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Vector Quantization: a Limiting Case of EM

 

1. Intr oduction & definitions

 

Assume that you are given a data set , , of  -dimensional vectors. The vector
quantization (VQ) problem requires that we find a set of prototype vectors , , ,
such that the total distortion ,

(1)

is minimized. In equation (1),  is a distance metric given by either,

 (Euclidean distance), (2)

or, more generally,

(3)

where  is a positive-definite, symmetric matrix, . Weighting the distance along each dimension through
the  matrix can normalize the distance measure in equation (3) with respect to different scaling along different
dimensions of the  vectors.

The vectors  are known as the VQ codebook. Two applications of vector quantization are (1) redundant data
compression, and (2) approximating continuous probability distributions with approximate discrete ones (i.e. his-
tograms), where each  is replaced with the label  such that,

, . (4)

We will see later that this is especially useful in hidden Markov modeling.

 

2. The -means algorithm

 

A. Algorithm definition

 

The -means algorithm is an algorithm for generating  the VQ codebook of prototype vectors. It is guaran-
teed to converge to a local minimum of . The algorithm proceeds as follows:

1.

 

Initialization

 

: Choose some initial setting for the  codes  in the VQ codebook. One way to do this 
is to initialize the  to some random subset of  vectors in .

2.

 

Classification

 

: Classify each  into cluster or class  such that,

, . (5)

3.

 

Codebook update

 

: Update the code for every cluster  by computing its centroid,

(6)

where  is the number of vectors  in cluster .

4.

 

Termination

 

: Stop when the distortion  has decreased below some threshold level, or when the algo-
rithm has converged to a constant level of distortion.
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B. Example #1

 

Here, we investigate the convergence properties of the -means algorithm with a simple example. Let  be a
set of  2-dimensional vectors , , distributed uniformly in the unit square,

(7)

as shown in Figure 1 below.

Assuming infinite data, the distortion for two codes  is given by,

(8)

where  denotes the area in the unit square that is part of cluster , . Therefore, the globally
optimal solution  — in other words, the minimum-distortion solution — for two codes, 
is given by,

(9)

Denoting,

 and , (10)

it appears that  must be optimized over four independent scalars: . Since the
data is distributed symmetrically about , the optimal prototype vectors  are, however,
constrained by,

(11)

(12)

Therefore, we can explicitly plot , where , as a function of , as shown in
Figure 2 below. In Figure 2, red shades indicate the smallest distortions, and we see that there are four glo-
bally optimal solutions :

, (13)

, (14)
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Note that the four solutions are the same, except for a switch in the two axes, as well as a switch in the proto-
type vector labels.

Now that we know what the theoretical minimum-distortion two-code solutions are, we conduct the follow-
ing experiment. We run the  means algorithm for 100 initial random prototypes in the interval,

, (15)

and observe the values of  to which the algorithm converges. Figure 3 below plots the results of the
100 trials. Note that all 100 trials converge to approximately the optimal solutions in (13) and (14). The deci-
sion regions between class  and  for each solution pair  is given by either,

 or . (16)

 

C. Example #2

 

Here, we investigate the convergence properties of the -means algorithm for the uniform distribution  of
1000 points in the annular region shown in Figure 4 below, where the inside and outside radii are given by

 and , respectively.

Since the distribution is radially symmetric about the point , the locus of globally optimal (mini-
mum-distortion) 2-code solutions is necessarily described by the circle,

(17)

Once again assuming infinite data, we can compute the globally optimal value for  by recognizing that the
two classes  and  can be described by the solid and dashed lines as indicated in Figure 4. Note that the
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delineated regions are only one possible description of  and ; the regions can, of course, be rotated by
an angle , , without loss of optimality.

To compute  we now simply have to compute the centroid of the solid-line region — let’s call this region
 — in the above figure so that,

(18)

(19)

Thus, the set of globally optimal solutions for the codes  is given by,

, . (20)

We now conduct the following experiment. We run the -means algorithm for five initial random codes in the
interval,

, (21)

and observe the values of  to which the algorithm converges. The figure below plots the results of the
five trials. Note that all five trials converge to approximately the optimal solution locus in (20).
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D. Convergence

 

In the previous two examples, we showed that the -means algorithm converges to good near-optimal solu-
tions for some simple, idealized cases. It turns out that this convergence is, in fact, guaranteed, since the -
means algorithm is simply a limiting case of the EM algorithm for estimating the parameters of a mixture of
Gaussians. Recall that for the EM algorithm, the reestimation of the means  (identical to the  here) is
given by,

(22)

Assuming equal priors  and equal variances , it can be easily shown that,

(23)

Intuitively, as , 

, , where, (24)

(25)

so that the likelihoods ,  become insignificantly small compared to .

Figure 6, for example, illustrates the convergence trajectory for the VQ and EM algorithms for one of the 100
trials in example #1. Note that the VQ and EM trajectories appear very similar for .

Since the -means VQ algorithm is a limiting case of the EM algorithm, its convergence is also guaranteed.

 

1

 

And, because the VQ reestimation equations are much faster to compute then the EM reestimation equations,
the VQ algorithm is sometimes preferred in practice.

 

1. One potential problem in VQ algorithms is that during convergence, one or more clusters (or classes)  
might become “empty.” A typical solution to this problem splits the cluster which currently exhibits the 
largest distortion in two, and reassigns the empty class to part of the large-distortion cluster.
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Example #1 VQ convergence. Example #1 EM convergence for 
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3. The LBG VQ algorithm

 

A. Algorithm description

 

The well known LBG vector quantization (VQ) algorithm was proposed by Linde, Buzo and Gray [1] in
1980. It addresses the problem of VQ codebook initialization by iteratively generating codebooks ,

, , of increasing size. The algorithm proceeds as outlined below. Note that
the inner loop in the LBG VQ algorithm is equivalent to the -means algorithm for the current value of .

There are two main advantages of the LBG VQ algorithm over the standard -means algorithm. First, the
algorithm is self-starting in the sense that problem-specific initialization is not required. Second, the LBG VQ
algorithm automatically generates codebooks of size , . This can be useful when we do
not know 

 

a priori

 

 how large the VQ codebook needs to be for a specific application with a required maximum
level of distortion. Presently, the LBG VQ algorithm is probably the VQ algorithm used most often in a num-
ber of different applications.

 

B. Example #1

 

Here, we illustrate the LBG algorithm with a simple example. Let  be a set of  2-dimensional
vectors , , distributed uniformly in the unit square. Figure 7 illustrates the LBG VQ
algorithm for the deterministic perturbation vector . The codes for each  from 1 to

, are those at the end of the inner loop of the LBG algorithm, and the lines in each plot delineate the
regions of the 2-dimensional space that are part of cluster .
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1.

 

Initialization

 

: Set , where  is the number of VQ codes in , and let  be the centroid (e.g. 
mean) of the data set .

2.

 

Splitting

 

: Split each VQ code  into two codes, ,

 and , , (26)

where,

, (27)

and  is some small number, typically 0.0001. The  can be set to all 1’s or to a random value of . 
Since the number of VQ codes in  has been doubled, let,

(28)

1.

 

Classification

 

: Classify each  into cluster or class  such that,

, . (29)

2.

 

Codebook update

 

: Update the code for every cluster  by computing its centroid,

(30)

where  is the number of vectors  in cluster .

3.

 

Termination #1

 

: Stop when the distortion  has decreased below some threshold level, or when the 
algorithm has converged to a constant level of distortion.

3.

 

Termination #2

 

: Stop when  is the desired VQ codebook size.
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Each inner loop usually converges in only a few steps. Consider, for example, Figure 8, which illustrates the
convergence of the inner loop as two codes are split into four. Note that within two steps (labeled arrows) the
four codes are already located very close to their final values. 

If a randomized perturbation vector  is used, the LBG algorithm may end up with slightly different codes
. Consider the two 32-prototype codebooks in Figure 9 below. These two VQ codebooks are generated for

the same uniform data  using the LBG algorithm, but with different randomized perturbation vectors .
Note that even though the two codebooks are slightly different, their total distortion  is almost the same.

 

Figure 7: The LBG vector quantization for some random 2D data, as  equals 1, 2, 4, 8, 16 and 32.
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Figure 8: The inner loop of the LBG VQ algorithm when two codes are split into four.
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C. Example #2

 

Here, we illustrate the LBG algorithm with another simple example. Let  be a set of  2-dimen-
sional vectors , , distributed over the shaded region in Figure 10. Figure 10 illus-
trates the LBG VQ algorithm for the deterministic perturbation vector . The codes for
each  from 1 to , are those at the end of the inner loop of the LBG algorithm, and the lines in each
plot delineate the regions of the 2-dimensional space that are part of cluster .
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Figure 9

 

Final distortion D = 2.19. Final distortion D = 2.21.
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Figure 10: The LBG vector quantization for some random 2D data, as  equals 1, 2, 4, 8, 16 and 32.
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D. Example #3: color-based object recognition

 

In this example, we are interested in differentiating between two different model cars as they race at high
speeds along a toy race track, as shown in Figure 11 below. Because of the interlaced nature of the NTSC sig-
nal, and the high scaled speed of the cars, the actual images of the cars are quite noisy, and vary significantly
depending on where the cars are located along the track. Figures 12 and 13, for example, show three exam-
ples of cars #1 and #2 as they actually appear in the digitized images. 

Here, we will use vector quantization to model each car as a discrete probability distribution over pixel color
values, in order to discriminate between the two cars. First, we record the RGB (red, green, blue) pixel values
for approximately 200 examples of each car; let us denote these as  and , respectively. Figure 14 plots

 

Figure 11

 

Figure 12

 

car #1 examples

 

Figure 13

 

car #2 examples
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these data sets in RGB space, where the light gray points correspond to , and the dark gray points corre-
spond to .

We now compute a 16-prototype vector codebook  using the LBG VQ algorithm, for the joint data set
. The resulting VQ codebook, which is also plotted in Figure 14, is next used to quantize both data

sets  and . We then count the frequencies of occurrence of each prototype vector  in
each data set, and normalize to fit probabilistic constraints. The resulting discrete probability models,  and

, are plotted in Figure 15 below, and represent the discretized distribution of RGB color for each car.

If we now have an unknown car, as represented by a collection of RGB pixel values ,
, that we want to classify as being either car #1 or car #2, we can evaluate the probability of

 given each model  and ,

, , (31)

where  corresponds to the VQ prototype vector label that is closest to , such that,

, . (32)

Of course, we will classify the unknown car as car #1 if , and as car #2 otherwise. In
Figure 16, for example, we plot , , for the six car examples (three each) in Figures 12
and 13, where,

, . (33)

In other words,  simply represents the probability  normalized with respect to the number
of RGB values  in . Note from Figure 16 that the VQ-based probability models in Figure 15 give us very
good discrimination between the two cars. 
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 (light gray) and  (dark gray) for 

car #2 examples in Figure 13
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