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Intr oduction to Markov systems

 

1. Intr oduction

 

Up to now, we have talked a lot about building statistical models from data. However, throughout our discussion
thus far, we have made the sometimes implicit, simplifying assumption that our individual data samples (or tri-
als) are statistically independent. Let,

(1)

be a sequence of discrete random variables. Then the  random variables are said to be independent if and
only if,

(2)

(Equation (2) generalizes trivially to sequences of continuous and multivariate random variables.)

Some classic examples of independent events are (1) a series of coin tosses, (2) a series of dice rolls, etc. In many
instances, however, the independence assumption is not a good assumption, especially when we deal with
sequential data generated over time. Consider, for example, the following random variables:

1. A person’s weight.

2. Acoustic signals in speech recognition.

3. Hand gestures.

4. Robot trajectories.

5. The weather.

6. The state of a dynamic system.

In each of the above examples, knowledge of the random variable at previous times  gives us
useful information about the random variable at time . If I know that my weight on day  is 150 lb., then
my weight on day  is clearly constrained to be in some interval around 150 lb. Similarly, if I measure the posi-
tion of my mobile robot at time , , then the measurement of the robot’s position at time  is
constrained to be in some neighborhood of ,

(3)

where  and  are determined by the robot’s maximum acceleration and the robot’s sensor noise models.
When statistical independence is not a good assumption, the following approximation is often made:

(4)

In other words, we assume that the outcome of the th measurement (or trial) is dependent on the outcome of the
th measurement, but is conditionally independent of the outcomes of all previous measurements at times

 given the outcome of the th measurement. This property is universally known as the
Markov property. (The Russian mathematician Andrei Andreivich Markov was the first to extensively study sto-
chastic systems with property (4) in the early part of the 20th century.)

Note that although the Markov assumption in equation (4) only relaxes the independence assumption in equation
(2) slightly, it proves to be a remarkably powerful tool in modeling data with sequential dependencies. Many real
systems have been modeled very successfully using the Markov property, even when the Markov assumption is
only an approximation of reality (as is the case for many real systems). A recent query of the INSPEC database of
scientific and engineering abstracts generated 25,000 hits for the keyword “Markov.”

Models that make use of the Markov property can be broadly classified into four categories along two dimen-
sions: (1) observability and (2) actions. Markov models that are fully observable and involve no actions (i.e are
passive) are called Markov chains or observable Markov models. Markov chains that are only partially observ-
able (i.e. the state of the system is observable only indirectly) are called hidden Markov models (HMMs).
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Figure 1 below gives simple examples of a Markov chain, and a hidden Markov model, respectively. In the
Markov chain, the  represent observable states of the system at a given time step, and the  represent
probabilistic transitions between the states. In the hidden Markov model (HMM), the states  are not directly
observable (i.e. are hidden), but are only indirectly observed through a stochastic output observable (in this case,
the color red or blue). The probability of observing a given observable (e.g red or blue) is state-dependent; in the
figure below, for example, there is a one-third probability of observing red and a two-third probability of observ-
ing blue in state .

Markov systems were actions (by some agent) influence the state of the system at the next time step are studied in
the broad area of reinforcement learning and are referred to as Markov Decision Processes. The table below sum-
marizes the different types of Markov systems.

Before formalizing the notion of a Markov chain and a hidden Markov model, we list some of the successful
real-world applications of HMMs:
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2. Observable Markov models

 

A. Definitions

 

Consider a system that consists of  distinct states,

, , (5)

with the following properties. At regularly spaced, discrete-time intervals, the system undergoes a change of
state (possibly back to its present state). Defining , , as the state of the system at time ,
assume that the state transitions of this system are governed by first-order Markov state-conditional probabil-
ities, such that,

. (6)

Moreover, assume that the state-transition probabilities are stationary, such that,

, . (7)

Together, equations (5), (6) and (7) define a discrete, stationary, first-order Markov chain, or alternatively, an
observable Markov model.

For notational convenience, let,

, , (8)

let the  state-transition matrix  be defined by,

(9)

where,

, , (10)

, , (11)

and let the -length initial-state probability vector , ,

, (12)

define the initial ( ) state probability distribution. Then, the Markov chain  is completely defined by
.

 

B. Example

 

Consider Figure 2 below. It graphically describes a fully connected three-state Markov model ( ).
(Fully connected means that , .) This model could, for example, be a simple meteorological
model. Assume that once a day at high noon, the weather conditions are observed and classified into one of
three distinct states  where,

 = rain or snow,  = cloudy, and  = sunny. (13)

Furthermore, assume that the weather on any given day  is dependent only on the weather on the previous
day . Then a possible state-transition matrix  might be,
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(14)

which is illustrated graphically in Figure 3 below.

 

C. Probability of observation sequences

 

Given a Markov model , and an observation sequence ,

(15)

of length , the probability of the observation sequence , given the model , , is given by,

(16)

(17)

(Note that in equation (17), the  subscripts denote the index of the state at time .)

Example: For the example in Section 2-B, what is the probability of the observation sequence ,
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(18)

given that at time , the weather is sunny?

From the question,

, . (19)

Therefore,

(20)

(21)

(22)

 

D. Expected length of same-state sequences

 

Given that at time  the state of the model  is , the probability that the model will stay in that
state for exactly  time steps is given by,

, (23)

where,

, . (24)

Now,

(25)

where,

 (given), (26)

(27)

(28)

so that,

(29)

The expected value of  is given by,

(30)

(31)

(32)

Example: For the example in Section 2-B, 

 days of rain or snow, (33)
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 days of cloud cover, (34)

 days of sunshine. (35)

 

E. Probability of being in a given state at time 

 

Given a Markov model , the probability of being in state  at time ,  can be com-
puted inductively,

 (by definition) (36)

, (37)

Alternatively, we can write,

(38)

where,  denotes the th element of the vector . 

 

F. Fully connected Markov chains

 

Fully connected (finite-state) Markov chains ( , ) are ergodic. That is, the limit  as 
approaches infinity exists and is independent of the initial state probability vector ,

, (39)

Example: The limit in equation (39) typically converges for relatively small values of . For the Markov
chain in Section 2-B, for example, equation (39) converges to,

 (rain or snow) (40)

 (cloudy) (41)

 (sunny) (42)

for different initial values of  and , as illustrated in Figure 4, for example, with .
(This weather model is clearly not for Pittsburgh, PA, where sunshine is a rare occurrence indeed.)
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Example: The limit in equation (39) need not be well defined if some . Consider the two-state
Markov model in Figure 5 below:

The corresponding  matrix is given by,

(43)

Note that for  in equation (43),

, , (44)

Therefore, the limit in equation (39) does not exist.

 

G. Partially connected Markov chains

 

When some transition probabilities , states may become transient or absorbing. A transient state  is
defined by the property,

, (45)

while an absorbing state  is defined by the property,

(46)

Example: Consider the three-state Markov model in Figure 6 below, where ,
, and .

The states  and  are transient, while the state  is absorbing.

 

H. Maximum-lik elihood estimation for observable Markov models

 

Given an observation sequence ,

(47)

The maximum-likelihood estimate of the parameters in the Markov model  is given by,

(48)

(49)
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Example: The following observation sequence ,

 = {2233311333333333333333333333112222233121333333333321323322233222222222221...
...1331222222222111222111333333} (50)

of length  was generated from the Markov model in Section 2-B, with .

For each , we have to count the number of transitions from state  to state . The matrix  gives those
frequencies:

(51)

Normalizing the rows of , we get that the maximum-likelihood estimate of  is given by,

(52)

Comparing  in equation (52) to  in equation (14), we see that  is a reasonable approximation of .
Of course, for longer observation sequences (more data), the approximation of  will improve asymptoti-
cally. Figure 7 below plots the error between the actual model [equation (14)] and the estimated model,

(53)

averaged over 20 randomly generated observation sequences, as the length  of the observation sequences
becomes large.
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3. Hidden Mark ov models (HMMs)

 

A. Intr oduction

 

As we have seen, in Markov chains (or observable Markov models), it is assumed that we can observe the
state  at each time step . In hidden Markov models, we remove that condition. In other words, we assume
that the state at each time step is 

 

not

 

 observable; rather, we can only observe the state at each time step  indi-
rectly through some observable , which is related to the state  at time step  through some output prob-
ability distribution. That is, a hidden Markov model is a doubly stochastic model, where both state transitions
as well as output observables are governed by probabilistic distributions. Before we formalize this notion, let
us look at a simple example.

Suppose that we have  large urns (bowls), that are filled with differently colored balls. In Figure 2, ,
and there are three colors: (1) white, (2) gray and (3) black. We now generate a sequence of balls using the
following procedure. We first pick one of the three urns at random, according to some stationary (fixed) prob-
ability distribution. Next, we pick a ball a random from that urn, and observe it’s color. The ball is then put
back in the urn from which it was selected. Subsequently, a new urn is selected according to some stationary
probability distribution associated with the current urn. That is, which urn is selected next is conditional on
only the current urn. Once again, we pick a ball from the new urn, and the process is repeated to generate an
observation sequence ,  of colors. A typical observation sequence is plotted in Figure
9 for .

Graphically, we can represent this process as a hidden Markov model (HMM), as shown in Figure 10. Each
urn is represented by a state that is connected to all other states through probabilistic transitions. Each state
also has some output probability distribution (e.g. ratio of black, gray and white balls in each urn) associated
with it. This output probability distribution for each state is indicated graphically in Figure 10. For example,
in state 1 (the left-most state), there are 1/4 white balls, 1/4 gray balls and 1/2 black balls.
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Note, that in this process, we can only observe the color of each ball, not the urn from which the ball was
picked. Hence the name 

 

hidden

 

 Markov model, indicating that we cannot directly observe the underlying
sequence of states that generated the observation sequence. For the sample observation sequence shown
above, many different underlying state sequences are possible. In fact, there are a total of 
total possible sequences.

 

B. Definition of an HMM

 

While the above example may appear contrived, it does have all the necessary properties of a hidden Markov
model. In order to define the notion of an HMM formally, we introduce the following nomenclature:

 = state , (54)

 = 

 

k

 

th observable, (55)

 = state of the system at time step , (56)

 = observable that is observed at time step , . (57)

Given this notation, a discrete-output

 

1

 

 HMM  is completely defined by , where,

 = # of states in the model, (58)

 = # of possible observables (  in Rabiner tutorial paper [1]), (59)

 =  state transition matrix with elements , (60)

, , (61)

 =  output probability distribution matrix with elements , (62)

, , (63)

 = -length initial state probability vector with elements , (64)

, (65)

The parameters (probabilities) of the hidden Markov model are stationary (independent of time).

Thus, the hidden Markov model is different from the observable Markov model in that we have added the
output probability distribution matrix . This makes it a much more powerful parametric formalism for mod-
eling sequential, Markovian processes, since  can model any arbitrary discrete distribution. Of course, the

 matrix also adds a large number of parameters to the model, so typically, more data is required to reliably
train hidden Markov models 

 

vs.

 

 observable Markov models. For example, if  and , the
observable Markov model has,

 free parameters, (66)

while, the hidden Markov model has,

 free parameters. (67)

[Note that for an observable Markov model, the  matrix would be given by,

 (  identity matrix), (68)

and the observables  would be the states, so that .]

 

1. There are also HMMs for continuous (continuous-valued) observables. These will be discussed later.
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For the urn HMM, the output probability distribution matrix  is given by,

(69)

 

4. Thr ee fundamental problems for HMMs

 

We can define three fundamental problems for hidden Markov models: (1) the 

 

evaluation

 

 problem, (2) the 

 

decod-
ing

 

 problem and (3) the 

 

training

 

 problem.

 

A. Problem #1: Evaluation problem

 

Given an observation sequence , , and a hidden Markov model ,
how do we efficiently compute  (i.e. probability of the observation sequence  given the HMM )?

 

B. Problem #2: Decoding problem

 

Given an observation sequence , , and a hidden Markov model ,
how do we efficiently compute the “best” (most likely) state sequence ,  (i.e. the
state sequence that best explains the observation sequence  given )?

 

C. Problem #3: Training pr oblem

 

Given an observation sequence , , the number of states , and the number of pos-
sible observables  (implicitly defined by ), how do we efficiently compute the maximum-likelihood esti-
mate of the parameters of the hidden Markov model ? In other words, what HMM 
maximizes ?

 

D. Discussion

 

Before we derive the solutions for these three problems, it is worthwhile to examine where each of the three
problems would come up in a real-world application of hidden Markov models. Historically, one of the first
application areas of HMMs was in speech recognition, so we will choose that as our example. Specifically,
we will be looking at isolated spoken word recognition, as illustrated in Figure 11 on the following page. In
this context, we can assign physical meaning to the hidden states as the phonemes of the words in the vocab-
ulary of the word recognizer.

A simple isolated spoken-word recognizer can be constructed as follows. First, we decide which words
, , we would like our system to be able to recognize. For example, we might be inter-

ested in recognizing the 10 spoken words corresponding to “zero,” “one,”..., and “nine,” for an automated
phone system application. Next, we record hundreds or thousands of labeled examples of different individu-
als saying each of the words out loud. These data will serve as our training data. For each word  we train a
corresponding HMM  to model that word (problem #3 above).

Before using the discrete hidden Markov models, we first have to decide how we will convert the time-sam-
pled, continuous-valued acoustic speech signals to sequences of discrete observables. This conversion typi-
cally involves two steps: (1) windowing and spectral preprocessing followed by (2) vector quantization.
Windowing partitions the acoustic signal into possibly overlapping segments, each of which is then filtered
through some spectral preprocessor (linear predictive coding, fast Fourier transform, etc.). The acoustic
speech signal is thus converted to a sequence of continuous-valued spectral feature vectors , which are
then quantized to discrete observables  through vector quantization. It is important to realize that the
spectral preprocessing and VQ codebook have to be the same for all spoken words in our training data. There-
fore, the VQ codebook is typically trained (using, for example, the LBG algorithm) on all the training data.

Now, suppose that we now want to recognize an unknown utterance by some individual. We first convert that
acoustic signal to a sequence of observables  following the same conversion procedure as in the training
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phase. Then, we evaluate either  (problem #1 above), or , where  represents the
most likely state sequence (phoneme sequence) for  given  (problem #2). Finally, whichever HMM 
yields the largest probability will correspond to the most likely word .

As we shall see later, although different HMM applications vary in detail and complexity, the diagram on the
previous page contains many of the essential components that make up an HMM-based system: (1) spectral
preprocessing, (2) vector quantization and (3) a bank of HMMs.

 

5. Solution to the evaluation problem (problem #1)

 

Problem statement: Given an observation sequence , , and a hidden Markov model
, how do we efficiently compute  (i.e. the probability of the observation sequence 

given the HMM )?

 

A. Intr oduction

 

In hidden Markov models, the principal problem in computing ,

, , (70)

, (71)

is that we do not know what underlying state sequence ,

, (72)

generated the given observation sequence . If we assume a specific underlying state sequence , then the
problem is much simpler, since,

. (73)

[Recall that in the definition of hidden Markov models, the observation at time , , is dependent only on
the state at time , .] The probability of any specific state sequence  can be expressed in terms of the
HMM parameters as,

(74)

[This is identical to observable Markov models.] The joint probability of  and  given  can be written as,

(75)

so that,

(76)

Although equation (76) gives a computable expression for , it does not offer a 

 

practical

 

 algorithm for
computing . Since there are  possible state sequences, each of which requires order  opera-
tions, equation (76) requires on the order of  total operations. Even for very moderately sized problems
this is unreasonable. For example, if  and , we would require approximately,

 operations. (77)

Clearly, we require a more efficient formulation for evaluating . The 

 

forward algorithm

 

, described
below, does just that. A related algorithm, the 

 

backward algorithm

 

, while not explicitly used to compute
, will be used later to efficiently solve the training problem, and is therefore also presented below.

Together, these two algorithms are sometimes referred to as the 

 

forward-backward algorithm
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B. The forward algorithm

 

Let’s define the following “forward” variable :

, (78)

which denotes the probability of the partial observation sequence  and being in state  at time
step  given the model . The  variables can be computed inductively, and from them,  is eas-
ily evaluated. The forward algorithm is defined below:

1.

 

Initialization

 

:

(79)

(80)

, . (81)

2.

 

Induction

 

:

(82)

 (83)

, , . (84)

3.

 

Completion

 

:

 [by definition (78)] (85)

The computation of  in the induction step above (step 2) accounts for all possible state transitions to
state  from time step  to time step , and the observable  at time step . Figure 12 below
illustrates the induction step graphically.

For the same values of  and  as before ( , ), the computation of  now only takes
on the order of,
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 operations, (86)

as opposed to  operations. Thus, the forward algorithm offers a practical and efficient means for solving
the evaluation problem in hidden Markov models.

 

1

 

C. The backward algorithm

 

While the backward algorithm is not used explicitly to solve the evaluation problem, it will be used later for
solving the training problem in conjunction with the forward algorithm. Because of its similarity to the for-
ward algorithm, it is presented now, however. First, we define the “backward” variables  (similar to the
forward variables) to be,

 (87)

which denotes the probability of the partial observation sequence  given that at time step 
the model is in state  and given the model . As with the forward variables , the backward variables

 can be computed inductively. The backward algorithm is defined below:

1.

 

Initialization

 

:

, (88)

Note that equation (88) 

 

arbitrarily

 

 defines  such that,

, (89)

2.

 

Induction

 

:

, , . (90)

Equation (90) is similar to the induction step of the forward algorithm, except that now we propagate the val-
ues back from the end of the observation sequence, rather than forward from the beginning of . This is
illustrated graphically in Figure 13 below. As with the forward algorithm, the backward algorithm requires on
the order of  operations.

 

1. As we shall see later, this algorithm will require slight modification through scaling for implementation 
on finite-precision computers in order to prevent numerical underflow.

 

N

 

2

 

T

 

2500

 

=

 

10

 

72

 

β

 

t

 

i

 

( )

 

β

 

t

 

i

 

( )

 

P O

 

t

 

1

 

+

 

…

 

O

 

T

 

, ,

 

q

 

t

 

S

 

i

 

=

 

λ,( )

 

=

 

O

 

t

 

1

 

+

 

…

 

O

 

T

 

, ,{ }

 

t

 

S

 

i

 

λ

 

α

 

t

 

i

 

( )

 

β

 

t

 

i

 

( )

 

β

 

T

 

i

 

( )

 

1

 

≡

 

i

 

1

 

…

 

N

 

, ,{ }∈

 

β

 

T

 

i

 

( )

 

P O

 

λ( ) α

 

t

 

i

 

( )β

 

t

 

i

 

( )

 

i

 

1

 

=

 

N

 

∑

 

=

 

t

 

1

 

…

 

T

 

, ,{ }∈

 

β

 

t

 

i

 

( )

 

a

 

ij

 

b

 

j

 

O

 

t

 

1

 

+

 

( )β

 

t

 

1

 

+

 

j

 

( )

 

j

 

1

 

=

 

N

 

∑

 

=

 

t T

 

1

 

–

 

T

 

2

 

–

 

…

 

1

 

, , ,{ }∈

 

i

 

1

 

…

 

N

 

, ,{ }∈

 

O

 

N

 

2

 

T

S1

S2

SN

Si

ai1

ai2

aiN

 

t t

 

1

 

+

 

β

 

t

 

1

 

+

 

j

 

( )β

 

t

 

i

 

( )

 

Figure 13



 

EEL6825: Pattern Recognition Introduction to Markov systems

- 16 -

 

6. Solution to the training problem (problem #3)

 

1

 

Problem statement: Given an observation sequence , , the number of states , and the
number of possible observables  (implicitly defined by ), how do we efficiently compute the maximum-like-
lihood estimate of the parameters in the hidden Markov model ? In other words, what HMM 
maximizes ?

 

A. Intr oduction

 

Baum and his colleagues developed the 

 

Baum-Welch algorithm

 

 for training hidden Markov models in the late
1960s and early 1970s. The development of their algorithm precedes the publication by Dempster, 

 

et. al. 

 

[2]
of the general Expectation-Maximization (EM) algorithm (1977). It is interesting to note, however, that the
Baum-Welch algorithm is simply a special case of the EM algorithm. Intuitively, we see why the EM algo-
rithm may be applicable here, since hidden Markov models clearly have hidden information (the underlying
state sequence  corresponding to the observable sequence ). Therefore, in developing
the Baum-Welch algorithm for training HMMs, we will do so within the EM framework.

 

B. Initial f ormulation

 

Suppose that we knew the value of the underlying state sequence , . Then, the
maximum-likelihood estimate of  given  is straightforward and given below:

 (same as for observable Markov models) (91)

(92)

(93)

Unfortunately, we don’t know the state sequence ; however, if we have a current estimate of
, then we can compute “the expected number of...” for each of the numerators and denomina-

tors in equations (91), (92) and (93) (EM rears its ugly head again). Thus, assuming a current estimate of the
hidden Markov model , a better (or equally good) estimate  will be given by,

(94)

(95)

(96)

where the right-hand sides of equations (94), (95) and (96) can be expressed — as we shall see shortly — in
terms of  (i.e. the current model parameter estimates).

 

C. Detailed derivation

 

In order to compute the quantities in equations (94), (95) and (96), we need to define some hidden variables
similar to the mixture-of-Gaussian problem. Thus, let’s define the following hidden variables for the reesti-
mation of the state-transition matrix :

 

1. We first look at problem #3 rather than problem #2 (the decoding problem) because the solution of prob-
lem #3 makes extensive use of the forward-backward algorithm (i.e. solution to problem #1).
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(97)

(98)

so that,

. (99)

Let us also define,

(100)

(101)

so that,

. (102)

Similarly, let us define the following hidden variables for the reestimation of the output-probability distribu-
tion matrix :

(103)

(104)

so that,

. (105)

Let us also define,

(106)

(107)

so that,

. (108)

In terms of the above definitions, equations (94), (95) and (96) can be written as,
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(111)

where  denotes the expectation operator. To complete the derivation, we need to compute the expected
values in equations (109), (110) and (111). First, consider :

(112)

 (113)

(114)

Let us define  as,

(115)

so that,

(116)

(117)

We can compute  in terms of the forward and backward variables. Figure 14 below illustrates how this
is done graphically. Recall from Section 5 that,

, and (118)
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(120)

In the numerator of equation (120), the forward variable  and the backward variable  account
for the entire observation sequence except for the observation  at time  and the transition from
state  to  from  to . These are taken care of by multiplication of  and , respectively. 

[From the definition of , we require that,

(121)

Therefore, it must be true that,

(122)

Note from equation (90) [reprinted below as equation (123)],

(123)

that this is consistent with equation (89) [reprinted below as equation (124)],

.] (124)

Next, we consider :

(125)

Let us define  as,

(126)

so that,

(127)

(128)

Combining equations (109), (112), (115), (125) and (126), we arrive at the following iterative EM update rule
for the state-transition matrix :

(129)

where  is given in equation (120) in terms of the current model parameters, and  is given in equa-
tion (128) in terms of .

The iterative EM update rule for the output-probability-distribution matrix  can be similarly derived. The
numerator in equation (110) can be expressed as,
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(130)

(131)

Similarly, the denominator in equation (110) can be expressed as,

(132)

(133)

so that,

(134)

Finally, from equation (111), we get that,

. (135)

 

D. Summary of results

 

We have now derived the Baum-Welch algorithm for iteratively training the parameters of a hidden Markov
model. Given a current estimate of the HMM  and an observation sequence ,

, the new estimate of the HMM is given by , where,

, (136)

, , (137)

, (138)

 and (139)

(140)

Note from equation (139) the key role that the forward and backward variables play in the HMM reestimation
formulas. Also, note that the reestimation equations (136), (137) and (138) guarantee that,

, (141)
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, (142)

(143)

after each update. Since the reestimation equations are EM equations, we are guaranteed that for each itera-
tion,

(144)

When , we are guaranteed to have reached a 

 

local

 

 maximum of the log-probability func-
tion. Equations (136), (137) and (138) can also be derived through direct maximization of the -function,

 

1

 

 or constrained Lagrange optimization of .

 

E. Simplification

 

The update equations (136) and (137) can be written in simplified form directly in terms of the forward and
backward variables. 

(145)

(146)

Equations (145) and (146) above were derived by combining equations (123), (136), (137), (139) and (140)
above. For training on single observation sequences, equations (145) and (146) reduce to,

(147)

(148)

 

1. The  in this context is different from the state-sequence  used throughout these notes; it’s just an 
unfortunate collision of notation.
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7. Solution to the decoding problem (problem #2)

 

Problem statement: Given an observation sequence , , and a hidden Markov model
, how do we efficiently compute the “best” (most likely) state sequence ,

 (i.e. the state sequence that best explains the observation sequence  given )?

 

A. Intr oduction

 

Since the underlying state sequence  that generated the observation sequence  is
unknown, we would sometimes like to be able to determine the most likely state sequence to have generated

 given the hidden Markov model . In speech recognition applications, for example, this is especially rel-
evant, since the states of the hidden Markov model can be interpreted as phonemes.

One way to try to solve this problem is to choose the  which are

 

 individually

 

 most likely at each time step
. The  variables that we defined in the previous section are helpful here,

 [see equations (126) and (127)]. (149)

(150)

Since, 

, and (151)

(152)

the  variables can be computes in terms of  and ,

(153)

Now, in order to choose the individually optimal state sequence , we simply take the largest
 value for all ,

, (154)

The basic problem with this solution is that equation (154) permits state sequences  that may contain state
transitions,

(155)

that are not possible given  (i.e. ), so that . A better solution, therefore is to try to
find the state sequence  that gives the single best path for the observation sequence  and the HMM ; in
other words, we would like to find  such that,

(156)

is maximized. The 

 

Viterbi algorithm

 

, developed in the next section, does just that.

 

B. The Viterbi algorithm

 

Thus, we want to maximize . From basic probability theory,

(157)
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so that maximizing  is equivalent to maximizing the joint probability of  and  given ,
, since  is constant with respect to . As was the case for the evaluation problem, we

could theoretically solve this problem by computing,

,  [see equations (73), (74) and (75)] (158)

and then select ,

(159)

as the optimal state sequence. Since there are a total of  total possible state sequences (e.g. if  and
, then ), however, equation (159) would be impractically slow to compute. Therefore, we

will derive an inductive algorithm for solving the decoding problem similar in spirit to the forward-backward
algorithm. This algorithm is known as the 

 

Viterbi algorithm

 

.

First, let us define another variable ,

 (160)

which can be interpreted as the best score (i.e. highest probability) along a single state path at time  for the
first  observations and ending in state . Given the definition in equation (160), the following inductive
relationship exists:

(161)

Equation (161) forms the basis of the Viterbi algorithm and is very similar to the forward algorithm used to
compute the  variables. In order to completely specify the Viterbi algorithm, however, we will need
another (Greek) variable  which keeps track of which  maximizes the right-hand side of equation
(161) for each time step . The complete Viterbi algorithm for recovering the most likely state sequence 
is given below:

1.

 

Initialization

 

:

 (162)

, (163)

2.

 

Induction

 

:

, , (164)

, , (165)

3.

 

Termination

 

:

(166)

(167)

(168)

4.

 

Path (state-sequence) back tracking

 

:

, (169)

where , , is the most likely state sequence.
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As is the case for the forward-backward algorithm, the Viterbi algorithm requires slight modification for
implementation on finite-precision computers in order to prevent numerical underflow.

 

8. Hidden Mark ov models with continuous-valued outputs

 

So far, we have looked only at discrete-output HMMs, where observations consist of sequences of discrete
observables . Although most applications of HMMs deal with continuous-valued signals, these types
of HMMs are used most often in practice because they are by far the most computationally efficient type of
HMM with which to work. Nevertheless, there do exist HMMs with continuous-valued outputs, and we review
two main types of continuous-valued HMMs below.

 

A. Continuous-output HMMs

 

Assume that rather than have a sequence of discrete observables , we instead have a sequence of
continuous-valued vectors , . Without preprocessing and vector quantization of the
sequence , we can no longer use the discrete-output probability matrix . Rather, in continuous-output
HMMs, we assume that each state , , is represented by an output probability density func-
tion (pdf)  that is a mixture of Gaussians:

, , (170)

where,

 (Gaussian pdf with mean  and covariance ), (171)

 (probability of class  given state ), (172)

such that,

 and (173)

(174)

Figure 2 illustrates schematically, for example, what a three-state continuous-output HMM with one-dimen-
sional continuous-valued outputs may look like. The main drawback of continuous-output HMMs is their
substantial computational complexity. Consider for example, the number of free parameters that have to be
estimated during training in continuous-output HMMs 

 

vs.

 

 discrete-output HMMs.

:  free parameters (same as for discrete-output HMMs) (175)

:  free parameters (similar to  parameters for discrete-output HMMs) (176)

:  free parameters (177)

:  free parameters (178)

Thus, from equations (177) and (178) we see that continuous HMMs have on the order of  more
parameters to estimate, which leads to much higher computational complexity during training. It is not just
training that requires much more computation, however; even evaluation of  requires an order-of-
magnitude increased computation, since each table lookup  in the discrete case is replaced by the rela-
tively complex computation of ,
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(179)

Equation (179) requires  Gaussian function evaluations,  multiplications and  additions, 

 

vs.

 

 one
table lookup in the discrete case.

While computational complexity is a principal reason that discrete-output HMMs are often preferred to con-
tinuous-valued HMMs in practice, a secondary important reason is that continuous-valued HMMs tend to be
more sensitive to initial parameter settings [3]. In other words, it is much more likely that in training continu-
ous-valued HMMs, the model  converges to a poor local maximum of the log-likelihood function, unless
the initial parameter settings are selected with great care. 

Huang [4] tried to address these concerns with development of what he referred to as “semicontinuous”
HMMs, which we briefly review in the next section.

 

B. Semicontinuous-output HMMs

 

The basic idea of 

 

semicontinuous HMMs

 

 is to combine the computational simplicity of discrete-output
HMMs with the superior modeling capacity of continuous HMMs. Given a sequence of continuous-valued
vectors , , the distribution of the data  is first estimated as the mixture of  Gaus-
sians, using the EM algorithms developed earlier in this course. The output probability of a vector  in state

 is then estimated as,

(180)

where,

 = the th Gaussian pdf estimated through the EM algorithm, and (181)

. (182)

The principal difference between semicontinuous HMMs and continuous HMMs is that instead of 
Gaussians, there are only  Gaussians in the model and that the parameters of the Gaussians are estimated
prior to HMM training. This simplifies the model significantly, not in small part because a semicontinuous
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HMM typically have many fewer parameters that need to be estimated. Unfortunately, semicontinuous
HMMs are still significantly more computationally costly than discrete-output HMMs.

In order to clarify the difference between discrete-output and continuous-valued output HMMs, let’s look at a
simple example. Consider a single-state HMM with,

(183)

where the th discrete observable corresponds to the real values ,

, . (184)

In other words, the discretization in equation (184) corresponds to a VQ codebook of,

(185)

as illustrated in Figure 16 below.

The pdf for the HMM in equation (183) and the VQ codebook in equation (185) is plotted in Figure 17 for
. The effects of vector quantization are clearly evident in the discontinuous profile of .

Now, however, assume that we represent the continuous-valued data  not as a VQ codebook, but rather as a
mixture-of-Gaussians with means ,

,  [same as centroids in VQ codebook of equation (185)] (186)

and variances ,
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, . (187)

The resulting pdf is plotted above in Figure 18. (Note that since  in equation (183) is a single-state HMM,
the semicontinuous and continuous HMM representations for this problem are the same.) Clearly, the contin-
uous-valued HMM is able to represent continuous distributions more accurately.

Evaluation, decoding and training of HMMs with continuous and semicontinuous output probability distribu-
tions will not be covered here. We simply note that algorithms developed for discrete-output HMMs previ-
ously extend in a straightforward manner to the continuous and semicontinuous case.

 

9. Implementation issues

 

A. Discretization compensation

 

The discrete pdf for the single-state HMM in equation (183) illustrates a key shortcoming of applying dis-
crete-output HMMs on continuous-valued data  (as is most often the case in real-world applications). Con-
sider, for example, two real-data sequences  and :

(188)

(189)

which differ only in the first element (0.21 

 

vs.

 

 0.19). Assuming the VQ codebook in (185) and the single-state
HMM  in (183), we can evaluate  and . First we convert  and  to sequences of dis-
crete observables,  and , respectively:

(190)

(191)

Then, evaluating the probabilities of each sequence given ,

(192)

(193)

Thus, even though the two real sequences  and  are almost identical, they evaluate to radically different
log-probabilities. Note that the same result could have been obtained for arbitrary long sequences  and

, which differ only in one element by some small .
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This singularity result is not desirable; it suggests that discrete-output HMMs may not be very robust to
noise. Remember that HMMs are necessarily trained on 

 

finite

 

-length sequences, so that rare events win non-
zero probability may be possible yet, at the same time, may not be reflected in the data (i.e. may not have
been observed). The probabilities corresponding to such events will therefore converge to zero during HMM
training. Alternatively, a sample sequence may have spurious readings due to sensor failure, etc., and such
sequences will evaluate to zero probability on HMMs previously trained on less noisy data.

There are two basic ways to deal with this problem through 

 

discretization compensation

 

: (1) semicontinuous
evaluation, and (2) flooring. In semicontinuous evaluation, the HMM is first trained on discrete data (vector-
quantized from real data). When new sequences of real data  need to be evaluated, we assume that the VQ
codebook previously generated represents a mixture of Gaussians with some uniform variance  that can be
thought of as a smoothing parameter.

By far the most common method of discretization compensation, however, is 

 

flooring

 

 (also referred to as
smoothing). Flooring is simple and effective. As before, discrete-output HMMs are trained normally. Once
the HMM training has converged, zero entries in the resulting model  are replaced with some
small  (typically around 0.0001). Rows in the  matrix, column in the  matrix, and the  vector are then
renormalized to fit the probabilistic constraints,

, (194)

, (195)

(196)

For example, the  matrix for the single-state HMM  in equation (183) would be modified for ,

(197)

through flooring. With the floored  matrix , the observation sequences in equations (190) and (191) eval-
uate to,

(198)

(199)

Clearly, the flooring procedure ensures that observation sequences evaluate to finite log-probabilities. Note
that the log-probability for  changes little from ; however, the log-probability for  becomes
finite. The log-probabilities in (198) and (199) still appear significantly different primarily because the frac-
tion of near-zero observables for  (1/6) is relatively high for this simple example. Typically, rare events
that lead to zero probabilities in the hidden Markov model occur much less frequently.

 

B. Scaling for the forward-backward algorithm

 

The forward-backward algorithm, as previously presented, suffers from numerical underflow problems if
implemented on any finite precision computer. Recall the forward algorithm,
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1.

 

Initialization

 

:

, (200)

2.

 

Induction

 

:

, , (201)

3.

 

Completion

 

:

(202)

for evaluating , and the analogous backward algorithm,

1.

 

Initialization

 

:

, (203)

2.

 

Induction

 

:

, , (204)

Note from equations (201) and (204) that the induction steps of the forward and backward algorithms, respec-
tively, multiply together numbers less than or equal to one. This implies that for large  (i.e. long observation
sequences)

 and . (205)

Consider, for example, the simple three-state HMM with four output observables shown in Figure 19 below.
This HMM was used to generate a sample observation sequence  of  observables. For this obser-
vation sequence, we compute , , , and plot  as a function of 
in Figure 20. Note that even for this relatively simple HMM and relatively short observation sequence,

(206)

The numerical underflow problem becomes even more severe when the number of possible observables
increases (since the  values will become smaller on average as  increases). To illustrate this, we gen-
erate another HMM with the same state-transition matrix  as before, but with an output-probability distri-
bution matrix  with  (i.e. 100 possible observables). We again compute , ,

, and plot  as a function of  in Figure 21. Note that now,
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(207)

Clearly, for arbitrarily long observation sequences, the forward-backward algorithm will not be numerically
stable. Therefore, in order to make the algorithm numerically stable, we introduce 

 

scaling

 

 of the forward and
backward variables that will keep the values of those variables within the dynamic range of a typical floating
point computer.

Below, we present the 

 

scaled forward algorithm

 

:

1.

 

Initialization

 

:

, (208)

,  (

 

scaling

 

) (209)

2.

 

Induction

 

:

, , (210)

, ,  (

 

scaling

 

) (211)
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,  (

 

scaling

 

) (212)

3.

 

Completion

 

:

(213)

In the scaled forward algorithm, the forward variables are scaled at each time step  by a scaling coefficient
 so that the scaled forward variables  meet the following constraint:

, (214)

By comparing the scaled forward algorithm [equations (208) to (213)] with the unscaled forward algorithm
[equations (200) to (202)], we observe that the scaled forward variables  are related to the forward vari-
ables  of the unscaled forward algorithm by the following relationship:

(215)

For ,

(216)

so that from equation (214),

(217)

Since,

, (218)

equation (217) can be written as,

(219)

so that we arrive at equation (213),

(220)

For large ,  will typically be very small, so that in practice we compute equation (220) instead as,

(221)

Once the scaled forward algorithm has been executed, the 

 

scaled backward algorithm

 

 follows:
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1.

 

Initialization

 

:

, (222)

,  (

 

scaling

 

) (223)

2.

 

Induction

 

:

 , (224)

, ,  (

 

scaling

 

) (225)

Note that for the scaled backward algorithm, we use the same scaling coefficients  computed in the scaled
forward algorithm. The scaled backward variables  are related to the backward variables  of the
unscaled backward algorithm by the following relationship:

(226)

As an example of the scaled forward-backward algorithm, let us compute , ,
, and plot  as a function of  for the three-state HMM with  for which we

previously computed the unscaled variables  (Figure 22).Note that now the scaled forward variables
stay well within the floating-point range of a typical computer, and that this result holds no matter how large

 is.

 

C. Scaling and the Baum-Welch algorithm

 

Previously, we derived the following iterative training algorithm for optimizing the parameters of a hidden
Markov model  given some observation sequence ,
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(228)

in terms of the unscaled forward-backward variables, where  is the current estimate of the
model, and  is the new estimate of the HMM. Let us consider how the update equations (227)
and (146) change if expressed in terms of the scaled forward-backward variables. Consider equation (227)
first.

First let us substitute  for  and  for  in (227) and see how we need to modify the result-
ing equation to make it equivalent to (227):

(229)

Now, combine equation (229) with equations (215) and (226) so that,

(230)

(231)

From equation (220),

(232)

Therefore, to express equation (227) in terms of the scaled forward-backward variables, we simply need to
divide  in the denominator of equation (229) by . The correct update equation in terms of the
scaled forward-backward variables is therefore given by,

(233)
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Now let us consider the update for the output probability matrix  in equation (146). Again, let us substitute
 for  and  for ,

 (234)

Now, combine equation (234) with equations (215) and (226) so that,

(235)

(236)

Therefore, to express equation (146) in terms of the scaled forward-backward variables, we need to divide
 in both the numerator and denominator of equation (234) by . The correct update equation in

terms of the scaled forward-backward variables is therefore given by,

(237)

Equations (233) and (237) represent the Baum-Welch reestimation formulas in terms of the scaled forward-
backward variables.

 

D. Scaling and the Viterbi algorithm

 

The Viterbi algorithm for finding the most likely state sequence  given  and  was previously derived as:
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, (239)
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Induction
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, , (240)

, , (241)
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3.

 

Termination

 

:

(242)

(243)

(244)

4.

 

Path (state-sequence) back tracking

 

:

, (245)

where , , is the most likely state sequence.

This algorithm is easily modified to eliminate numerical underflow problems by defining,

(246)

instead of,

(247)

Consequently, equation (239) changes to,

, ; (248)

equation (240) changes to,

, , ; (249)

equation (241) changes to,

, , ; (250)

and equation (243) changes to,

(251)

 

E. Multiple observation sequences

 

In many applications, rather than train a hidden Markov model on one long observation sequence , we
instead would like to train the model  on  short sequences , . For example, in
speech recognition applications, where each HMM may represent one spoken word, we would like to train
that HMM on many different utterances of that word. In handwritten gesture recognition, where each HMM
may represent one of several different gestures (e.g. written letters), we again would like to train those HMMs
on many different examples of that gesture.

Training a single HMM on multiple observation sequences leads to two changes in the general HMM frame-
work: (1) the HMM structure that is chosen for those applications, and (2) a modified training algorithm for
handling multiple observation sequences.

When training on multiple, relatively short observation sequences, typically the HMM model is restricted to a
left-to-right structure. Consider, for example, the left-to-right model in Figure 23. 

Except for self-transitions, connections are only allowed in one direction. A fundamental property of all left-
to-right HMMs is that the state transition probabilities  are restricted to,

, (252)
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State transitions may further be restricted to prevent large changes in state indices. For the HMM above, for
example, the state-transition matrix  is given by,

(253)

The modification of the Baum-Welch reestimation formulas for multiple observation sequences ,
 is straightforward, if we assume that each observation sequence  is independent of

every other observation sequence in the training set. Our goal now is to optimize the parameters in  to max-
imize,

(254)

Since the reestimation formulas are based on frequencies of occurrence of various events, the reestimation
formulas for multiple observation sequences are modified by adding together the individual frequencies of
occurrence for each sequence. In terms of the unscaled variables,

(255)

(256)

Note that the  terms were cancelled out of the numerator and denominator previously for the
case of a single observation sequence. For multiple observation sequences, these terms no longer cancel out.
In terms of the scaled variables,
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(257)

(258)

Note that the  terms no longer need to be explicitly included in equations (257) and (258),
since equations (232) and (236) show that the scaled forward-backward variables implicitly include the

 terms. Finally, note that equations (110) and (111) in Rabiner’s HMM tutorial paper [1] both
contain errors, which equations (257) and (258) fix.

 

10. Baum-Welch convergence

 

Below, we illustrate some convergence issues of the Baum-Welch algorithm for a simple example and a real-
world example.

 

A. Simple example

 

Here we conduct the following simple experiment to investigate how the convergence of the Baum-Welch
algorithm is affected by the number of states that we assume for our model. We first generate an observation
sequence  of length  for the two-observable, two-state hidden Markov model  in Figure 24

where,

, , . (259)

We then train three HMMs , , from random initial parameter settings, where  has 
states. The three resulting HMMs are shown in Figure 25 on the next page. Finally, we compute the normal-
ized probability measure (normalized with respect to , the length of the observation sequence),

(260)

Table 1 below reports the resulting  values. The final single-state HMM  cannot encode any
sequential structure, and therefore captures only the aggregate distribution of observables (1/2 and 1/2). The
two-state HMM  converges to the generating HMM in the above figure, which is encouraging. Although
the Baum-Welch algorithm is only guaranteed to find a local maximum of the log-probability function, in this
case it converges to the globally optimal value. Note also that  improves significantly from  to
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. This implies that two states are able to capture sequential characteristics of the observation sequence 
which the one-state HMM cannot capture. In this case, we know this to be true since the observation
sequence  was generated from a two-state HMM. 

When we increase the number of states to three, the Baum-Welch algorithm converges to  in the figure
above. Although  has significantly more representational power than , the normalized probability

 does not appreciably increase. This indicates that the two-state model  is probably sufficient for
modeling the sequential properties of , and adding more states will not improve the model substantially. In
fact, note that for the model , the single left state of  is effectively split up into two states in .

The above results suggest that, although we frequently do not know the exact number of states that we should
use for modeling specific data in real applications, we may arrive at the optimal number of states for a spe-
cific observation sequence by training models with a different number of states, and then selecting the small-
est (most general) model which yields the largest normalized probability value . To illustrate this
point, we consider a more complicated example below.
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B. Real-world example: modeling human control trajectories

 

In previous work [5], hidden Markov models have been applied towards modeling and analyzing human con-
trol strategies in a dynamic graphic driving simulator (shown in Figure 26). For our example here, we prepro-
cess and vector-quantize (to  levels) a sample human control trajectory in order to generate a discrete
observation sequence  of length . We then train an eight-state ( ) HMM  on this obser-
vation sequence using the Baum-Welch reestimation formulas. 

It is instructive to look at the parameter values  to which the final model converges. We can do this
graphically by plotting the  and  matrices in Figure 27, where darker shades represent smaller values and
lighter shades represent larger relative values. Although the model is parameterized by a total of,
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 free parameters, (261)

(ignoring the  vector), the final model retains only  nonzero parameters. In effect, the model was auto-
matically reduced in terms of complexity during training. This type of model reduction is very typical of the
Baum-Welch training algorithm.

Now, let us conduct the same experiment as in part A. We first use the final HMM  to generate a test obser-
vation sequence  of length , and then train models , ,with  states,
from random initial parameter settings. Figure 28 below plots the normalized probabilities  as a
function of the number of states . The maximum is given by,

 for (262)

If we evaluate the test sequence  on the generating HMM , we get that,

(263)

These results indicate that when trained and evaluated on real-data, the 

 

precise

 

 number of states in the hidden
Markov model is not so important as the 

 

approximate

 

 number of states required to sufficiently encode the
sequential properties of the underlying data. In the above example, one or two states clearly are insufficient to
capture the sequential properties of the generating HMM . From equations (262) and (263) it is also evi-
dent that the Baum-Welch algorithm (a special case of the general EM algorithm) only converges to local
maximum. Nevertheless, the local maximum to which the training algorithm converges is typically a rela-
tively good local maximum, as is the case here.

Before we leave this topic, a quick word about the rate of convergence of the Baum-Welch algorithm. In a
typical training scenario, we execute the Baum-Welch reestimation formulas until the change in the model
falls below some threshold , such that,

(264)
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where  denotes the model  after the th step of the algorithm. From experience, that threshold should
be set to some very small value (e.g. ) in order to ensure that the model has reached a final
local maximum. Consider, for example, the convergence of the Baum-Welch algorithm for  trained on 
as plotted in Figure 29. Note that  levels out several times before the final local maximum is
reached.
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