EEL6825: Pattern Recognition Introduction to Markov systems

Intr oduction to Markov systems

1. Intr oduction

Up to nav, we hae talled a lot aboutdilding statistical models from data. Wever, throughout our discussion
thus fr, we hae made the sometimes implicit, simplifying assumption that ouvithdil data samples (or tri-

als) arestatistically independent.et,

be a sequence of discrete randaamiables.Then the{ Xj} random wariables are said to be independent if and
only if,

P(X = xt‘Xt_1 =X Xi_o = KXo - Xy = X) = POX = X) (2)

(Equation(2) generalizes tvially to sequences of continuous and nwaltiate randomariables.)

Some classicxamples of independentents are (1) a series of coin tosses, (2) a series of dice rolls, etcyin man
instances, heever, the independence assumption is not a good assumption, especially when we deal with
sequential data generategeotime. Considerfor example, the follwing random wariables:

1. A persons$ weight.

2. Acoustic signals in speech recognition.
3. Hand gestures.

4. Robot trajectories.

5. The weather

6. The state of a dynamic system.

In each of the abh@ examples, knaledge of the randomaviable at preious times{t—1,t—2, ...} gives us
useful information about the randorariable at timet . If | know that my weight on dayt —1) is 150 Ib, then
my weight on dayt is clearly constrained to be in some in&raround 150 |bSimilarly, if | measure the posi-
tion of my mobile robot at timé—1, (x,_4,Y;_4), then the measurement of the robgibsition at time is
constrained to be in some neighborhood»f ;,y;_;),

(Xp yt) = (Xt_]_v yt_]_) * (0x, dy) (3

where dx and dy are determined by the rob®tmaximum acceleration and the robatensor noise models.
When statistical independence is not a good assumption, theifgjlapproximation is often made:

POX =X X1 = %0 X2 = X 0 Xy = Xg) = POG =X X1 =% 1) (4)

In other words, we assume that the outcome ofttthemeasurement (or trial) is dependent on the outcome of the
(t—1) th measurementubis conditionally independent of the outcomes of aipies measurements at times
{t-2,t-3, ..., 1} given the outcome of the@ — 1) th measurement.his property is umersally knevn as the
Markov property (The Russian mathematiciandrei Andrevich Markov was the fist to etensiely study sto-
chastic systems with propert®) in the early part of the 20th centyry

Note that although the Maolt assumption in equatigd) only relaes the independence assumption in equation
(2) slightly, it proves to be a remarkably werful tool in modeling data with sequential dependencies yivisad
systems hae been modeledevy successfully using the Mark property even when the Mardv assumption is
only an approximation of reality (as is the case forymwaal systemsA recent query of the INSPEC database of
scientifc and engineering abstracts generated 25,000 hits foegheid “Markov.”

Models that madx use of the Mav property can be broadly classifi into four catgories along tw dimen-
sions: (1) obsenbility and (2) actions. Madv models that are fully obseale and isolve no actions (i.e are
passie) are calledMarkov chainsor obserable Marlov models Markov chains that are only partially observ-
able (i.e. the state of the system is obakler only indirectly) are calleidden Marlkov models (HMMs)
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Figure 1belov gives simple gamples of a Marbv chain, and a hidden Mask model, respectely. In the
Markov chain, the{ S} represent obseable states of the system at aegi time step, and thbaij} represent
probabilistic transitions between the states. In the hiddendankdel (HMM), the state§S} are not directly
obserable (i.e. are hidden)ubare only indirectly obseed through a stochastic output obsdxte (in this case,
the color red or blue)lhe probability of observing agn obserable (e.g red or blue) is state-dependent; in the
figure belav, for example, there is a one-third probability of observing red ana&hird probability of observ-

ing blue in states, .

four-state observable Madk model Figure 1 four-state two-observable HMM

Markov systems were actions (by some agentliarfte the state of the system at thd time step are studied in
the broad area of reinforcement learning and are referredMaréisv Decision ProcesseBhe table bel sum-

marizes the diérent types of Marbv systems.

Actions

Passive Choose actions

Fully observable | Observable Markov Models ey DFCI\/II glc:))rsl)Proc

Partially Hidden Markov Models Partially Observable
Markov Decision Processes

observable (HMMs) (POMDPs)

Observability

Before formalizing the notion of a Mawk chain and a hidden Mavk model, we list some of the successful
real-world applications of HMMs:

1. Speech recognition 6. Human skill modeling (e.g. sgical procedures)
2. Language modeling 7. Human control stratyy analysis (e.g. dring)

3. Gesture recognition (e.g. sign language) 8. Robot control (e.g. autonomous\wdnig)

4. Hand-writing recognition 9. And others...

5. Facial-epression recognition (e.g. sign language)
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2. Observable Markov models
A. Definitions
Consider a system that consistd\bfdistinct states,
{S}.iO{1,...,N}, (5)

with the following propertiesAt regularly spaced, discrete-time intats, the system undgyes a change of
state (possibly back to its present state).idedi{q,} , t {1, 2, ...} , as the state of the system at titme
assume that the state transitions of this system aesrged byfirst-order Markv state-conditional probabil-
ities, such that,

P(qt = %‘qt—l = S' Gi_» = S(v o) = P(qt = %‘qt—l = S) (6)
Moreover, assume that the state-transition probabilities&tonary such that,
P(a=§|%-1=S) = P(as=§|0s_1 = S), Os t>1. (7)

Together equationg5), (6) and(7) defne a discrete, stationaffirst-orderMarkov chain or alternatiely, an
obsenable Marlov model

For notational comenience, let,
a;=P(0; = §[%_1 =), 1,i O{1 ....N}, (8)

let theN x N state-transition matriXA be defined by

a;; 8, ... Ay
A= Ay 8y ... gy ©
ayp Az - AN
where,
O<aq;=1,i,j0{1,...,N}, (10)
N
Y oa; =1,i0{L..,N}, (11)

i=1
and let theN -length initial-state probabilityectorrt = {rt},i 0{1,...,N},

T = P(q]_:%)'llj{l”N} 12)
define the initial € = 1) state probability distrition. Then, the Markv chainA is completely defied by
{A 1} .

B. Example

ConsiderFigure 2belaw. It graphically describes a fully connected three-state &arkodel (N = 3).
(Fully connected means tha{j >0, Oi,j.) This model could, forxample, be a simple meteorological
model.Assume that once a day at high noon, the weather conditions areegsbardvclassiid into one of
three distinct stategS,, S,, S;} where,

S, =rainor snw, S, = cloudy andS; = sunyy. (13)

Furthermore, assume that the weather gngiven dayt is dependent only on the weather on thevipres
day (t—1) . Then a possible state-transition matixmight be,
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a2 ai i
a
a3
az%:ﬂ
Figure2

az
az3

0.4 03 0.3
A=1020602 (14)
0.1 0.1 0.8

which is illustrated graphically iRigure 3below.

06 03 0.4
0.2
0.1 0.3
0.2 0.1
0.8 Figure 3

C. Probability of observation sequences

Given a Markv modelA = {A, 11} , and an obseation sequenc®,

O = {qy, gy, .-, Uy} (15)
of length T, the probability of the obseation sequenc®, given the modeh , P(O|A) , is given by

P(O|A) = P(qq) % P(Qz‘ql) XX P(qT‘qT_l) (16)

P(O|A) = Ty, X 8,0, - X 8q._qr a7

(Note that in equatio(iL7), the g, subscripts denote the indef the state at time.)
Example For the g&ample in Sectio2-B, what is the probability of the obsation sequenc®,
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0 =1{535;555, 5% %S (18)
given that at time¢ = 1, the weather is sugfl
From the question,

m=1m,=0,1m=PQ9g=S5) =1. (29)
Therefore,

P(O|A) = Taag3833851811 81383853 (20)

P(OJA) = 1x0.8x0.8%x0.1x04x0.3x0.1x0.2 (21)

P(O|A)=1.536 x 104 (22)

D. Expected length of same-state sequences

Given that at time the state of the modal = { A, i} is §, the probability that the model will stay in that
state for gactly d time steps is gien by

P(Og|N) (23)
where,

Og ={0i=S:0+1=S: - G+g-1=S G+qg=S} [ #i. (24)
Now,

t+d-1

P(O4[A) = P(qt=$)xL|:|+1P(qT:3qT_lzs) X PG g% S| %+ 1= S) (25)
where,

P(q,=S) = 1 (given), (26)

P(ar = §[t-1=S) = &; 27)

PG+d?S|0+d-1=S) = 1-P(G+¢=S|%+g-1=5) = 19 (28)
so that,

P(Og[A) = aff'= D x (1-a) (29)

The epected alue ofd is given by

0

E[d] = 5 dxP(Oy|A) (30)
d=1

E[d] = 5 dxald-1) x (1-a;) (31)
d=1
_ 1

E[d] = =) (32)

Example For the &ample in Sectio2-B,
E[d] ‘Sl = 5/3 days of rain or s, (33)
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E[d]\Sz = 5/2 days of cloud ceer, (34)

E[d]\S3 = 5 days of sunshine. (35)

E. Probability of being in a given state at timet

Given a Markv modelA = { A, 1}, the probability of being in stalﬁ at timet, P(g, = S) can be com-
puted inductiely,

P(g, = S) = T (by defiition) (36)

N
P(a,=8) = Y P(a_1=S)a;, t0{23, ..} 37)
i=1

Alternatively, we can write,
P(q,=S) = [TAC=D]; (38)
Where,[v](i) denotes théth element of theectorv .
F. Fully connected Markov chains

Fully connected (fiite-state) Mar&v chains eij >0, 0i,j) areemodic That is, the limit P(q, = %) ast
approaches imfity exists and is independent of the initial state probabikgter T,

i = = i (t-1)7,., =
Jim P(g = §) = lim [AC=D]g) = P(S), On (39)

Example The limit in equation(39) typically corverges for relatiely small \alues oft. For the Markov
chain in Sectior2-B, for example, equatiof39) corverges to,

P(S;) =0.1818 (rain or snw) (40)
P(S,) =0.2727 (cloudy) (42)
P(S;) = 0.5455 (sunry) (42)

for different initial \alues ofrt andt = 20, as illustrated irFigure 4 for example, withtt = [0.1 0.1 o_g]T.
(This weather model is cleampot for Pittsturgh, A, where sunshine is a rare occurrence indeed.)
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0.2

01¢
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Figure4
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Example The limit in equation(39) need not be well defed if somea;; = 0. Consider the te-state
Markov model inFigure 5below:

The corresponding matrix is gien by

A = {01} (43)
10

Note that forA in equation(43),
A2t = |10 a@t-1 = [0 vhi1 0y (44)
01 10

Therefore, the limit in equatiai39) does not xist.

Figure5

G. Partially connected Markov chains

When some transition probabilitiet»;] = 0, states may becontnsientor absorbingA transient stat§ is
defined by the property

tImeP(qt =S) =0, (45)

while an absorbing staq is defned by the property
lim P(q, = =1 46
lim P(q, = §) (46)
Example Consider the three-state Markmodel inFigure 6belov, where0 < a4, a;5, 8y, 8, a3 <1,
a3 = a3 = agp = 0,andag; = 1.
The states5; andS, are transient, while the stafg is absorbing.

ajg axp 1

Figure 6

ap axz

H. Maximum-lik elihood estimation br obsewable Markov models
Given an obseation sequenc®,
O = {qy, gy, -, Uy} (47)
The maximum-likelihood estimate of the parameters in the MankodelA = { A, 1} is given by

number of transitions from sta& to stateS]
a. =

— 48
1 number of transitions from stag (48)

oL, if gy =
- 1S

= (49)
[0, otherwise
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Example The folloving obseration sequenc®,

0O ={2233311333333333333333333333112222233121333333333321323322233222222222221....
..1331222222222111222111333333} (50)
of lengthT = 100 was generated from the Maxkmodel in Sectio-B, with T = [1/3 1/3 1/3JT.

For eacha; j»we hae to count the number of transitions from stgteo state% . The matrixA gives those
frequencies:

. 7 4 5
A=15274 (51)
4 4 40

Normalizing the ras ofA, we get that the maximum-&khood estimate oA is given by

0.438 0.250 0.313
AU= 10,139 0.750 0.111 (52)
0.085 0.085 0.830

ComparingAll in equation(52) to A in equation(14), we see thaAll is a reasonable approximation Af
Of course, for longer obsetion sequences (more data), the approximatioA efill improve asymptoti-
cally. Figure 7belav plots the error between the actual model [equdfid)] and the estimated model,

€rms = /Z(aij[l_aij)z (53)
1]

averaged wer 20 randomly generated obsaion sequences, as the lengthof the obseration sequences
becomes laye.
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3. Hidden Mark ov models (HMMSs)
A. Intr oduction

As we hae seen, in Maiby chains (or obseable Marlov models), it is assumed that we can obsdhe
stateq, at each time step. In hidden Marlov models we remee that condition. In otherevds, we assume
that the state at each time stepasobsenrable; ratherwe can only obseevthe state at each time stendi-

rectly through some obsetle O, , which is related to the statg at time stegt through some output prob-
ability distribution. That is, a hidden Madv model is a doubly stochastic model, where both state transitions
as well as output obsextrles are geerned by probabilistic distritions. Before we formalize this notion, let

us look at a simplexample.

Figure8

Suppose that we i@ N large urns (bwils), that are fied with differently colored balls. Ifkigure 2 N = 3,

and there are three colors: (1) white, (2) gray and (3) bleknav generate a sequence of balls using the
following procedureWe first pick one of the three urns at random, according to some statiorady fiob-
ability distribution. Net, we pick a ball a random from that urn, and obsét's color The ball is then put
back in the urn from which it as selected. Subsequentynev urn is selected according to some stationary
probability distritution associated with the current ufithat is, which urn is selectedxtes conditional on
only the current urn. Once aig, we pick a ball from the meurn, and the process is repeated to generate an
obsenration sequenc¢O,} , t0{1,2, ..., T} of colors.A typical obseration sequence is plotted Figure

9for T = 15.

0000 0000006006

Figure9

Graphically we can represent this process as a hiddendariodel (HMM), as shon in Figure 10 Each

urn is represented by a state that is connected to all other states through probabilistic transitions. Each state
also has some output probability distition (e.g. ratio of black, gray and white balls in each urn) associated

with it. This output probability distrilttion for each state is indicated graphicallyigure 10 For example,

in state 1 (the left-most state), there are 1/4 white balls, 1/4 gray balls and 1/2 black balls.

Figure 10
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Note, that in this process, we can only obsehe color of each ball, not the urn from which the bak w
picked. Hence the nam@dden Markov model, indicating that we cannot directly obsetiie underlying
sequence of states that generated the cds@nvsequence.df the sample obseation sequence sho
above, may different underlying state sequences are possiblack there are a total &= 14.3 x 106
total possible sequences.

B. Definition of an HMM

While the abee example may appear conted, it does hae all the necessary properties of a hidden lark
model. In order to defe the notion of an HMM formallywve introduce the folleing nomenclature:

S = statei, (54)
v, =kth obserable, (55)
g, = state of the system at time step (56)
O, = obserable that is obseed at time step, t 0 {1, ..., T} . (57)

Given this notation, a discrete-outpttMM A is completely defied byA = {A, B, i} , where,

N = # of states in the model, (58)
L =# of possible obseables (M in Rabiner tutorial papgt]), (59)
A =NxN state transition matrix with elemerts, j} , (60)

{aij} :P(qt+1:5ﬂqt:§),i,jD{l,...,N}, (61)
B =L x N output probability distribtion matrix with eIementsbkj} = {bj(k)} , (62)
1 = N-length initial state probabilityector with elementss, , (64)

{} =P(@;=S5),i0{1,....N} (65)

The parameters (probabilities) of the hidden Mannodel are stationary (independent of time).

Thus, the hidden Madv model is diferent from the obseable Marlov model in that we hee added the
output probability distribtion matrixB . This males it a much more peerful parametric formalism for mod-
eling sequential, Madvian processes, sind® can model anarbitrary discrete distrision. Of course, the
B matrix also adds a lge number of parameters to the model, so typicallyre data is required to reliably
train hidden Markv modelsvs. obserable Marlov models. Br example, if N = 5 and L = 100, the
obsenable Marlov model has,

N2+ N = 30 free parameters, (66)
while, the hidden Mardv model has,

N2+ N+NxL = 530 free parameters. (67)
[Note that for an obseable Marlov model, theB matrix would be gven by

B = Iy (NxN identity matrix), (68)

and the obseablesy; would be the states, so that= S ]

1. Thee ar also HMMs for continuous (continuous-valued) observablesse will be discussed later
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For the urn HMM, the output probability disttibon matrixB is given by

1/4 3/5 1/5|(White)
B = 11/4 1/5 3/5|(gray) (69)
1/2 1/5 1/5|(black)

4. Three fundamental poblems br HMMs

We can defie three fundamental problems for hidden Manodels: (1) thevaluationproblem, (2) thelecod-
ing problem and (3) th&aining problem.

A. Problem #1: Ealuation problem

Given an obseation sequenc® = {O,}, t0{1, ..., T}, and a hidden Madv modelA = {A, B, 1},
how do we eficiently computeP(OJ|A) (i.e. probability of the obseation sequenc® given the HMMA )?

B. Problem #2: Decoding poblem

Given an obseation sequenc® = {O;}, t0{1, ..., T}, and a hidden Madv modelA = {A, B, 1},
how do we eficiently compute the “best” (most &ky) state sequend® = {q;}, tO{1, ..., T} (i.e. the
state sequence that begpkins the obseation sequenc® given A )?

C. Problem #3:Training pr oblem

Given an obseation sequenc® = {0}, t0{1,..., T}, the number of state, and the number of pos-
sible obserablesL (implicitly defined byQ), howv do we eficiently compute the maximum-&khood esti-
mate of the parameters of the hidden Marknodel A = {A B, 1} ? In other wrds, what HMM A
maximizesP(O|A) ?

D. Discussion

Before we derie the solutions for these three problems, itdéstlwhile to &amine where each of the three
problems would come up in a realavid application of hidden Mad¢ models. Historicallyone of the fist
application areas of HMMs ag in speech recognition, so we will choose that as>amge. Specitially,
we will be looking at isolated spek word recognition, as illustrated Figure 11on the follaving page. In
this contat, we can assign gical meaning to the hidden states as the phonemes obtts in the wcab-
ulary of the vord recognizer

A simple isolated spa@n-word recognizer can be constructed as YedloFirst, we decide which axds

{W},i0{1, ...,M}, we would like our system to be able to recognizer &ample, we might be inter
ested in recognizing the 10 smokwords corresponding to “zetd'one,..., and “nin€, for an automated
phone system application. ktewe record hundreds or thousands of labekeanples of difierent indvidu-

als saying each of theonds out loudThese data will seevas our training dataoFeach wrd W; we train a
corresponding HMM\; to model that wrd (problem #3 abe).

Before using the discrete hidden Markmodels, we fst have to decide hew we will convert the time-sam-
pled, continuousalued acoustic speech signals to sequences of discretealidesiVhis cowversion typi-
cally involves two steps: (1) windeing and spectral preprocessing falled by (2) ector quantization.
Windowing partitions the acoustic signal into possibleidapping sgments, each of which is theitdred
through some spectral preprocessor (linear prediatoding, &st Fourier transform, etc.)The acoustic
speech signal is thus oarted to a sequence of continuoadued spectral featureestors{v,} , which are
then quantized to discrete obsasies{ O,} through \ector quantization. It is important to realize that the
spectral preprocessing avi® codebook hee to be the same for all spokwords in our training datdhere-
fore, theVQ codebook is typically trained (using, foraenple, the LBG algorithm) on all the training data.

Now, suppose that we nowant to recognize an unkwa utterance by some indglual. We first cowvert that
acoustic signal to a sequence of obables{ O,} following the same cwersion procedure as in the training
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phaseThen, we ealuate eitheP(O|A;) (problem #1 abee), or P(O, Qia)\i) , whereQiD represents the
most likely state sequence (phoneme sequencePfgiven A; (problem #2). Finallywhichever HMM A,
yields the lagest probability will correspond to the mostlik word W, .

As we shall see latealthough diferent HMM applicationsary in detail and compiéty, the diagram on the
previous page contains mpf the essential components that malp an HMM-based system: (1) spectral
preprocessing, (2)ector quantization and (3) a bank of HMMs.

5. Solution to the ealuation problem (problem #1)

Problem statemenGiven an obseration sequenced = {O,}, t0{1, ..., T}, and a hidden Marlov model
A = {A B, 1}, hov do we eficiently computeP(O|A) (i.e. the probability of the obseation sequenc®©
given the HMMA )?

A. Intr oduction
In hidden Markv models, the principal problem in computiRgO|A) ,
0 ={0},t0{1,..,T}, (70)

A={ABT}, (72)
is that we do not ke what underlying state sequen@e

generated the gen obseration sequenc® . If we assume a spedfunderlying state sequen€g, then the
problem is much simplesince,

T T
P(O|Q.A) = [ P(O|duA) = [ bg(Oy)- (73)
t=1 t=1

[Recall that in the defition of hidden Markv models, the obseation at timet, O,, is dependent only on
the state at time, ¢, .] The probability of an specifc state sequend® can be rpressed in terms of the
HMM parameters as,

T
P(Q[A) = nqlaqquan%"'aqT_qu - T[qltljlzaQI—Nt (74)

[This is identical to obseable Marlov models.]The joint probability ofO andQ givenA can be written as,

P(O, Q|A) = P(O[|Q,A)P(QJA) (75)
so that,
P(OJA) = %P(O,QM) = gP(O\Q,A)P(Q\?\) (76)

Although equatiorf76) gives a computablexpression folP(O|A) , it does not dér apractical algorithm for
computingP(O|A) . Since there ar&lT possible state sequences, each of which requires 2fdepera-
tions, equatiorf76) requires on the order &TNT total operations. Fan for \ery moderately sized problems
this is unreasonableoFexample, ifN = 5 andT = 100, we would require approximately

2 x 100 x 5190 = 1072 gperations. (77)

Clearly, we require a more fé¢ient formulation for ealuating P(O|A) . The forward algorithm described
below, does just thatA related algorithm, théadward algorithm while not eplicitly used to compute
P(O|A), will be used later to &tiently sole the training problem, and is therefore also presenteabelo
Togetherthese tw algorithms are sometimes referred to afaheard-badward algorithm
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B. The forward algorithm
Let's defne the folleving “forward” variablea (i) :
a,(i) = P(Oy, ...,0p q; = Sﬁ‘)\), (78)

which denotes the probability of the partial obstion sequencgOy, ..., O;} and being in stat§ at time
stept given the model . The a,(i) variables can be computed induety, and from themP(OJA) is eas-
ily evaluatedThe forward algorithm is defied belav:

1. Initialization :

ay(i) = P(Og, a4 =§|A) (79)
ay(i) = P(Oq]q; = §,A)P(ag = §|A) (80)
o,(i) = b, (0,), i 0{1,...,N}. (81)
2. Induction:
Oty 1() = P(Og -, Oy 1 Gpe 1 = §JN) (82)
N
oy 1() = i;P(Ol, e qt=§7\)P(qt+1=S1qt=S,7\)}P(Ot+1qt+1= SA) (83)
oN 0
dr1() = 5§lat(i)a”5bj(ot+l),tD{l, o THJO{1, ... N}, (84)

3. Completion:

N
P(OIA) = 5 ax(i) [by defnition (78)] (85)
i=1

The computation ofr, , 1(j) in the induction step ale (step 2) accounts for all possible state transitions to
stateS from time stept to time stept + 1, and the obseable O, , ; at time stept + 1. Figure 12belov
illustrates the induction step graphically

For the samealues ofN andT as beforell = 5, T = 100), the computation oP(O|A) now only tales
on the order of,

t+1

ayj

a;

anj

\ S

Figure 12

o (i) A4 1(0)
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N2T = 2500 operations, (86)

as opposed ta072 operationsThus, the fonard algorithm ders a practical and fefient means for solving
the e/aluation problem in hidden Maok models!

C. The backward algorithm

While the backward algorithm is not usedglicitly to solve the galuation problem, it will be used later for
solving the training problem in conjunction with the fard algorithm. Because of its similarity to the-for
ward algorithm, it is presentedwohavever. First, we defie the “backwrd” variablesB,(i) (similar to the
forward \ariables) to be,

By(i) = P(Oyyy, -+, Or[y = §, ) (87)

which denotes the probability of the partial obstion sequenc¢O, , 4, ..., O} given that at time step
the model is in stat§ and gven the modeh . As with the forvard \ariablesa,(i) , the backwrd \ariables
B,(i) can be computed induetily. The backvard algorithm is defied belov:

1. Initialization :
Br()=1,i0{1,...,N} (88)

Note that equatio(88) arbitrarily defnesp(i) such that,

N
P(OJA) = Z a ()R (), t0{1,..., T} (89)
i=1
2. Induction:
N
B.(i) = z aijbj(ot+1)[3t+1(j) L A0{T-1,T-2,...,1},i0{1,...,N}. (90)

i=1

Equation(90) is similar to the induction step of the fawd algorithm, ecept that now we propagte the al-
ues back from the end of the obs#ion sequence, rather than fand from the bginning of O. This is
illustrated graphically ifrigure 13below. As with the forvard algorithm, the backavd algorithm requires on
the order ofN2T operations.

t t+1

a1

a2

aiN

b

Figure 13
Bt(i) Bt+ 1(])

1. As we shall see latethis algorithm will equire slight modifiation though scaling for implementation
on fnite-precision computerin oder to pevent numerical underin.
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6. Solution to the training problem (problem #3)1L

Problem statemenGiven an obseation sequenc® = {O,}, t0{1, ..., T}, the number of statel8, and the
number of possible obselesL (implicitly defined byO), howv do we eficiently compute the maximum-gk
lihood estimate of the parameters in the hidden blarkodelA = {A, B, 1} ? In other words, what HMMA
maximizesP(O|A) ?

A. Intr oduction

Baum and his colleagueswidoped thBaum-VéIch algorithmfor training hidden Marév models in the late
1960s and early 19708he deelopment of their algorithm precedes the publication by Demestexi.[2]

of the general Expectation-Maximization (EM) algorithm (1977). It is interesting to natevémthat the
Baum-Welch algorithm is simply a special case of the EM algorithm. Ia&htiwe see wi the EM algo-
rithm may be applicable here, since hidden Mankodels clearly hae hidden information (the underlying
state sequenc® = {q,} corresponding to the obsahle sequenc® = {O,} ). Therefore, in deeloping
the Baum-VéIch algorithm for training HMMs, we will do so within the EM franaek.

B. Initial f ormulation

Suppose that we knethe \alue of the underlying state sequer@e= {q,} , t0{1,2, ..., T} . Then, the
maximum-likelihood estimate ok = { A, B, i} given O is straightforvard and gien belov:

number of transitions from stag to state%

a; = number of transitions from Stae (same as for obsable Marlov models)  (91)
number of times in statg8 and observing symb
b.(k) = ‘% - g symbol, (92)
) number of times in stalﬂ
T, = (number of times in stat§ at timet = 1) (93)

Unfortunately we dont know the state sequenc®; however, if we have a current estimate of
A = {A B, i}, then we can compute “thegpected number of:.for each of the numerators and denomina-
tors in equation§91), (92) and(93) (EM rears its ugly head at). Thus, assuming a current estimate of the
hidden Marlov modelA = {A, B, 1} , a better (or equally good) estimate= { A, B, Tt} will be given by

- expected number of transitions from st&téo stateS

ij = — 4
& expected number of transitions from st§te (©4)
- expected number of times in st@eand observing symbaj
bj(k) = - - (95)

expected number of times in stde
T, = (expected number of times in st&eat timet = 1) (96)

where the right-hand sides of equati¢®4), (95) and(96) can be rpressed — as we shall see shortly — in
terms of{ A, B, 1t} (i.e. the current model parameter estimates).

C. Detailed derivation
In order to compute the quantities in equatif@), (95) and(96), we need to defe some hiddenariables

similar to the mixture-of-Gaussian problefhus, lets defne the follaving hidden wariables for the reesti-
mation of the state-transition matwx:

1. We frst look at poblem #3 ather than poblem #2 (the decodinggislem) because the solution obpr
lem #3 maks atensive use of the forwdrbadkward algorithm (i.e solution to poblem #1).

-16-
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(11, at timet, the system transitions fro to %

yi(i,1) = O _ (97)
[D, otherwise
y(i,j) = number of transitions from sta& to state% (98)
so that,
T-1
y(.p) = 5 y(i.0). (99)
t=1
Let us also defie,
. (1L, at timet, the system transitions from stee
y() =0 . (100)
[0, otherwise
y(i) = number of transitions from sta& (101)
so that,
T-1
y(i) = 5 (). (102)
t=1
Similarly, let us defie the follaving hidden wariables for the reestimation of the output-probability distrib
tion matrix B :
) 11, at timet, the system is in stat§ with output observable,
z(j,k) = O . 9 (103)
[0, otherwise
Z(j, K) = number of times in stalﬁ and observing symbaj, (104)
so that,
-
2(, k) = > z(, k). (105)
t=1
Let us also defie,
) [, at timet, the system is in sta
z() = O _ 9 (106)
[0, otherwise
z(j) = number of times in statq (107)
so that,
-
2(3) = > z()- (108)
t=1
In terms of the abee defhitions, equation§94), (95) and(96) can be written as,
~.. = Ely(i.i)]
ajj = =i 109
! El()] (109)
b () = E023, K)]
bj(k) = =214 110
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= E[y,(i)]

(111)

whereE[ 0] denotes thexpectation operatofo complete the deration, we need to compute theected

values in equationd09), (110)and(111) First, consideE[y(i, )] :

T-1 T-1
Ely(i.)] = E{ > yt(i,j)} = Y Ely(i,)]
t=1 t=1

T-1
E[ly(i,)] = 5 [00P(y,(i,]) = 0) + 1 [P(y,(i,]) = 1)]
t=1
T-1
E[y(i,)] = 5 Ply(i,j)=1)
t=1

Let us defne &,(i, ) as,
&(i, 1) = E[y,(i,))]
so that,
&(i,1) = P(y(i,)) =1) = P(q = §, Q11 = §|O,A)

P(d = S, Gy 1 = S, O]

AME SO

(112)

(113)

(114)

(115)

(116)

(117)

We can computé,(i, j) in terms of the fonard and backard \ariablesFigure 14belaw illustrates hw this

is done graphicallyRecall from Sectiob that,

a,(i) = P(Oy, ...,0, q; = Sﬁ‘)\) , and

Bi+1() = POy - Op[Gs 1 = S, A)

so that,

t-1 t t+1

(118)

(119)

t+2

a0;(0; 4 1)

Figure 14

-18-



EEL6825: Pattern Recognition Introduction to Markov systems

. = SRR D

(120)

In the numerator of equatidd20), the forvard \ariablea (i) and the backard \ariablef3, , ;(j) account
for the entire obseation sequencexeept for the obseation O, , ; at timet+ 1 and the transition from
state§ to % fromt tot+ 1. These are tadn care of by multiplication diij(OH 1) and a;j, respectiely.
[From the defiition of &(i, j) , we require that,

N N

ST &) =1 (121)

i=1j=1
Therefore, it must be true that,

N N

P(O[A) = o, (1)aib; (O 4 1) By + 1) (122)
it
i=1j=1

Note from equatioif90) [reprinted belas as equatioi(123),

N
Be(i) = 3 ajb,(Opy 1)By 1 (1) (123)

i=1
that this is consistent with equati(89) [reprinted belar as equatiotf124),

N
P(OIN) = 5 ay(i)B(i) ] (124)
i=1
Next, we consideE[y(i)] :
T-1 T-1 T-1
Ely()] = ) Ely(D] = 5 P(y(i)=1) = % P(q =S|O,A) (125)
t=1 t=1 t=1
Let us defney,(i) as,
yi(i) = E[y,(i)] (126)
so that,
N
V(i) = P(G=S|O\) = T P(6 =S, Gsq = §|ON) (127)
j=1
N
vii) = > &(i.)) (128)

i=1

Combining equation§l09), (112), (115), (125)and(126), we arrve at the follaving iteratve EM update rule
for the state-transition matrii:

= B3 50 0BEs vol (129)
ajj = ¢(i, ] Yl
H=1 o=, O
whereg (i, ) is given in equatiorf120)in terms of the current model parameters, @i is given in equa-

tion (128)in terms of¢,(i, ) .

The iteratve EM update rule for the output-probability-distiilon matrix B can be similarly deved. The
numerator in equatiofi10) can be epressed as,
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T T

E[2(, K] = ¥ P((,K) =1) = § P(g =5, 0, =0, A) (130)
t=1 t=1

ElzG. K] = > v() (131)
IZIO[t: Vi

Similarly, the denominator in equati¢hl10) can be gpressed as,

T T
ElZ()] = 5 P@G)=1) = 3 P(G,=§0.N) (132)
t=1 t=1
)] = 5 Vi) (133)
2
so that,
[l O T
=0 Y v(IOY v)E (134)
’ 04 “og&to
oo, = v, O

Finally, from equatior(111), we get that,
T = E[y;()] = y,(1). (135)

D. Summary of results

We have nav derived the Baum-\&ich algorithm for iteratiely training the parameters of a hidden Mark
model. Gven a current estimate of the HMM = {A, B, i} and an obseation sequenc® = {O,},
t0{1,..., T}, the nev estimate of the HMM is gen byA = {A, B, fi} , where,

aij = D_lE (i ')E}/g_l (i)H ijo{1,...,N} (136)
1= g ogoa. -
O o .
_ O 00 0.
b =0 Y v()¥OY vi()DJ0{1 ., N}, kO{1, .., L} (137)
O 0gs, 0
Do, = v, O
ft = yy(i),i0{1 ...,N} (138)
) = a,(i)ay; ,J:(((())t;é)ﬁtﬂ(]) and (139)
N
vi(i) = > &(i.)) (140)

j=1
Note from equatiof139)the ley role that the fonard and backard \ariables play in the HMM reestimation
formulas.Also, note that the reestimation equati¢t36) (137) and(138) guarantee that,

N
Za.,-l i0{1,...,N} (141)
j=1
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bi(k) = 1,j0{1, ..., N} (142)
1

M

k

o= 1 (143)
1

”MZ

after each update. Since the reestimation equations are EM equations, we are guaranteed that for each itera-
tion,

P(O|\) < P(OJA) (144)

When P(O\X) = P(O|A), we are guaranteed tovgareached #bcal maximum of the log-probability func-
tion. Equationg136), (137) and(138) can also be desd through direct maximization of th@-function,
Qem(A A) L or constrained Lagrange optimizationRfO|A) .

E. Simplification

The update equatior{$36) and(137) can be written in simpliéid form directly in terms of the foawd and
backward \ariables.

T-1
1 . _
P(O\?\)tglat(l)aijbj(ow 1B 1)

ajj =

- (145)
1 T-1

mtgldt(i)ﬁt(i)

S ; o, (1) B ()

by (k) = (146)

Equationg(145) and(146) abore were dexied by combining equatior{423), (136), (137), (139) and(140)
above. For training on single obseation sequences, equatiqig5)and(146)reduce to,

T-1
C 2 (D30, )B4 ()
= (147)
> a(i)B(i)
t=1
> a(i)B(3)
_ DOtt= Vi
W=7 (148)
> o (1)B(1)
t=1

1. TheQ in this contet is diferent fom the state-sequen€g used thoughout these notes;stjust an
unfortunate collision of notation.
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7. Solution to the decoding poblem (problem #2)

Problem statemenGiven an obseration sequenced = {O;}, tO{1, ..., T}, and a hidden Marlov model
A ={AB,m, how do we eficiently compute the "best” (most k) state sequenc® = {q},
tO{1,...,T} (i.e. the state sequence that beglans the obseation sequenc® givenA)?

A. Intr oduction

Since the underlying state sequer@e= {q,} that generated the obsaton sequenceéd = {O,} is
unknovn, we would sometimes li& to be able to determine the moselikstate sequence toveagenerated
O given the hidden Madv modelA . In speech recognition applications, faample, this is especially rel-
evant, since the states of the hidden M&rknodel can be interpreted as phonemes.

One vay to try to sole this problem is to choose the which areindividually most likely at each time step
t. They,(i) variables that we defed in the préous section are helpful here,

vi(i) = P(q, = 3‘0, M) [see equationEl26)and(127]). (149)
P(g, = S, O|A)
v,(i) = % (150)
Since,
a,(i) = P(Oy, ..., 0, gy = S‘)\) , and (151)
Bi(i) = P(Oy4 1 ...,OT‘qt =S,\) (152)

they,(i) variables can be computes in termsupfi) and (i),

O
> a()B(1)

i=1

(153)

Now, in order to choose the indilually optimal state sequendgl] = {th} , we simply tak the lagest
y,(i) value for allt,

g = argmaxy,(i), tO{1, ..., T} (154)
|
The basic problem with this solution is that equafithd) permits state sequenc@$! that may contain state
transitions,
{...,qtzg,qt”:%,...} (155)

that are not possiblevgin A (i.e. ;= 0), so thatP(QLJA) = 0. A better solution, therefore is to try to
find the state sequencg that gives the single best path for the obs¢éion sequenc® and the HMMA ; in
other words, we would like to find Q such that,

P(Q|O, A) (156)

is maximizedThe\iterbi algorithm developed in the nd section, does just that.

B. The Viterbi algorithm
Thus, we vant to maximizeP(Q|O, A) . From basic probability theary

P(Q. O[A)

P(O\) (157)

P(QIO,A) =
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so that maximizingP(Q|O, A) is equvalent to maximizing the joint probability dd and Q given A,
P(Q, O|A), sinceP(O|A) is constant with respect @ . As was the case for thevauation problem, we
could theoretically sokr this problem by computing,

P(Q, O|A), UQ [see equation’3), (74) and(75)] (158)
and then seled®l,

QU = argmax P(Q, O|A) (159)
Q

as the optimal state sequence. Since there are a tdfal tuftal possible state sequences (e.&{ & 5 and
T = 100, thenNT = 1079), however, equation159)would be impractically sl to computeTherefore, we
will derive an inductie algorithm for solving the decoding problem similar in spirit to the dodwackvard
algorithm.This algorithm is knan as tha/jterbi algorithm

First, let us defie another ariabled,(i),

O (i) = max  P(qq,....q;, =S, 0, ...,Ot‘)\) (160)
Oy - Gi—1

which can be interpreted as the best score (i.e. highest probability) along a single state pathfat tinee
first t obserations and ending in sta® . Given the defiition in equation(160), the follaving inductive
relationship gists:

O+ 1(1) = [maxd,(i)3;]b; (O, ) (161)

Equation(161) forms the basis of théiterbi algorithm and is ery similar to the fonard algorithm used to
compute thea (i) variables. In order to completely specify tigerbi algorithm, havever, we will need
another (Greek) ariable (i) which keeps track of which maximizes the right-hand side of equation
(161)for each time step. The completd/iterbi algorithm for receering the most likly state sequend@l

is given belav:

1. Initialization :

0.(i) = P(ay = S, 01‘)\) (162)

o,(i) = mb;(O,), i 0{1,...,N} (163)
2. Induction:

8(j) = [miaxét_l(i)aij]bj(ot) 041, ...,N},t0{2,...,T} (164)

i(j) = argimax[ét_l(i)aij] J0{%, ...,N},t0{2,..., T} (165)

3. Termination:

PO = max P(Q, OJ}A) (166)
Q

PO = max3(i) (167)

o1 = argmaxd(i) (168)

4. Path (state-sequence) back tracking

U= Wyq1(0 D, tO{T-1,T-2,...,1} (169)

whereQU = {ql} , tO{1, ..., T}, is the most likly state sequence.
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As is the case for the foesd-backvard algorithm, the/iterbi algorithm requires slight modifition for
implementation on fiite-precision computers in order to ypeat numerical undediv.

8. Hidden Mark ov models with continuous-alued outputs

So far, we hae looked only at discrete-output HMMs, where obsgions consist of sequences of discrete
obserablesO = {O,} . Although most applications of HMMs deal with continuoadued signals, these types
of HMMs are used most often in practice becausg #ie by &r the most computationallyfefient type of
HMM with which to work. Nevertheless, there dxist HMMs with continuous-alued outputs, and weview
two main types of continuoustkued HMMs belav.

A. Continuous-output HMMs

Assume that rather thanveaa sequence of discrete obsdatesO = {O,} , we instead hee a sequence of
continuous-alued \ectorsX = {x,;}, tO{1, ..., T} . Without preprocessing anaetor quantization of the
sequenceX, we can no longer use the discrete-output probability m&triRathey in continuous-output
HMMs, we assume that each st&e j {1, ..., N}, is represented by an output probability density func-
tion (pdf) bj(x) that is a mixture of Gaussians:

L

bj(x) = Z cjkbjk(x),jD{l,...,N}, (170)
k=1
where,
bj K(X) = N[Xx, Hjie ij] (Gaussian pdf with mea, and cwariancezjk), (172)
Cik = P(ookﬁ) (probability of classw, given stateSj ), 172)
such that,
L
2 Ciy = 1 and (173)
k=1
[ b(x)dx =1 (174)

Figure Z2illustrates schematicallyor example, what a three-state continuous-output HMM with one-dimen-
sional continuousalued outputs may look kk The main dravback of continuous-output HMMs is their
substantial computational compiy. Consider for gample, the number of free parameters thatha be
estimated during training in continuous-output HM¥sdiscrete-output HMMs.

a;: N x N free parameters (same as for discrete-output HMMS) (175)
Cik N x L free parameters (similar tq(k) parameters for discrete-output HMMs) (176)
Mji: NxLx d free parameters a77)
ij: N x L x d? free parameters (178)

Thus, from equationél77)and(178)we see that continuous HMMsueaon the order oNLd(1 + d) more
parameters to estimate, which leads to much higher computational ggyngleing training. It is not just
training that requires much more computationy&@r; esen ealuation of P(X|A) requires an ordewf-
magnitude increased computation, since each table Idn]lé(n‘g) in the discrete case is replaced by the rela-
tively complex computation o1bj (%),
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Figure 15

L
() = Y by(x) (179)
k=1

Equation(179) requiresL Gaussian functionvaluations,L multiplications andL —1 additions,vs. one
table lookup in the discrete case.

While computational compigty is a principal reason that discrete-output HMMs are often preferred to con-
tinuous-alued HMMs in practice, a secondary important reason is that continalueshHMMSs tend to be
more sensitie to initial parameter setting@]. In other vords, it is much more Iy that in training continu-
ous-walued HMMs, the modeh cornverges to a poor local maximum of the logeliihood function, unless

the initial parameter settings are selected with great care.

Huang[4] tried to address these concerns withiettgpment of what he referred to as “semicontinuous”
HMMSs, which we briefy review in the n&t section.

B. Semicontinuous-output HMMs

The basic idea ofemicontinuous HMMss to combine the computational simplicity of discrete-output
HMMs with the superior modeling capacity of continuous HMMsze@ia sequence of continuousiwed
vectorsX = {x;},t0{1,..., T}, the distrilution of the datX is first estimated as the mixture ofGaus-
sians, using the EM algorithmsw##oped earlier in this courséhe output probability of aectorx in state

% is then estimated as,

L
bi(x) = 5 p(x|w)b;(k) (180)
k=1
where,
p(X|w,) =thekth Gaussian pdf estimated through the EM algorithm, and (181)
bj(k) = P(mk‘g). (182)

The principal diference between semicontinuous HMMs and continuous HMMs is that instdéd bf
Gaussians, there are orlly Gaussians in the model and that the parameters of the Gaussians are estimated
prior to HMM training.This simplifies the model signdantly, not in small part because a semicontinuous
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HMM typically have maly fewer parameters that need to be estimated. Unfortunaeigicontinuous
HMMs are still signiftantly more computationally costly than discrete-output HMMs.

In order to clarify the dférence between discrete-output and continu@lsed output HMMs, le$' look at a
simple kample. Consider a single-state HMM with,

[l [l
0O 0.0 0O
O O
0 0.5 0
A=[A=[1],B= g3, t=[1]0 (183)
O O
E 0.2 E
0 0.0 0
where thekth discrete obseable corresponds to the realwesx,
k;;sx<'§,km{1,2,3,4,5}. (184)
In other words, the discretization in equati(B4) corresponds to¥4Q codebook of,
01 3 5 7 9U
116" 16' 10 16" 10~ (185)

as illustrated ifFigure 16belaw.

1 2 3 4 5 (@]
YN N N N N

- o | o | o | o | o |~
1/10 3/10 5/10 7/10 9/10 x Figurelé

The pdf for the HMM in equatio(iL83) and thevQ codebook in equatiofl85)is plotted inFigure 17for
x[O[0, 1) . The efects of \ector quantization are clearlyident in the discontinuous prigfiof p(x|VQ, A) .
Now, however, assume that we represent the continu@lised datax not as &/Q codebook, bt rather as a

mixture-of-Gaussians with meaps,

= ﬁ i0{1,2 34,5} [same as centroids W¥Q codebook of equatiof185) (186)

and \arianceso?,

25 7 ‘ "
discrete pdf
Figure 17
ol g
~ 15+
<
S
A
o
05+
0t ‘
0 0.2 04 0.6 0.8 1 X
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25 7 ‘ "
continuous-valued pdf

Figure 18

15}

P(X|A)

05 |

0 0.2 04 0.6 0.8 1 X
0?2 = 0.0075,i0{1,23,4,5}. (187)

The resulting pdf is plotted abe in Figure 18 (Note that sincé in equation(183)is a single-state HMM,
the semicontinuous and continuous HMM representations for this problem are the same,)tdezoltin-
uous-walued HMM is able to represent continuous distiins more accurately

Evaluation, decoding and training of HMMs with continuous and semicontinuous output probabilityidistrib
tions will not be cwered hereWe simply note that algorithms widoped for discrete-output HMMs piie
ously etend in a straightforard manner to the continuous and semicontinuous case.

9. Implementation issues

A. Discretization compensation

The discrete pdf for the single-state HMM in equai{®83) illustrates a & shortcoming of applying dis-
crete-output HMMs on continuoustued dataX (as is most often the case in reard applications). Con-
sidet for example, tvo real-data sequence§ andX,:

X, = {0.21,0.31,0.33,0.64, 0.59, 0.27} (188)
X, = {0.19,0.31,0.33,0.64, 0.59, 0.27} (189)

which differ only in the fist element (0.2%s.0.19).Assuming th&/Q codebook i{185)and the single-state
HMM A in (183), we can ealuateP(Xl‘A) and P(XZ‘)\) . First we cowert X; andX, to sequences of dis-
crete obsembles,0, andO,, respectiely:

0,={222432} (190)

0, =1{1,224,372} (191)
Then, @aluating the probabilities of each sequeneemgh ,

InP(Xl‘)\) = InP(Ol‘)\) = 4In(0.5) + In(0.3) + In(0.2) = -5.586 (192)

InP(XZ‘)\) = InP(Oz‘)\) = In(0.0) + 3In(0.5) + In(0.3) + In(0.2) = — (193)
Thus, een though the tevreal sequences; andX, are almost identical, thesvaluate to radically diérent

log-probabilities. Note that the same result couldehaeen obtained for arbitrary long sequen¥gsand
X, , which difer only in one element by some small
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This singularity result is not desirable; it suggests that discrete-output HMMs may netybelust to
noise. Remember that HMMs are necessarily trainefthda-length sequences, so that raverdgs win non-
zero probability may be possible yet, at the same time, may not eetedfin the data (i.e. may notvea
been obsemrd). The probabilities corresponding to suclerts will therefore carerge to zero during HMM
training. Alternatively, a sample sequence mawéapurious readings due to sensulufe, etc., and such
sequences willaluate to zero probability on HMMs pieusly trained on less noisy data.

There are tw basic vays to deal with this problem througdtscretization compensatioiil) semicontinuous
evaluation, and (2) dloring. In semicontinuousraluation, the HMM is fist trained on discrete dateeftor
guantized from real datayvhen nev sequences of real dataneed to bewaluated, we assume that ¥@
codebook préously generated represents a mixture of Gaussians with some unioamoec? that can be
thought of as a smoothing parameter

By far the most common method of discretization compensatiaveviq is flooring (also referred to as
smoothing). Flooring is simple andfexttive. As before, discrete-output HMMs are trained normalipce
the HMM training has carerged, zero entries in the resulting modlek { A, B, i} are replaced with some
small e (typically around 0.0001). Res in theA matrix, column in theB matrix, and that vector are then
renormalized to fithe probabilistic constraints,

N

S a; = 1,i0{1,..,N} (194)
j=1

L

S b(k) = 1,j0{1,...,N} (195)
k=1

m=1 (196)

For example, theB matrix for the single-state HMM in equation(183)would be modifed fore = 0.01,

0.01/1.02
0.50/1.02
Bf = 10.30/1.02 (197)
0.20/1.02
0.01/1.02
through fboring.With the fooredB matrix B;, the obseration sequences in equatiqi90) and(191) eval-
uate to,
InP(Ol‘)\) = 5,705 (198)
InP(OZ‘)\) = -9.617 (199)

Clearly, the fboring procedure ensures that obaéinn sequences/aluate to fiite log-probabilities. Note
that the log-probability folO; changes little from-5.586; however, the log-probability forO, becomes
finite. The log-probabilities ir{198) and(199) still appear signiiantly diferent primarily because the frac-
tion of neaizero obserables forO, (1/6) is relatiely high for this simpleample.Typically, rare @ents
that lead to zero probabilities in the hidden Merknodel occur much less frequently

B. Scaling for the forward-backward algorithm

The forward-backvard algorithm, as pwéously presented, sigis from numerical undedlv problems if
implemented on anfinite precision computeRecall the fonard algorithm,
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1. Initialization :

a,(i) = by (0;),i0{1,...,N} (200)
2. Induction:
oM g .
o, 103) = %Z at(|)aij%bj(ot+l),tm{1, .o T=1},j0{1,...,N} (201)
=1

3. Completion:

N

P(OIA) = 5 agli) (202)
i=1

for evaluatingP(OJA) , and the analogous bacam algorithm,

1. Initialization :

Br(i) =1,i0{1,...,N} (203)
2. Induction:
. _oX o .
B.(i) = az aijbj(ot+1)EBt+1(J) Ct0{T-1,...,1},i0{1,...,N} (204)
=1

Note from equation€201)and(204)that the induction steps of the faw and backard algorithms, respec-
tively, multiply together numbers less than or equal to ®hes.implies that for lage T (i.e. long obsemtion
sequences)

a(i) - 0 andB,(i) - 0. (205)

Considerfor example, the simple three-state HMM with four output obeieles shan in Figure 19below.
This HMM was used to generate a sample olaemw sequenc® of T = 100 obserables. Br this obser
vation sequence, we compuwg(i), t 0{1,...,100} , i 0{1, 2, 3}, and plotlog,,a,(i) as a function of

in Figure 20 Note that een for this relatiely simple HMM and relatiely short obsemtion sequence,

00(i) = 10760 (206)

The numerical undedW problem becomesven more seere when the number of possible obabigs
increases (since trtq(k) values will become smaller onerage ad. increases)To illustrate this, we gen-
erate another HMM with the same state-transition marias before, dot with an output-probability distri-
bution matrixB with L = 100 (i.e. 100 possible obseables)We agin computen,(i), t0{1, ..., 100},
i0{1, 2,3}, and plotlog,,a,(i) as a function of in Figure 21 Note that nw,

0.4

0.3
Figure 19
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L=4
-10 | Figure 20

log,00(i)

50 [

-60

0100 (i) = 107180 (207)

Clearly, for arbitrarily long obsemtion sequences, the faavd-backvard algorithm will not be numerically
stable.Therefore, in order to makhe algorithm numerically stable, we introdscalingof the forward and

backward \ariables that will kep the alues of thoseariables within the dynamic range of a typicabfing
point computer

Below, we present thecaled forwad algorithm

1. Initialization :

o,(i) = mb(0,), i 0{1, ..., N} (208)
a,(i) = c,G4(i), 1 0{1,...,N} (scaling (209)
2. Induction:
N
a4 4() = { z dt(i)a”}bj(otﬂ), to{1,...,T-1},;0{1,...,N} (210)
i=1
84 1() = ¢4 q0p41(), tO{L, ..., T=1},jO{1, ...,N} (scaling (211)
0 [T
_25 L
_50 L
~ -751
& - 100 ¢
(@)
(@]
= -125¢
-150 |
Figure21
- 175 | | | | | ‘
0 20 40 60 80 100 t
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oN _ O
C = 1/Dz a,(Ho, tO0{1,..., T} (scaling (212)
0= O

3. Completion:

P(O|A) = 1/% - c% (213)
A) = qul tt

In the scaled forard algorithm, the forard \ariables are scaled at each time dtdyy a scaling coétient
¢, so that the scaled foasd \ariablesa,(i) meet the follaing constraint:

N
z&t(i) =1,t0{4,..,T} (214)
i=1
By comparing the scaled foard algorithm [equationg08) to (213)] with the unscaled forard algorithm

[equationg200)to (202)], we obsere that the scaled foawd \ariablesd, (i) are related to the foavd \ari-
ablesa,(i) of the unscaled forard algorithm by the folling relationship:

a,(i) = Eﬁ cTEut(i) (215)
Q-1 O
Fort =T,
a.(i) = %|I| CED( (i) (216)
T q:1 tD T

so that from equatio(214),

N T N

o' O
2 0r() = {1 6gZ arh =2 @1
i=1 =1 =1
Since,
N
P(OIA) = 5 aqli), (218)

i=1
equation(217) can be written as,

ET cFP(OA) = 1 (219)
qul (PO =

so that we arvie at equatioif213),

P(O|A) = 1/% - c% (220)
A) = qI:I1 tt

For lage T, P(O|A) will typically be very small, so that in practice we compute eque2@0)instead as,

-
logP(O|A) = — z logc, (221)
t=1

Once the scaled foravd algorithm has beexecuted, thecaled bakward algorithmfollows:
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1. Initialization :

Br(i) = 1,i0{1,....N} (222)
Br(i) = crBr(i), i O{1, ...,N} (scaling (223)
2. Induction:
Bi(i) = 3 a;b(0ps PBr+a() tO{T-1, .1}, i0{L2 ... N} (224)
ji=1
Bi(i) = cBei), tO{T=1,...,1}, i 0{1,2 ...,n} (scaling (225)

Note that for the scaled bacévd algorithm, we use the same scaling feoiehtsc, computed in the scaled
forward algorithm.The scaled backavd \ariablespB(i) are related to the backnd \ariablesp,(i) of the
unscaled backard algorithm by the follwing relationship:

Bty = 20 e Fhuh) (226)
t - [J]t TD t

As an &ample of the scaled fomwd-backvard algorithm, let us computé (i), tO{1, ..., 100} ,
i0{1,2,3}, and plotlog,,a,(i) as a function of for the three-state HMM with = 100 for which we
previously computed the unscaledriablesa,(i) (Figure 23.Note that nw the scaled forard \ariables
stay well within the fhating-point range of a typical compytand that this result holds no mattemharge
T is.

C. Scaling and the Baum-V¢Ich algorithm

Previously, we derved the follaving iterative training algorithm for optimizing the parameters of a hidden
Markov modelA given some obseation sequenc®,

T-1
Z at(i)aijbj(ot+1)Bt+1(j)
aij = = (227)
> o (D)By(i)

t=1

MEKTAN THRTIiS

1!

-15 ¢

Ioglodt(i)

-25 1 L =100 1 Figure22

0 20 40 60 80 100 t
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> ai)B(3)
_ DOtt= Vk

bj(k) = —= (228)

> o (DB()

t=1

in terms of the unscaled foarnd-backvard \ariables, where\ = {A, B, 1} is the current estimate of the
model, and\ = {A, B, Ti} is the n& estimate of the HMM. Let us considenvhthe update equatiorig27)
and (146) change if gpressed in terms of the scaled fard-backvard \ariables. Consider equati¢d27)
first.

First let us substituté,(i) for a,(i) and fst(i) for B,(i) in(227)and see hw we need to modify the result-
ing equation to makit equvalent to(227Y.

T-1
Y @0ab(0n DBeeal)
a5 Es - (229)
S &, ()R
t=1

Now, combine equatio(229)with equation§215)and(226) so that,

T-10t
> Hn CT%D(t(I)a,JbJ(OHl)D |'| c [BHl(J)
a = EL1= H=t+1 (230)
15 T-10t
Of ] G (i)D CTEB )
glqul o' D[Dt 0"
T-10T
2 ET 0350 )f )
% 5 s (231)
? T-14 T
> HH c ECtG (DB(1)
t=11=1
From equatior{220),
. Tt
P(O[A) £ z a(1)8;0; (O 1 1)By 4 1(1)
a3 T-1 (232)
Efo_p\—) > €0 (DBy(0)
t=1

Therefore, to xpress equatio227) in terms of the scaled foesd-backvard \ariables, we simply need to
divide a,(i)Bt(j) in the denominator of equati¢d29) by c,. The correct update equation in terms of the
scaled forvard-backvard \ariables is thereforegn by

T-1
i z at(i)aijbj(ot+1)é’t+l(j)
a = L _ (233)
: T2, (i)B(i)
Z Ct
t=1
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Now let us consider the update for the output probability m&rin equation146) Again, let us substitute
a.(i) for a(i) andPy(i) for By(i),
> GG)B)
_ Dott: Vk
bj(k) § T - (234)
> a;()B()
t=1
Now, combine equatio(234)with equation§215)and(226)so that,

o' o o' o
SO0 @O0 «po)
=1 =t

t

_ 00, = v
bi(k) i Tot [ o7 0o (235)
O[T e O[T €.lB:()
2,410 S ORI S
somy 3 CaiBO)
_ IZIOtt= \
b; (k) 5 (236)

-
1 . .
P(Tmtglctﬂt(l)ﬁt(l)

Therefore, to xpress equatio(146) in terms of the scaled foexd-backvard \ariables, we need tovide
a,(i)Bt(j) in both the numerator and denominator of equa®34) by c,. The correct update equation in
terms of the scaled foavd-backvard \ariables is thereforeggn by

a,()Be(i)
T Ct
_ 0O = v
b(K) = ———=— (237)
a,(1)B(j)
2 T

t=1 t

Equationg233) and(237) represent the Baum-&h reestimation formulas in terms of the scaled &oda
backward \ariables.

D. Scaling and theViterbi algorithm

TheViterbi algorithm for fnding the most likly state sequend@ given O andA was preiously derved as:
1. Initialization :

8,(i) = P(q; =S, 01\)‘) (238)

0,(i) = mb,(0,), i 0{1,...,N} (239)
2. Induction:

&(j) = [miaxét_l(i)aij]bj(ot) 0{1 ...,N},t0{2, ..., T} (240)

Ui(j) = argimax[ét_l(i)aij] 0{1,...,N},t0{2,..., T} (2412)
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3. Termination:

PO = max P(Q, O[A) (242)
Q

PO = maxd(i) (243)

o1 = argmaxd(i) (244)

4. Path (state-sequence) back tracking

= W, 4000 tO{T-1,T-2,...,1} (245)

whereQU = {ql} , tO{1, ..., T}, is the most likly state sequence.

This algorithm is easily modéd to eliminate numerical undesfl problems by defiing,

@ (i) :qmaxq logP(dy, .-, 0, = S, Oy, ---, Ot‘)\) (246)
o YT
instead of,
O (i) = max P(qy, ...,q =S, 0y, ..., Ot‘)\) (247)
Q11 "'1QT

Consequentlyequation(239) changes to,

@(i) = log(m) +1log[b;(O,)], i O{1,...,N}; (248)
equation(240) changes to,
o() = miax[(pt_l(i) + Iogaij] + Iog[bj(Ot)] 0{%, ...,N},t0O{2, ..., T}; (249)

equation(241)changes to,
g,(J) = argimax[(pt_l(i) + Iogaij] 041, ...,N},tO{2, ..., T}; (250)

and equatiorf243) changes to,
logPU = max[@(i)] (251)
|

E. Multiple observation sequences

In mary applications, rather than train a hidden Marknodel on one long obsetion sequenc®, we
instead wuld like to train the modek on M short sequencegO(M} , mO{1, ..., M} . For example, in
speech recognition applications, where each HMM may represent orenspwkl, we would like to train
that HMM on magw different utterances of thatond. In handwritten gesture recognition, where each HMM
may represent one ofisal diferent gestures (e.g. written letters), waiagwuld like to train those HMMs
on mauy different @&amples of that gesture.

Training a single HMM on multiple obsextion sequences leads tootehanges in the general HMM frame-
work: (1) the HMM structure that is chosen for those applications, and (2) aedad#ining algorithm for
handling multiple obseation sequences.

When training on multiple, relagly short obsetion sequences, typically the HMM model is restricted to a
left-to-right structure. Considgfor example, the left-to-right model iRigure 23

Except for self-transitions, connections are onlyvedid in one directiorA fundamental property of all left-
to-right HMMs is that the state transition probabilitia‘:;F are restricted to,

a; =0, Oj<i (252)
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Figure 23

State transitions may further be restricted tov@nélage changes in state indicegrhe HMM abee, for
example, the state-transition matwx is given by

ajpapagz 00

0 ay axay 0

0 &g ag ass (253)

0
0 00a44a45
0O 0 0 0 1

The modifcation of the Baum-\ich reestimation formulas for multiple obsaion sequence§O(M} |
mO{1, ..., M} is straightforvard, if we assume that each obsgion sequenc®(™ is independent of
every other obsemtion sequence in the training set. Our goal isto optimize the parametersinto max-
imize,
M
P(OIM) = T P(O(M| ) (254)
m=1

Since the reestimation formulas are based on frequencies of occurrerzc®a$ wents, the reestimation
formulas for multiple obseation sequences are moddi by adding together the indlual frequencies of
occurrence for each sequence. In terms of the unscalizdbles,

M T,-1

- z p(O(m)‘)\) Z atm(i)aijbj(ot(T)l)Btnll(j)
I — (255)
> o()B{M()

=1

mz 1P(O(m)‘)\) t

M

1 mei me;
Loy § 0RO
_ h 0o(m = v,
b(k) = v T (256)

1 s amy;
3 w2, TR

Note that thel/ P(O(m)\)\) terms were cancelled out of the numerator and denominatgoysty for the
case of a single obsation sequence.df multiple obseration sequences, these terms no longer cancel out.
In terms of the scalechviables,
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T Y &b (OB 10)
ajj = m=1t=1 — _ (257)
’ M Tn=Lameyar)

m=1t=1
M amG)prG)
m=1 t t
_ Dot(m) = Y
b(k) = (258)

am(J)Bt ()
2 Z -

m=1t=1

Note that thel/ P(O(m)\)\) terms no longer need to bepdicitly included in equation$257) and (258),
since equation$232) and (236) shav that the scaled forard-backvard \ariables implicitly include the
1/ P(O(m)\)\) terms. Finally note that equations (110) and (111) in Rab&EMM tutorial papefl] both
contain errors, which equatio(®57) and(258)fix.

10. Baum-Welch corvergence

Below, we illustrate some ceormgence issues of the Baumeldh algorithm for a simplexample and a real-
world example.

A. Simple example

Here we conduct the folldng simple &periment to imesticate hav the conemgence of the Baum-glch
algorithm is aflected by the number of states that we assume for our nvidedirst generate an obsaition
sequencé of lengthT = 10, 000 for the two-obserable, two-state hidden Madv modelA in Figure 24

0.9
01 0.1
0.9
Figure24
where,
_ 10109 B = 0.1 09 M= 05| (259)
0901 09 0.1 0.5

We then train three HMM4, , i {1, 2, 3}, from random initial parameter settings, whafehasN = i
statesThe three resulting HMMs are shio in Figure 250n the ngt page.Finally, we compute the normal-
ized probability measure (normalized with respect tdhe length of the obsetion sequence),

P(O|A;) = 10'99POM/T = po]\ )T (260)

Table 1 belov reports the resulting?(O|A;) values.The fnal single-state HMMA; cannot encode &n
sequential structure, and therefore captures only thegaigrdistrilution of obserables (1/2 and 1/2]he
two-state HMMA, corverges to the generating HMM in the afedfigure, which is encouraginglthough
the Baum-VeIch algorithm is only guaranteed todia local maximum of the log-probability function, in this
case it coverges to the globally optimalalue. Note also tha®(O|A;) improves signifcantly fromA; to
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0.9
0.1 0.1
0.9
A
1 )\2
0.04 0.08 0.04

0.05
(note: due to round-bérror, some ravs of A do not add up to 1)

A3 Figure 25

Table 1:Normalized probabilities for HMMs in Figure 25

i P(O|A,)
1 0.5000
2 0.5875
3 0.5875

A, . This implies that tw states are able to capture sequential characteristics of theatiosesequenc®
which the one-state HMM cannot capture. In this case, wa kh to be true since the obsation
sequencéd was generated from a twstate HMM.

When we increase the number of states to three, the Baelai\Mgorithm coverges toA; in the fgure
above. Although A5 has signiftantly more representational veer thanA,, the normalized probability
P(O|A;) does not appreciably increa3éis indicates that the twstate modeh, is probably sufcient for
modeling the sequential properties@f and adding more states will not impeathe model substantiallin
fact, note that for the modal,, the single left state of, is efectively split up into tvo states im,.

The abeoe results suggest that, although we frequently do nat kine exact number of states that we should
use for modeling spedifidata in real applications, we may egrat the optimal number of states for a spe-
cific obseration sequence by training models with degént number of states, and then selecting the small-
est (most general) model which yields theyéemt normalized probabilityalue P(O|A;) . To illustrate this
point, we consider a more complicatecimple belav.

-38-



EEL6825: Pattern Recognition

Introduction to Markov systems

O gy 150

speedometer

Start |

Er.

Passe

ake

G

steering wheel

Save Data |

Initialize |

compass

Refresh I

map

car

Preferences Quit

Time: 96.6

Speed: 63.6

Miles: 1.6 Avg: 5.6

Figure 26

B. Real-world example: modeling human contol trajectories

In previous work [5], hidden Markv models hae been applied teards modeling and analyzing human con-
trol stratgjies in a dynamic graphic ging simulator (shan in Figure 26. For our «kample here, we prepro-
cess andectorquantize (toL = 64 levels) a sample human control trajectory in order to generate a discrete
obsenation sequenc® of lengthT = 3875. We then train an eight-stathl (= 8) HMM Ag on this obser
vation sequence using the Bauneléh reestimation formulas.

It is instructve to look at the parametealues{ A, B} to which the fial model coverges.We can do this
graphically by plotting théd andB matrices irFigure 27 where darkr shades represent smallatues and
lighter shades representdar relatve values Although the model is parameterized by a total of,

8
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NxN+NxL = 576 free parameters, (261)

(ignoring thert vector), the fial model retains onl{42 nonzero parameters. Infeft, the model &s auto-
matically reduced in terms of comgity during training.This type of model reduction iewy typical of the
Baum-Welch training algorithm.

Now, let us conduct the sameperiment as in paA. We first use the fial HMM Ag to generate a test obser
vation sequenc®' of lengthT = 10000, and then train models’;, i 0{1, ..., 10} ,with N = i states,

from random initial parameter settindgSgure 28belav plots the normalized probabilitig3(O'|A';) as a
function of the number of statésThe maximum is gien by
1 2 3 4 5 6 7 8 9 10
0.08 e e —
0.06 ] Bl
< om
o
o 0.02 H
0 .
1 2 3 4 5 6 7 8 9 10 |
Figure 28
max P(O'|\",) =0.080 fori = 9 (262)
|
If we evaluate the test sequenCe on the generating HMMg, we get that,
P(O'|Ag) = 0.085 (263)

These results indicate that when trained araduated on real-data, tipeecisenumber of states in the hidden
Markov model is not so important as thpproximatenumber of states required to fciently encode the
sequential properties of the underlying data. In thealbample, one or te states clearly are indidient to
capture the sequential properties of the generating HMFrom equation§262) and(263)it is also &i-
dent that the Baum-®lch algorithm (a special case of the general EM algorithm) onlyeages to local
maximum. Neertheless, the local maximum to which the training algorithnverges is typically a rela-
tively good local maximum, as is the case here.

Before we lewe this topic, a quick ard about the rate of ceemgence of the Baum-glch algorithm. In a
typical training scenario, wexecute the Baum-¥Ich reestimation formulas until the change in the model
falls belav some threshol®, such that,

P(OA¥) —P(O]AC-D) _ 5

- 264
P(O|A(D) 259

0.07

0.06

fn 0.05
Zoo
< 0.04
@]
| E_’ 0.03
0.02 Figure 29
0 25 50 75 100 125 150 t
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whereA() denotes the modél after thetth step of the algorithm. Fronxerience, that threshold should
be set to someevy small \alue (e.g.0 = 0.000001) in order to ensure that the model has reachenlah fi
local maximum. Considgfor example, the corergence of the Baum-#ch algorithm for'g trained onO'

as plotted inFigure 29 Note thatP(O' )\'gt)) levels out seeral times before therfal local maximum is
reached.
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