EEL6825: Pattern Recognition Introduction to Maximum Likelihood Estimation

Introduction to Maximum Likelihood Estimation

1. General formulation
A. Problem statement

Given data seX = {xj} ,10{1,2,...,n} thatis identically and independently distribd, and a paramet-
ric density function (pdfp(x|8) with parameter®, find 6L such that:

p(X|80) = p(X|6), OA. 1)

That is, we vant to fnd parameteralues8U that maximizes the joint lihood of all the data g&n the
probability density function. & example, for the case of a one-dimensional normal density
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B. Maximum-likelihood estimation

Let us frst write an gpression forp(X|0) , given the assumption that the data are identically and indepen-

dently distriluted:
n
p(X18) = [ p(x;|8) 3
i=1
The product in equatiof8) can be coverted to a sum by taking the naturalddthm of both sides of the
equation:
n
Inp(X|6) = % Inp(xj‘e) 4)

j=1
[Note: In(ab) = In(a) + In(b) .]

Typically, equation(4) is easier to maximize; note,wever, that maximizing equatio() with respect td@

also maximizes equatidf) since the logrithm function is monotonic and increasing. One approach to max-
imizing the log-likelihood of X with respect td is to tale the gradient with respect to the parameéers
setting the resulting set of equations equal to zero, and solving for the parémeters

Uelnp(X(6) = 0 5)

Os 5 Inp(x;|€) = 0 (6)
j=1

S elnp(x;|8) = 0 (7)

=1

Whether or not equatiofY) is easy or dffcult to sole for 8 largely depends on the functional form of the
likelihood functionp(x|8) . Note, havever, that equatioif7) is easy to sok for a lage family of exponential
probability density functions. In such cases, a closed-form solukists efor the maximume-liglihood
parameter estimates. In other cases, equétiorannot be sokd directly which will lead us to the asop-
ment of an iteratie algorithm for maximum-liglihood estimation knen as Expectation-Maximization.
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2. Maximum-likelihood estimation examples
A. Univariate Normal density

Problem statemenGiven a one-dimensional set of identically and independently distdlataX = {xj} ,
i0{1,2,...,n}, compute the maximum-kihood estimates for the paramet@rof the Gaussian proba-
bility density function.

Solution The parameters for a one-dimensional Gaussian aea by

_|m
-l

and the lilelihood function is gien by

_ 1 —(x—W)?
P(I©) = ——exp| = | ©)

The log-likelihood of X given 8 is given by

2 Inp(xj‘e)

i=1

n —(x. — 2
2 {M—Ino—lnﬁ}

2
<1 20

Inp(X|0)
(10)

To maximize equatiofil0) with respect tqu ando?, we nav compute the deratives with respect to each,
set the deviatives equal to zero, and selfor the tvo parameters:

d C (-0

—Inp(X|8) = ! =0 (11)
ou j; 02

S (4-u0 =0 (12)
i=1

%% XH— nud=0 (13)
05,0

u=13 % (14)

Now, solving foro?2:

n _11)2
a"_olnp(xw) =y F—)(J—G;i)-—ﬂ -0 (15)
=1
> [(Xj—H)Z—OZ] =0 (16)
i=1
§ . ZD 2
EZ (Xj—u) B—no =0 a7
=1
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(@) =23 (-2 (18)

1

Sk

||M3

j
Thus, the maximum-li&lihood estimates fan ando? are gven by

n
_1
W=02% (19)
i=1
1 n
2 -2 Y
02 =25 (-h (20)
i=1
B. Multivariate Normal density
The results in equatior{$9) and(20) generalize to the -dimensional Normal density
PO = s exp|—5(x- W)= x - @)
(zn)d/Z‘z‘llz 2
andd-dimensional dat = {Xy, X5, ..., X}
1 22
H = F] Z XJ ( )
i=1
1 n
S R CRDICEINY (23)

1

C. Non-Gaussian density

Problem statemenGiven a one-dimensional set of identically and independently distdigataX = {xj} ,
i0{1,2,...,n}, compute the maximum-kihood estimate for the parameteiof the follaving probabil-
ity density function:

%(y+1)xv O<x=<ly>-1

PExlY) = o elsewhere (24)
The likelihood functionp(x|y) in equation(24)is plotted inFigure 1belaw.
Solution The log-likelihood of X giveny is given by
n
Inp(Xly) = % Inp(xj|y)
=1 (25)

Z [In(y +1) +yiIn(x)]
ji=1

To maximize equatio(25) with respect to/, we nav compute the derative with respect ty, set the dev
ative equal to zero, and selvor the unknan parameter:

d e 1 _
5y MPOXIY) = j;[—(ym 5 Inex)| = 0 (26)
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