_{j} / \mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}, \forall \eta
$$

3. Let $\mathbf{w}_{j+1}=\mathbf{w}_{j}+\alpha_{j} \mathbf{d}_{j}$.
4. Evaluate \mathbf{g}_{j+1}.
5. Let $\mathbf{d}_{j+1}=-\mathbf{g}_{j+1}+\beta_{j} \mathbf{d}_{j}$ where,

$$
\beta_{j}=\mathbf{g}_{j+1}^{T}\left(\mathbf{g}_{j+1}-\mathbf{g}_{j}\right) / \mathbf{g}_{j}^{T} \mathbf{g}_{j}
$$

6. Let $j=j+1$ and go to step 2 .

Any problems?

What about $\mathrm{H}<0$?

$\alpha_{j}=-\mathbf{d}_{j}^{T} \mathbf{g}_{j} / \mathbf{d}_{j}^{T} \mathbf{H d}{ }_{j}$ might take uphill steps...

Idea:

- Replace \mathbf{H} with $\mathbf{H}+\lambda \mathbf{I}$
- So:

$$
\alpha_{j}=\frac{-\mathbf{d}_{j}^{T} \mathbf{g}_{j}}{\mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}+\lambda\left\|\mathbf{d}_{j}\right\|^{2}}
$$

What the \#\$@! is this?

Model trust regions

Question: When should we "trust"

$$
\alpha_{j}=\frac{-\mathbf{d}_{j}^{T} \mathbf{g}_{j}}{\mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}} \boldsymbol{?}
$$

Examining λ

$$
\alpha_{j}=\frac{-\mathbf{d}_{j}^{T} \mathbf{g}_{j}}{\mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}+\lambda\left\|\mathbf{d}_{j}\right\|^{2}}
$$

- What is the meaning of λ being very large?
- What is the meaning of λ being very small (i.e. zero)?

Model trust regions

Question: When should we "trust"

$$
\alpha_{j}=\frac{-\mathbf{d}_{j}^{T} \mathbf{g}_{j}}{\mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}} \boldsymbol{?}
$$

1. H is positive definite (denominator >0)
2. Local quadratic assumption is good

Near a mountain, not a valley

Look at denominator of:

$$
\begin{aligned}
& \alpha_{j}=\frac{-\mathbf{d}_{j}^{T} \mathbf{g}_{j}}{\mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}+\lambda\left\|\mathbf{d}_{j}\right\|^{2}} \\
& \delta=\mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}+\lambda\left\|\mathbf{d}_{j}\right\|^{2}
\end{aligned}
$$

If $\delta<0$, increase λ to make denominator positive.

How to increase λ ?
How about:

$$
\lambda^{\prime}=2\left(\lambda-\frac{\delta}{\left\|\mathbf{d}_{j}\right\|^{2}}\right)
$$

so that:

$$
\begin{aligned}
& \delta^{\prime}=\delta+\left(\lambda^{\prime}-\lambda\right)\left\|\mathbf{d}_{j}\right\|^{2} \\
& \delta^{\prime}=\delta+\left[2\left(\lambda-\frac{\delta}{\left\|\mathbf{d}_{j}\right\|^{2}}\right)-\lambda\right]\left\|\mathbf{d}_{j}\right\|^{2} \\
& \delta^{\prime}=\delta-2 \delta+\lambda\left\|\mathbf{d}_{j}\right\|^{2}=-\delta+\lambda\left\|\mathbf{d}_{j}\right\|^{2}
\end{aligned}
$$

New effective denominator value

$$
\begin{aligned}
& \lambda^{\prime}=2\left(\lambda-\frac{\delta}{\left\|\mathbf{d}_{j}\right\|^{2}}\right) \\
& \delta^{\prime}=-\delta+\lambda\left\|\mathbf{d}_{j}\right\|^{2}
\end{aligned}
$$

So:

$$
\begin{aligned}
& \delta^{\prime}=-\left(\mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}+\lambda\left\|\mathbf{d}_{j}\right\|^{2}\right)+\lambda\left\|\mathbf{d}_{j}\right\|^{2} \\
& \delta^{\prime}=-\mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j} \text { (what does this mean?) }
\end{aligned}
$$

Goin' up? I'll show you...

Since the new denominator is:

$$
\delta^{\prime}=-\mathbf{d}_{j}^{T} \mathbf{H d}{ }_{j}
$$

the new value of α_{j} is:

$$
\begin{aligned}
& \alpha_{j}^{\prime}=\frac{-\mathbf{d}_{j}^{T} \mathbf{g}_{j}}{-\mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}}=\frac{\mathbf{d}_{j}^{T} \mathbf{g}_{j}}{\mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}} \\
& \alpha_{j}^{\prime}=-\alpha_{j} \\
& \mathbf{H}>0 \alpha_{j}
\end{aligned}
$$

Model trust regions

Question: When should we "trust"

$$
\alpha_{j}=\frac{-\mathbf{d}_{j}^{T} \mathbf{g}_{j}}{\mathbf{d}_{j}^{T} \mathbf{H d}} \boldsymbol{?}
$$

1. H is positive definite (denominator >0)
2. Local quadratic assumption is good

How to test local quadratic assumption?

Check:

$$
\Delta=\frac{E\left(\mathbf{w}_{j}\right)-E\left(\mathbf{w}_{j}+\alpha_{j} \mathbf{d}_{j}\right)}{E\left(\mathbf{w}_{j}\right)-E_{Q}\left(\mathbf{w}_{j}+\alpha_{j} \mathbf{d}_{j}\right)}
$$

What's E_{Q} ?

$$
E_{Q}(\mathbf{w})=E\left(\mathbf{w}_{0}\right)+\left(\mathbf{w}-\mathbf{w}_{0}\right)^{T} \mathbf{b}+\frac{1}{2}\left(\mathbf{w}-\mathbf{w}_{0}\right)^{T} H\left(\mathbf{w}-\mathbf{w}_{0}\right)
$$

So:

$$
E_{Q}\left(\mathbf{w}_{j}+\alpha_{j} \mathbf{d}_{j}\right)=E\left(\mathbf{w}_{j}\right)+\alpha_{j} \mathbf{d}_{j}^{T} \mathbf{g}_{j}+\frac{1}{2} \alpha_{j}^{2} \mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}
$$

What does Δ tell us?

Scaled conjugate gradient algorithm (α_{j}, λ)

1. Compute $\delta=\mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}+\lambda\left\|\mathbf{d}_{j}\right\|^{2}$.
2. If $\delta<0$, set $\lambda=2\left(\lambda-\delta /\left\|\mathbf{d}_{j}\right\|^{2}\right)$.
3. Compute $\alpha_{j}=-\mathbf{d}_{j}^{T} \mathbf{g}_{j} /\left(\mathbf{d}_{j}^{T} \mathbf{H} \mathbf{d}_{j}+\lambda\left\|\mathbf{d}_{j}\right\|^{2}\right)$.
4. Compute Δ :
5. $\Delta=\frac{E\left(\mathbf{w}_{j}\right)-E\left(\mathbf{w}_{j}+\alpha_{j} \mathbf{d}_{j}\right)}{E\left(\mathbf{w}_{j}\right)-E_{Q}\left(\mathbf{w}_{j}+\alpha_{j} \mathbf{d}_{j}\right)}$
6. If $\Delta>0.75$, set $\lambda=\lambda / 2$, else if $\Delta<0.25$, set $\lambda=4 \lambda$.

Scaled conjugate gradient algorithm

1. Choose an initial weight vector \mathbf{w}_{1} and let $\mathbf{d}_{1}=-\mathbf{g}_{1}$.
2. Compute α_{j}, λ :

$$
\alpha_{j}=\frac{-\mathbf{d}_{j}^{T} \mathbf{g}_{j}}{\mathbf{d}_{j}^{T} \mathbf{H} d_{j}+\lambda\left\|\mathbf{d}_{j}\right\|^{2}}, \forall \eta
$$

3. Let $\mathbf{w}_{j+1}=\mathbf{w}_{j}+\alpha_{j} \mathbf{d}_{j}$.
4. Evaluate \mathbf{g}_{j+1}.
5. Let $\mathbf{d}_{j+1}=-\mathbf{g}_{j+1}+\beta_{j} \mathbf{d}_{j}$ where,

$$
\beta_{j}=\mathbf{g}_{j+1}^{T}\left(\mathbf{g}_{j+1}-\mathbf{g}_{j}\right) / \mathbf{g}_{j}^{T} \mathbf{g}_{j}
$$

6. Let $j=j+1$ and go to step 2 .

Today's Discussion

To date:

- Neural networks: what are they
- Backpropagation: efficient gradient computation
- Advanced training: conjugate gradient

Today:

- CG postscript: scaled conjugate gradients
- Adaptive architectures
- My favorite neural network learning environment
- Some applications

Adaptive architectures

Standard learning:

Adaptive approach:

Adaptive architectures

Problem: How do we do this?

Two main approaches:

- Pruning (destructive algorithms)
- Growing (constructive algorithms)

Pruning algorithms

Basic idea:

- Start with really "big" network
- Eliminate "unimportant" weights/nodes
- Retrain neural network

Advantages?
Disadvantages?
Problems?

Weight elimination schemes

Idea: eliminate weights based on "saliency."

Definition: saliency $S_{i}=$ relative importance of weight ω_{i}

Any suggestions?

Saliency

First guess: $S_{i}=\left\|\omega_{i}\right\|$

Will this work?

A better idea for saliency

Try to find relationship:

$$
\delta E=\delta \mathbf{w}
$$

How can we do this?

- Brute force:

$$
\begin{aligned}
& \delta E_{i}=\left\|E(\mathbf{w})-E\left(\mathbf{w}+\delta \mathbf{w}_{i}\right)\right\| \\
& \delta \mathbf{w}_{i}=\left[0, \ldots, 0,-\omega_{i}, 0, \ldots, 0\right] \text { (problems?) }
\end{aligned}
$$

Why won't this measure of saliency work

More on saliency

Use ol' reliable: 2nd order Taylor approximation
$E(\mathbf{w})=E\left(\mathbf{w}_{0}\right)+\left(\mathbf{w}-\mathbf{w}_{0}\right)^{T} \nabla E\left(\mathbf{w}_{0}\right)+\frac{1}{2}\left(\mathbf{w}-\mathbf{w}_{0}\right)^{T} H\left(\mathbf{w}-\mathbf{w}_{0}\right)$

Now:

$$
\begin{aligned}
& \delta \mathbf{w}=\mathbf{w}_{1}-\mathbf{w}_{0}\left(w h a t \text { are } \mathbf{w}_{1} \text { and } \mathbf{w}_{0} ?\right) \\
& \delta E=E\left(\mathbf{w}_{1}\right)-E\left(\mathbf{w}_{0}\right)=\delta \mathbf{w}^{T} \nabla E\left(\mathbf{w}_{0}\right)+\frac{1}{2} \delta \mathbf{w}^{T} \mathbf{H} \delta \mathbf{w}
\end{aligned}
$$

Can we simply this?

Optimal Brain Damage

$$
\delta E=\frac{1}{2} \delta \mathbf{w}^{T} \mathbf{H} \delta \mathbf{w}
$$

1. Idea: assume Hessian is diagonal

$$
\delta E=\frac{1}{2} \sum_{i} H_{i i} \delta \omega_{i}^{2}
$$

2. Resulting saliency:

$$
S_{i}=\frac{H_{i i} \omega_{i}^{2}}{2}
$$

3. Eliminate weights with smallest saliency
4. Retrain remaining weights

Optimal Brain Surgery

- Smarter idea: don't assume Hessian is diagonal
- Eliminate need for retraining

Now, assume you want to remove weight ω_{i} :

We want to minimize,

$$
\delta E=\frac{1}{2} \delta \mathbf{w}^{T} \mathbf{H} \delta \mathbf{w}
$$

subject to constraint

$$
\delta \omega_{i}=-\omega_{i}(w h y ?)
$$

Optimal Brain Surgery

Minimize:

$$
L=\frac{1}{2} \delta \mathbf{w}^{T} \mathbf{H} \delta \mathbf{w}+\lambda\left(\delta \omega_{i}+\omega_{i}\right)
$$

...

Solution:

$$
\begin{aligned}
& \delta \mathbf{w}=-\frac{\omega_{i}}{\left[\mathbf{H}^{-1}\right]_{i i}} \mathbf{H}^{-1} \mathbf{u}_{i} \\
& \delta E_{i}=\frac{1}{2} \frac{\omega_{i}^{2}}{\left[\mathbf{H}^{-1}\right]_{i i}} \text { (what's the problem?) }
\end{aligned}
$$

Optimal Brain Surgery

1. Evaluate the inverse Hessian \mathbf{H}^{-1}.
2. Evaluate:

$$
\delta E_{i}=\frac{1}{2} \frac{\omega_{i}^{2}}{\left[\mathbf{H}^{-1}\right]_{i i}}
$$

3. Eliminate weight $\omega_{i}, \delta E_{i}<\delta E_{j}, i \neq j$.
4. Update all weights (no retraining)

$$
\delta \mathbf{w}=-\frac{\omega_{i}}{\left[\mathbf{H}^{-1}\right]_{i i}} \mathbf{H}^{-1} \mathbf{u}_{i}
$$

Node elimination scheme

Idea: Node pruning - need saliency of node, not weight

Define:

$$
z_{j}=\gamma\left(\alpha_{j} \sum_{i} \omega_{i j} z_{i}\right)\left(\text { output of unit } j \text { with addition of } \alpha_{j}\right)
$$

Then:

$$
\begin{aligned}
& s_{j}=E\left(\alpha_{j}=1\right)-E\left(\alpha_{j}=0\right) \\
& s_{j} \approx \partial E /\left.\partial \alpha_{j}\right|_{j=1}
\end{aligned}
$$

Growing algorithms

Basic idea:

- Start with really small network
- Add hidden units as required

Advantages?
Disadvantages?
Problems?

Growing algorithms

Basic idea:

- Start with really small network
- Add hidden units as required

Advantages? (reduced training cost, optimized networks)
Disadvantages? (?)
Problems? (arrangement of added weights/nodes)

Cascade growing: initial network

Cascade growing: second hidden unit

Cascade growing: alternative visualization

Cascade growing: alternative visualization

Cascade growing: alternative visualization

Cascade neural networks
Do you ever need deeply nested structure?

Two-spiral problem: best fixed architecture

Two-spiral problem: cascade architecture

Two-spiral problem: cascade architecture

${ }^{5}$

Today's Discussion

To date:

- Neural networks: what are they
- Backpropagation: efficient gradient computation
- Advanced training: conjugate gradient

Today:

- CG postscript: scaled conjugate gradients
- Adaptive architectures
- My favorite neural network learning environment
- Some applications

NN environment that rocks...

Two problems with traditional neural networks:

- Fixed architecture
- Difficult to guess "appropriate" architecture
- Functional complexity requirements can vary widely
- Slow learning algorithms (e.g. backprop, quickprop)

My neural network approach:

- Flexible architecture
- Cascade neural networks
- Variable activation functions
- Fast learning algorithm (e.g. NDEKF)

Cascade neural networks with nodedecoupled extended Kalman filtering (NDEKF)

Types of problems investigated:

- Continuous function approximation
- Dynamic system modeling

Cascade learning and NDEKF combine to result in better error convergence.

Additional flexibility: variable activations

Cascade neural networks already offer great flexibility...
However, why restrict candidate activation functions?

- Sigmoidal activation functions may not offer best results.
- Sinusoidals and/or others may be more appropriate:

Additional flexibility: variable activations

For continuous mapping problems:

- Variable networks converge to better minima.
- Sinusoidal networks - about same as variable networks.

Decoupled extended Kalman filtering

Key insight:

- Some weights are more interdependent than others.
- Group weights into groups.
- Ignore interdependence between groups of weights (block diagonalize conditional error covariance matrix).

Better learning: extended Kalman filtering

View neural network training problem as system identification problem.

- Let weights of neural network represent state of nonlinear dynamic system.
- Let neural network be that nonlinear system.

Extended Kalman filter training:

- Advantage: Explicitly accounts for pairwise interdependence of weights with conditional error covariance matrix.
- Disadvantage: $O\left(W^{2}\right)$ computational complexity, where W is number of weights in network.

Node-decoupled extended Kalman filtering

Key insight: Decouple (group) weights by node: Natural formulation for cascade learning

- One weight group for current hidden unit
- One additional weight group for each output unit

- Matrix operations reduce to vector operations.
- Computational complexity reduces to $O\left(\sum_{i} W_{i}^{2}\right)$.

Computational complexity

NDEKF requires inversion of an $m \times m$ matrix, ($m=$ number of outputs)

Cascade learning with NDEKF typically requires less than 10 epochs/hidden unit.

- Several orders of magnitude less than backprop or quickprop approaches.
- Computational complexity similar to fixed-architecture networks trained with NDEKF.

Computational complexity

Ratio of computational cost between a cascade/NDEKF epoch and an equivalent fixed-architecture/backprop epoch (for few outputs):

- Example: for 400 inputs and 20 hidden units ratio is less than 100.
- Example: for 20 or less inputs, ratio is less than 10.

Experimental studies

Four learning approaches:

Symbol	Explanation
$F q$	fixed-architecture training with quickprop
$C q$	cascade-network training with quickprop
$F k$	fixed-architecture training with NDEKF
$C k$	cascade-network training with NDEKF

Experimental studies

Key questions:

- Do we improve learning using NDEKF by going from fixed-architecture networks to cascade-type learning?
- Do we improve cascade learning by switching from quickprop (simple training) to NDEKF?
- Are any of more advanced methods ($C q, F k, C k$) an improvement over baseline Fq (fixed-architecture/ quickprop) training method?

Five learning problems

Problem (A): smooth, continuous FA

$$
\begin{aligned}
& f_{1}(x, y, z)=z \sin (\pi y)+x \\
& f_{2}(x, y, z)=z^{2}+\cos (\pi x y)-y^{2}
\end{aligned}
$$

Problem (B): nonsmooth, continuous FA

Five learning problems

Problem (C): deterministic dynamic system

$$
\begin{aligned}
& u(k+1)=f[u(k), u(k-1), u(k-2), x(k), x(k-1)] \\
& f\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]=\frac{x_{1} x_{2} x_{3} x_{5}\left(x_{3}-1\right)+x_{4}}{1+x_{3}^{2}+x_{2}^{2}}
\end{aligned}
$$

Problems (D) \& (E): chaotic Mackey-Glass dynamic system $(t+6)$ and ($t+84$)

Learning results (avg. RMS error)

	$C k$	$F k$	$C q$	$F q$
(\boldsymbol{A})	$42.1(4.2)$	127.1 (37.3)	$94.5(6.2)$	N / A
(\boldsymbol{B})	$7.4(2.0)$	$12.4(3.2)$	$14.5(4.0)$	$65.0(18.2)$
(\boldsymbol{C})	$15.6(1.5)$	$20.7(4.8)$	$29.9(2.0)$	N / A
(\boldsymbol{D})	$4.6(0.6)$	$10.2(4.0)$	$9.4(2.7)$	$16.7(2.2)$
(\boldsymbol{E})	$42.0(5.9)$	$60.5(3.1)$	$72.6(16.3)$	$90.3(8.3)$

Learning results

Why is Ck better than Fk?

"NDEKF at times requires a small amount of redundancy in network in terms of total number of nodes in order to avoid poor local minima..."— [Puskorius \& Feldkamp, 1991]

Why is $C k$ better than $C q$?

As hidden units are added in cascade learning, NDEKF is better equipped to handle increasingly correlated weights to new hidden units.

Cascade/NDEKF advantages/disadvantages

- Cascade learning and NDEKF complement each other well.
- Cascade learning minimizes the potentially detrimental effect of node-decoupling.
- Cascade learning minimizes the problem of poor local minima in NDEKF.
- NDEKF better handles the increased correlation of weights as the number of hidden units increases in cascade learning.
- NDEKF requires no learning parameter tuning.
- Cascade/NDEKF converges efficiently to better local minima than either cascade or NDEKF by themselves.
- Disadvantage: computationally efficient with few outputs.

Problem (C)

Today's Discussion

To date:

- Neural networks: what are they
- Backpropagation: efficient gradient computation
- Advanced training: conjugate gradient

Today:

- CG postscript: scaled conjugate gradients
- Adaptive architectures
- My favorite neural network learning environment
- Some applications

