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Introduction to Maximum Likelihood Estimation

 

1. General formulation

 

A. Problem statement

 

Given data set ,  that is identically and independently distributed, and a paramet-
ric density function (pdf)  with parameters , find  such that:

, . (1)

That is, we want to find parameter values  that maximizes the joint likelihood of all the data given the
probability density function. For example, for the case of a one-dimensional normal density,

(2)

 

B. Maximum-likelihood estimation

 

Let us first write an expression for , given the assumption that the data are identically and indepen-
dently distributed:

(3)

The product in equation (3) can be converted to a sum by taking the natural logarithm of both sides of the
equation:

(4)

[Note: .]

Typically, equation (4) is easier to maximize; note, however, that maximizing equation (4) with respect to 
also maximizes equation (3) since the logarithm function is monotonic and increasing. One approach to max-
imizing the log-likelihood of  with respect to  is to take the gradient with respect to the parameters ,
setting the resulting set of equations equal to zero, and solving for the parameters :

(5)

(6)

(7)

Whether or not equation (7) is easy or difficult to solve for  largely depends on the functional form of the
likelihood function . Note, however, that equation (7) is easy to solve for a large family of exponential
probability density functions. In such cases, a closed-form solution exists for the maximum-likelihood
parameter estimates. In other cases, equation (7) cannot be solved directly which will lead us to the develop-
ment of an iterative algorithm for maximum-likelihood estimation known as Expectation-Maximization.
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2. Maximum-likelihood estimation examples

 

A. Univariate Normal density

 

Problem statement: Given a one-dimensional set of identically and independently distributed data ,
, compute the maximum-likelihood estimates for the parameters  of the Gaussian proba-

bility density function.

Solution: The parameters for a one-dimensional Gaussian are given by,

(8)

and the likelihood function is given by,

(9)

The log-likelihood of  given  is given by,

(10)

To maximize equation (10) with respect to  and , we now compute the derivatives with respect to each,
set the derivatives equal to zero, and solve for the two parameters:

(11)

(12)

(13)

(14)

Now, solving for :

(15)

(16)

(17)
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(18)

Thus, the maximum-likelihood estimates for  and  are given by,

(19)

(20)

 

B. Multivariate Normal density

 

The results in equations (19) and (20) generalize to the -dimensional Normal density,

(21)

and -dimensional data :

(22)

(23)

 

C. Non-Gaussian density

 

Problem statement: Given a one-dimensional set of identically and independently distributed data ,
, compute the maximum-likelihood estimate for the parameter  of the following probabil-

ity density function:

(24)

The likelihood function  in equation (24) is plotted in Figure 1 below.

Solution: The log-likelihood of  given  is given by,

(25)

To maximize equation (25) with respect to , we now compute the derivative with respect to , set the deriv-
ative equal to zero, and solve for the unknown parameter:

(26)
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(27)

(28)

(29)
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