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Vector Quantization: a Limiting Case of EM

1. Intr oduction & definitions

Assume that you are\gin a data seX = {x;}, j0{1,2,...,n}, of n d-dimensional ectors.The vector
guantization(VQ) problem requires that Wené a set oprototypevectorsZ = {z;} ,i0{1,2,...,L}, L«n,
such that the total distortidD ,

n
D = JZlmiin dist(x;, ;) 1)
is minimized. In equatiofi), dist(xj, z;) is a distance metric\ggn by either
dist(x, z) = ||[x—2z|| (Euclidean distance), @)
or, more generally

dist(x, z) = (x—2)TQ(x—2) (3)

whereQ is a positie-defnite, symmetric matrixQQ > 0. Weighting the distance along each dimension through
the Q matrix can normalize the distance measure in equéjonmith respect to dierent scaling along dérent
dimensions of th¢ xj} vectors.

The \ectorsZ are knavn as the/Q codebookTwo applications of ector quantization are (1) redundant data
compression, and (2) approximating continuous probability digtoit,s with approximate discrete ones (i.e. his-
tograms), where eaok] is replaced with the labélsuch that,

dist(xj, z)< dist(xj, z), Ol 4)

We will see later that this is especially useful in hidden Markodeling.

2. The k-means algorithm

A. Algorithm definition

The k-means algorithm is an algorithm for generatihgheVQ codebook of prototypeectors. It is guaran-
teed to coverge to a local minimum ob . The algorithm proceeds as folle:

1. Initialization : Choose some initial setting for thecodes{ z;} in theVQ codebook. One &y to do this
is to initialize the{ z;} to some random subsetlofvectors inX .

2. Classification: Classify each<j into cluster or clasey; such that,

dist(xj, z)< dist(xj, z), Ol. (5)
& | 3. Codebook update Update the code fowery clusterw, by computing its centroid,
S
- 10 0
zZ = = X (6)
! n; Dx gwi o

]

wheren; is the number ofa(:torsxj in clusterow, .

4. Termination: Stop when the distortio® has decreased belsome threshold el, or when the algo-
rithm has cowerged to a constantvel of distortion.
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B. Example #1

Here, we inestigate the covergence properties of tHe-means algorithm with a simpleample. LetX be a
set ofn = 1000 2-dimensional gctors{ xj} ,j0{1,2,...,1000} , distributed uniformly in the unit square,

0<X, X< 1 (7

as shwn in Figure 1below.
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Assuming infnite data, the distortion for wcodes{ z,, z,} is given by

D(zy,2,) = Jdist(xj,zl)dA1+£dist(xj,zz)dAz (8)

where A; denotes the area in the unit square that is part of cluster { 1, 2} . Therefore, the globally
optimal solution{ le, zZE} — in other vords, the minimum-distortion solution — fordveodes{ z,, z,}

is given by
{z,02z,8 = argmin [D(z,, 2,)] 9)
24, 2,}
Denoting,
z, = {211,235} andz, = {z,), 2,0}, (10)

it appears thaD(z,, z,) must be optimizedwer four independent scalar§z,,, z;,, Z,1, Z,,} . Since the
data is distribted symmetrically aboutl/ 2, 1/2), the optimal prototypeectors{ zlﬂ, ZZE} are, havever,
constrained hy

ZZlD =1 _zll|:| (12)
ZZZD = 1-— 212|:| (12)

Therefore, we canxelicitly plot D(z;, 1-2;), wherel = {1, 1}, as a function of z,;, z;,} , as shan in
Figure 2below. In Figure 2 red shades indicate the smallest distortions, and we see that there are four glo-
bally optimal solutiong z,1] z,[} :

0 10 d 3 0 104 30

{z,Az,0} = E%’ a0 %, ZEE' {z,d2,0} = E%' a0 %, ZEE (13)
O 1 10 011 gt

{z,Az,0} = 55%, >0 a?, Egg, {z,d2,0} = Ea%, >0 a% 5%5 (14)
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211

Figure2

Note that the four solutions are the samxegegpt for a switch in the twades, as well as a switch in the proto-
type \ector labels.

Now that we knav what the theoretical minimum-distortiondveode solutions are, we conduct the faHo
ing experimentWe run thek means algorithm for 100 initial random prototypes in the iaterv

(0,0)<z,<(1,1),i0{1, 2} (15)

and obserg the \alues of{ z;, z,} to which the algorithm coerges.Figure 3belawv plots the results of the
100 trials. Note that all 100 trials cgmge to approximately the optimal solutiong18) and(14). The deci-
sion rgions between clags; andw, for each solution paifz,, z,} is given by either

X; =05 orx,=05. (16)
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C. Example #2

Here, we inesticate the covergence properties of tHe-means algorithm for the uniform distuition X of
1000 points in the annulargien shevn in Figure 4belowv, where the inside and outside radii areegi by
r, = 012 andr, = 0.35, respectiely.

Since the distribtion is radially symmetric about the poifit/ 2, 1/2), the locus of globally optimal (mini-
mum-distortion) 2-code solutions is necessarily described by the circle,

(X, —1/2)2+ (x,—1/2)? = r? (17)

Once agin assuming infiite data, we can compute the globally optinglue forr by recognizing that the
two classeso; andw, can be described by the solid and dashed lines as indicdtenliie 4 Note that the
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delineated rgions are only one possible descriptiorugf andw, ; the r@ions can, of course, be rotated by
an angled, 0 <0 < 21, without loss of optimality

To computer we nav simply hae to compute the centroid of the solid-lingiosmn — lets call this rgion
A; — in the abwe figure so that,

= A x,dA v Of dA, O L 18
r = E}IXZ lD EJ lg_i ( )
1 1
1789 _
= 222 ~0.615 (19)

Thus, the set of globally optimal solutions for the coles z,} is given by
{z;0 2,03 = {(172+rcosb,1/2+rsinB), (1/2+rcos[0+ 1], 1/2+rsin[6+T])}, 06. (20)

We naw conduct the follwing experimentWe run thek -means algorithm forye initial random codes in the
interval,

(0,0)<z<(1,1),i0{12} 1)

and obsere the alues of{ z;, z,} to which the algorithm caerges.The figure belov plots the results of the
five trials. Note that all ¥ trials comerge to approximately the optimal solution locug20).
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D. Convergence

In the preious two examples, we shwed that thek -means algorithm ceerges to good nearptimal solu-
tions for some simple, idealized cases. It turns out that thieegmmce is, indct, guaranteed, since tke
means algorithm is simply a limiting case of the EM algorithm for estimating the parameters of a mixture of
Gaussians. Recall that for the EM algorithm, the reestimation of the medidentical to thez, here) is

given by
n
P(coi‘xj)xj
W= S (22)
2 Plorx)

i=1

Assuming equal prior®(w;) and equal aatrianceszcyi2 = 02, it can be easily shen that,

n
> P((Joi‘xj)xj
, | £ 1
limuw = lim /B2 — | = 10 X-DZ , s
o2 ., Oul 02,0 n ni ] gmi i i ( )
> P(mi‘xj) j
i=1
Intuitively, aso? - 0,
POXj 1) » P(xj| k), T # 1, where, .
D(Xj. ki) < DOx;. 1) (25)

so that the Iiblihoodsp(xj‘ul) , I Z1 become insignifiantly small compared tp(xj‘ui) .

Figure 6 for example, illustrates the ceargence trajectory for théQ and EM algorithms for one of the 100
trials in xkample #1. Note that théQ and EM trajectories appeagry similar forc = 0.001=0.

Since thek-means/Q algorithm is a limiting case of the EM algorithm, its eemgence is also guarantebd.
And, because théQ reestimation equations are muelster to compute then the EM reestimation equations,
theVQ algorithm is sometimes preferred in practice.
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Example #/Q cowergence Figure 6 Example #1 EM coremgence for
0 = 0.1 ando = 0.001.

1. One potential psblem inVQ algorithms is that during cesrgence one or moe clustes (or classesy,
might become “empiyA typical solution to this @blem splits the cluster whicurrently ehibits the
largest distortion in two, anceassigns the empty class to part of thgdadistortion cluster
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3. The LBG VQ algorithm
A. Algorithm description

The well knavn LBG vector quantization (VQ) algorithmas proposed by Linde, Buzo and Gfay in

1980. It addresses the problem\d® codebook initialization by iteratly generating codebooksz;} ,

i0{1,...,2™,m0O{0,1,2 ...}, of increasing sizelhe algorithm proceeds as outlined beldlote that
the inner loop in the LB&Q algorithm is equialent to thek -means algorithm for the currerdlue ofL .

1. Initialization : SetL = 1, whereL is the number 0¥Q codes inZ , and letz, be the centroid (e.g.
mean) of the data set.

2. Splitting: Split eachvVQ codez; into two codes{z,z .},

z,, =z-¢andz = z;+¢, O, (26)
where,
g = ¢{by, by, ..., by}, (27)

ande is some small numbetypically 0.0001The by, can be set to all &'or to a randomalue of+1.
Since the number &fQ codes inZ has been doubled, let,

L = 2L (28)

s 1. Classification: Classify eact; into cluster or classy such that,
o
g dist(x;, z,) < dist(x;, ) , OI. (29)
O
a | 2. Codebook update Update the code fowvery clusterw, by computing its centroid,
o
o
@ _ 10 0
1 X; W,
wheren; is the number ofe,ctorsxj in clusterow, .
3. Termination #1: Stop when the distortioB has decreased belsome threshold \el, or when the
algorithm has corerged to a constantyel of distortion.
3. Termination #2: Stop wherL is the desiref¥Q codebook size.
There are tw main adantages of the LB&Q algorithm wer the standard-means algorithm. First, the
algorithm is self-starting in the sense that problem-sjpdnifialization is not required. Second, the LBQ
algorithm automatically generates codebooks of 8i2em {0, 1, 2, ...} . This can be useful when we do
not knaw a priori how large thevQ codebook needs to be for a spedipplication with a required maximum
level of distortion. Presentlyhe LBGVQ algorithm is probably théQ algorithm used most often in a num-
ber of diferent applications.
B. Example #1

Here, we illustrate the LBG algorithm with a simplample. LetX be a set oh = 1000 2-dimensional
vectors{ xj} , 1 0{1,2,...,1000} , distributed uniformly in the unit squarEigure 7illustrates the LB&/Q
algorithm for the deterministic perturbatioactorg = {0.0001, 0.0001} . The codes for each from 1 to

25 = 32, are those at the end of the inner loop of the LBG algorithm, and the lines in each plot delineate the
regions of the 2-dimensional space that are part of clagter
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Figure 7: The LBG vector quantization for some random 2D data, as L equals, 2, 4, 8, 16 and 32.

Each inner loop usually ceerges in only a f& steps. Considefor example,Figure 8 which illustrates the
convergence of the inner loop asdwodes are split into fouNote that within tw steps (labeled ams) the
four codes are already locateety close to their fial values.

If a randomized perturbatiorewtor ¢ is used, the LBG algorithm may end up with slightlyfed#nt codes
Z . Consider the tev 32-prototype codebooks Figure 9belov. These tvo VQ codebooks are generated for
the same uniform dat{ using the LBG algorithm, i with different randomized perturbatioratorsg .
Note that gen though the tercodebooks are slightly ¢#frent, their total distortio® is almost the same.

C}
2

Figure 8: Theinner loop of the LBG VQ algorithm when two codes are split into four.
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Final distortion D = 2.19. Final distortion D = 2.21.

C. Example #2

Here, we illustrate the LBG algorithm with another simplanaple. LetX be a set oh = 1000 2-dimen-

sional ectors{x:}, j0{1,2,...,1000} , distrituted aer the shaded g#on in Figure 10 Figure 10illus-

trates the LBG/é algorithm for the deterministic perturbatioactorg = {0.0001, 0.0001} . The codes for
eachL from 1t025 = 32, are those at the end of the inner loop of the LBG algorithm, and the lines in each
plot delineate the gtons of the 2-dimensional space that are part of clogter
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Figure 10: The LBG vector quantization for some random 2D data, as L equalsi, 2, 4, 8, 16 and 32.
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D. Example #3: colorbased object ecognition

In this xkample, we are interested in feifentiating between twdifferent model cars as theace at high
speeds along ayaace track, as sha in Figure 11belov. Because of the interlaced nature of the NTSC sig-
nal, and the high scaled speed of the cars, the actual images of the cars are quércaigysignifcantly
depending on where the cars are located along the track. Figliaesi 13, for exkample, shw three gam-
ples of cars #1 and #2 asytactually appear in the digitized images.

Here, we will use @ctor quantization to model each car as a discrete probability digtnlo/er pixel color
values, in order to discriminate between the tars. First, we record the RGB (red, green, blual padues
for approximately 200x@mples of each car; let us denote thes¥ asnd X, , respectiely. Figure 14plots

L

Figure1l

car #1 examples

Figure 12
|
- T— [
e — ..
car #2 exkamples
m ‘
L I
| I
e
Figure 13
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distribution of pixel values in RGB space for car corresponding vector codebook with 16totype
#1 (light gray) and car #2 (dark @ty) training vectos (computed with the LBG algorithm)
data
Figure 14

these data sets in RGB space, where the light gray points correspépdaad the dark gray points corre-
spond toX,,.

We nav compute a 16-prototypeeutor codebookZ using the LBGVQ algorithm, for the joint data set
{ X4, X5} . The resulting/Q codebook, which is also plottedfigure 14 is net used to quantize both data
setsX; and X,. We then count the frequencies of occurrence of each protoggtery 1, 2, ..., 16} in
each data set, and normalize tgfobabilistic constraint§.he resulting discrete probability modeks, and
A, , are plotted irFigure 15below, and represent the discretized disttibn of RGB color for each car

If we nov have an unknenn car as represented by a collection of RGB epixalues X = {x.},
j0{y 2, ...,n}, that we vant to classify as being either car #1 or car #2, we wanae the probability of
X given each modetl; andA,,

P(XIN) = [ POGIA) = T PUIN, kO{1,2}, (31)
i=1 j=1

wherel corresponds to théQ prototype ector label that is closest Iq such that,

dist(z, xj) <dist(z,, xj), Oi. (32)
Of course, we will classify the unkwa car as car #1 iP(X|A;) >P(X|A,), and as car #2 otherwise. In
Figure 16 for example, we plotP(X|A,), kO {1, 2}, for the six carxamples (three each) in Figur&2
and13, where,

P(X|A) = 10'°9PXIN/N g 23 (33)

In other words, I5(X\)\k) simply represents the probabiliB(X|A,) normalized with respect to the number
of RGB waluesn in X . Note fromFigure 16that thevQ-based probability models Figure 15give us ery
good discrimination between thedwars.
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