Local definitions

Specialized data generation and visualization functions

AnnularRegion[center_, r1_, r2_, n_] := Module[{tst, x1, x2, count, xd, t1, t2, range1, range2 ... )^2]) < r2 && tst > r1, xd[[count ++]] = {t1, t2}] ] ; xd] ;

AntiAnnularRegion[center_, r1_, r2_, n_] := Module[{tst, x1, x2, count, xd, t1, t2, range1, ra ... (t2 - x2)^2]) > r2 || tst < r1, xd[[count ++]] = {t1, t2}] ] ; xd] ;

Region definitions

c1 = {.5, .5} ; (* center of annular region *)rr1 = .12 ; (* inner radius *)rr2 = .35 ; (* outer radius *)

DrawAnnularRegion2[center_, r1_, r2_, pr_, color_:LightPink, color2_:White, opt___] :=  ... 754;Automatic, PlotRange {{xmin, xmax}, {ymin, ymax}}, FrameTrue, opt] ] ;

specialClassPlot := Show[Graphics[{class1Color, Rectangle[{0, 0}, {1, 1}]}],   DrawA ...  rr1, rr2, pr, class2Color, class1Color, nS] , AspectRatio->Automatic, FrameTrue, nF] ;

Visualize annular region in 2d

Draw annular region in 2d

RowBox[{RowBox[{DrawAnnularRegion[center_, r1_, r2_, pr_, color_:LightPink, opt___], :=, ɯ ... 62754; {{xmin, xmax}, {ymin, ymax}}, ,, FrameTrue, ,, opt}], ]}]}]}], , ]}]}], ;}]

Plot multiple results for annular region

AnnularAllPlot[center_, r1_, r2_, {μ_, Σ_, priors_}] := Module[{pr, g1, g2,  ... 2371;gb = Show[g1, g3] ; Show[GraphicsArray[{{ga, gb}, {g4, g5}}], yS, imSize] ] ;


Created by Mathematica  (October 9, 2003)