A closer look: part #2 (visualization as a function of EM trajectory)

Plot P(ω_i | θ, x_j) for sample point as a function of EM trajectory

Individual point

gbases = Show[gdata, PlotMeansTwo[#, pr, colors, nS], nS] & /@ em2 ;  PlotExampleOne[xtst, #[[1]], colors, #[[2]], 1, yS] & /@ Transpose[{em2, gbases}] ;

[Graphics:../HTMLFiles/index_184.gif]

Global visualization as a function of EM trajectory

Initial computation

Computation and visualization

Table[ContourPlot[fncs[[i]], {x, -1, 1}, {y, -1, 1}, PlotPoints25, FrameTicksN ...  (List @@   colors[[1]]) + (1 - #) List @@ colors[[2]]) &)], {i, 1, Length[fncs]}] ;

[Graphics:../HTMLFiles/index_194.gif]


Created by Mathematica  (September 8, 2003)