Bimodal Brain-Machine Interface
for Motor Control of Robotic
Prosthetic



Brain-Machine Interface:
Project Overview

Q@ Fouruniversity effort (Duke, UE MI'T, SUNY)
@ Funded by DARPA

Q Project goal: develop direct brain-machine
interfaces

Q Application: intelligent prosthetic devices for
handicapped people

Q@ UF’role: develop mapping between motor-
cortex neural activity and arm movements (in
monkeys)



Brain-Machine Interface:

System Diagram
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Sample neural data
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Mapping neural activity:
two approaches

Q@ Global models: FIR, recurrent neural networks,
etc.

Q@ Multiple local models: two-step approach
W Partition neural input space to motion primitives
W Train model for each motion primitive partition.

W Benefit: reduce noise when arm is at rest.
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Initial approach
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Bimodal system details

@ Two partitions: movement vs. non-movement:
@ Classification of data into two classes

W VQ 104-channel neural spike data

W Train two HMMs on quantized input data
@ 3d-trajectory modeling

v FIR filter for each class
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Results & analysis

@ 87%/90% correct classification on test data

@ Tracking error of arm movement comparable

to RNN (global model)
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Insights...

@ Different neurons encode different things

Strangth of Movement Prediction

Q@ VQ introduces substantial loss of information.
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...therefore...

Q@ Train HMM:s on individual neurons (data is
already discrete).

@ Similar to mixture-of-experts approach.

@ How to combine observation probabilities?
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e, . @ Hand-segmented movement class

Let’s see how this works...

Q@ Mean of probability ratios

Q@ Variance of probability ratio
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Results

Q@ Improved classification performance from
87%/90% to 93%/93%.

@ Biased classifier to equalize classification
performance for two classes.
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