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Abstract—Modeling dynamic human control strategy (HCS),
or human skill in response to real-time sensing is becoming
an increasingly popular paradigm in many different research
areas, such as intelligent vehicle systems, virtual reality, and
space robotics. Such models are often learned from experimental
data, and as such can be characterized despite the lack of a
good physical model. Unfortunately, learned models presently
offer few, if any, guarantees in terms of model fidelity to the
training data. This is especially true for dynamic reaction skills,
where errors can feed back on themselves to generate state
and command trajectories uncharacteristic of the source process.
Thus, we propose a stochastic similarity measure—based on
hidden Markov model (HMM) analysis—capable of comparing
and contrasting stochastic, dynamic, multidimensional trajec-
tories. This similarity measure is the first step in validating
a learned model’s fidelity to its training data by comparing
the model’s dynamic trajectories in the feedback loop to the
human’s dynamic trajectories. In this paper, we first derive and
demonstrate properties of the similarity measure for stochastic
systems. We then apply the similarity measure to real-time
human driving data by comparing different control strategies
among different individuals. We show that the proposed similarity
measure out performs the more traditional Bayes classifier in
correctly grouping driving data from the same individual. Finally,
we illustrate how the similarity measure can be used in the
validation of models which are learned from experimental data,
and how we can connect model validation and model learning to
iteratively improve our models of human control strategy.

Index Terms— Hidden Markov models, human modeling,
model validation, neural networks, similarity measure.

I. INTRODUCTION

M ODELS of human skill, or human control strategy,
which accurately emulate dynamic human behavior,

have far reaching potential in areas ranging from robotics to
virtual reality to the intelligent vehicle highway project. Signif-
icant challenges arise in the modeling of human skill, however.
Defying analytic representation, little if anything is known
about the structure, order, or granularity of an individual’s
human controller. Human control strategy is both dynamic
as well as stochastic in nature. In addition, the complex
mapping from sensory inputs to control action outputs inherent
in human control strategy can be highly nonlinear for given
tasks. Therefore, developing an accurate and useful model
for this type of dynamic phenomenon is frustrated by a poor
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understanding of the underlying basis for that phenomenon.
Consequently, modeling by observation, rather than physical
derivation, is becoming an increasingly popular paradigm for
characterizing a wide range of complex processes, including
human control strategy (HCS). This type of modeling is said
to constitute learning, since the model is not derived froma
priori laws of nature, but rather from observed instances of
experimental data, known collectively as the training set.

The main strength of modeling by learning, is that no
explicit physical model is required; this also represents its
biggest weakness, however. On the one hand, we are not
restricted by the limitations of current scientific knowledge,
and are able to model HCS for which we have not yet
developed adequate biological or psychological understanding.
On the other hand, the lack of scientific justification detracts
from the confidence that we can show in these learned models.
This is especially true when the unmodeled process is

1) dynamic;
2) stochastic in nature, as is the case for human control

strategy.
For a dynamic process, model errors can feed back on them-
selves to produce trajectories which are not characteristic of
the source process or are even potentially unstable. For a
stochastic process, a static error criterion (such as root mean
square (RMS) error), based on the difference between the
training data and predicted model outputs may be inadequate
and inappropriate to gauge the fidelity of a learned model
to the source process. Yet, most learning approaches today,
including the cascade learning algorithm, utilize some static
error measure as a test of convergence for the learning
algorithm. While this measure is very useful during training,
it offers no guarantees, theoretical or otherwise, about the
dynamic behavior of the resulting learned model.

For a simple illustration of this problem, consider the
following example. Suppose that we wish to learn a dy-
namic process represented by the following simple difference
equation:

(1)

where represent the output and input of the system,
respectively, at time step The input–output training data in
Table I is provided.

Note that (1) is asymptotically stable. Now, suppose, for
example, that we train simple neural networks to learn three
different approximations of the system in (1)

(2)

(3)

(4)
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TABLE I
SAMPLE INPUT–OUTPUT TRAINING DATA

Fig. 1. The three models result in dramatically different (even unstable)
trajectories.

The three models all have the same RMS error for the
training set in Table I. Nevertheless, the dynamic trajectories
for the three models differ significantly. For example, consider
the input

(5)

The resulting output for the system as well as the three
models is shown in Fig. 1. Model #2 approximates the system
in (1) well; model #3 remains stable, but approximates the
system with significantly poorer accuracy; finally, model #1
diverges into an unstable trajectory.

The difference in the three models is the distribution of
the error over the training set. Thus, a static error measure,
such as RMS error, does not provide sufficiently satisfactory
model validation for a dynamic process. Furthermore, for
stochastic systems, one cannot expect equivalent trajectories
for the process and the learned model, given the same initial
conditions. Thus, we require a stochastic similarity measure,
with sufficient representational power and flexibility to com-
pare multidimensional, stochastic trajectories. In this paper, we
develop such a similarity measure, based on hidden Markov
model (HMM) analysis, as a first step in validating models of
dynamic human control strategy.

This paper is organized into three parts.

1) First, using HMM’s, we derive a stochastic similarity
measure capable of comparing arbitrary multidimen-

sional, stochastic trajectories. This measure makes noa
priori assumptions about the statistical distribution of the
underlying data to be compared. We demonstrate certain
properties of the proposed similarity measure through
both mathematical proof and simulation of known sto-
chastic systems.

2) Second, we evaluate the similarity measure on human
control data, by comparing driving strategies among
different individuals. We show that the proposed simi-
larity measure outperforms the more traditional Bayes
classifier in correctly grouping driving data from the
same individual.

3) Finally, we illustrate how the similarity measure can
be used in the validation of models which are learned
from experimental data, and how we can connect model
validation and model learning to iteratively improve our
models of human control strategy.

II. STOCHASTIC SIMILARITY

Similarity measures or metrics have been given considerable
attention in computer vision [1]–[3], image database retrieval
[4], and two-dimensional (2-D) or three-dimensional (3-D)
shape analysis [5], [6]. These methods, however, generally
rely on the special properties of images, and are therefore
not appropriate for analyzing sequential trajectories. Other
work has focussed on classifying temporal patterns using
standard statistical techniques [7], wavelet analysis [8], neural
networks [9], [10], and HMM’s (see discussion below). Much
of this work, however, analyzes only short-time trajectories
or patterns, and, in many cases, generates only a binary
classification, rather than a continuously valued similarity mea-
sure. Prior work has not addressed the problem of comparing
long, multidimensional, stochastic trajectories, especially of
human control data. Thus, we propose to evaluate stochastic
similarity between two dynamic, multidimensional trajectories
using HMM analysis.

A. Hidden Markov Models

Rich in mathematical structure, HMM’s are trainable statis-
tical models, with two appealing features:

1) no a priori assumptions are made about the statistical
distribution of the data to be analyzed;

2) a high degree of sequential structure can be encoded by
the HMM’s.

As such, they have been applied for a variety of stochastic
signal processing. In speech recognition, where HMM’s have
found their widest application, human auditory signals are
analyzed as speech patterns [11], [12]. Transient sonar signals
are classified with HMM’s for ocean surveillance in [13].
Radonset al. [14] analyze 30-electrode neuronal spike activity
in a monkey’s visual cortex with HMM’s. Hannaford and Lee
[15] classify task structure in teleoperation based on HMM’s.
In [16] and [17], HMM’s are used to characterize sequential
images of human actions. Finally, Yang and Xu apply HMM’s
to open-loop action skill learning [18] and human gesture
recognition [19].
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Fig. 2. A 5-state HMM, with 16 observable symbols in each state.

A HMM consists of a set of states, interconnected
through probabilistic transitions; each of these states has some
output probability distribution associated with it. Although
algorithms exist for training HMM’s with both discrete and
continuous output probability distributions, and although most
applications of HMM’s deal with real-valued signals, discrete
HMM’s are preferred to continuous HMM’s in practice, due to
their relative computational simplicity and lesser sensitivity to
initial random parameter settings [20]. In Section II-D below,
we describe how we use discrete HMM’s for analysis of
real-valued signals by converting the data to discrete symbols
through preprocessing and vector quantization. Thus, a discrete
HMM is completely defined by the following triplet [12]:

(6)

where is the probabilistic state transition matrix,
is the output probability matrix with discrete

output symbols and is the -length initial
state probability distribution vector for the HMM. Fig. 2,
for example, represents a 5-state HMM, where each state
emits one of 16 discrete symbols, based on some probability
distribution.

For an observation sequence of discrete symbols, we
can locally maximize (i.e. the probability of the
model given the observation sequence using the
Baum–Welch Expectation-Maximization (EM) algorithm [12],
[21]. Throughout this paper, we initialize the Baum–Welch
algorithm by setting the HMM parameters to random, nonzero
values, subject of course to the necessary probabilistic
constraints. We can also evaluate (i.e., the probability
that a given observation sequenceis generated from the
model ).

Finally, two HMM’s and are defined to be equivalent

(7)

Note that and need not be identical to be equivalent.
The following two HMM’s are, for example, equivalent:

(8)

B. Similarity Measure

Below, we derive a stochastic similarity measure, based
on discrete-output HMM’s. Let denote a
distinct observation sequence of discrete symbols with length

Also, let denote

Fig. 3. Four normalized probability values make up the similarity measure.

a discrete HMM locally optimized using the Baum–Welch
algorithm to maximize Similarly, let
denote the probability of the observation sequencegiven
the model and let

(9)

denote the probability of the observation sequencegiven
the model normalized with respect to In practice, we
calculate as

(10)

to avoid problems of numerical underflow for long observation
sequences.

Using the definition in (9), Fig. 3 illustrates our overall
approach to evaluating similarity between two observation
sequences. Each observation sequence is first used to train a
corresponding HMM; this allows us to evaluate and
Furthermore, we subsequently cross-evaluate each observation
sequence on the other HMM (i.e., to
arrive at and Given, these four normalized proba-
bility values, we now define the following similarity measure
between and :1

(11)

This measure takes the ratio of the cross probabilities over
the training probabilities, and normalizes for the multiplication
of the two probability values in the numerator and denominator
by taking the square root.

Because and are necessarily trained on finite-length
training sequences, rare events—either rare state transitions
or rare observations—may not be recorded in either or both

and forcing corresponding parameters in the HMM’s
to converge to zero during training. This can cause
and to degenerate to zero, even when and are,
in fact, almost identical. For example, suppose and
are identical observation sequences. Then, will
evaluate to one. Replacing just one observation inwith
an observable not present in however, will force
and hence to zero, even though the one rogue
observation could simply be a measurement or recording error.
To overcome this singularity problem and to account for

1In [22], we proposed a different similarity measure for which properties #1,
#2, and #3 do not hold. Thus, the previous similarity measure gives potentially
inconsistent and misleading results for certain data. The similarity measure in
(11) corrects these problems.



440 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 3, JUNE 1998

the possibility of rare, but unobserved events, we follow the
common practice of replacing nonzero elements in the trained
HMM’s by some and renormalizing the model to fit
probabilistic constraints [12]. Therefore, we calculate the
not on itself, but rather a smoothed version of
where zero elements in the matrices are replaced
by 0.0001. This value of is chosen as it redistributes
less than 0.1% of the probability mass in the state transition
matrix and less than 0.5% of the probability mass in the
output probability matrix

C. Properties

For now, assume that is a global (rather than just a
local) maximum. Then

(12)

and

(13)

The lower bound for in (12) is realized for single-state
discrete HMM’s, and a uniform distribution of symbols in
From (11)–(13), we can establish the following properties for

:

Property by definition

(14)

Property (15)

Property

(16)

As we have noted before, the Baum-Welch algorithm guar-
antees only that is a local maximum. In practice, this is not
a significant concern, however, as the Baum–Welch algorithm
converges to near-optimal solutions, when the algorithm is
initialized with random model parameters [12], [20]. We can
verify this near-optimal convergence property experimentally.
First, for a given model we generate a long observation
sequence Next, we train a second HMM with initial
random model parameters on Finally, we evaluate the
normalized probability values and If
is near-optimal or optimal for sequence then

(17)

provided that is sufficiently long. We have used both this
procedure as well as multiple training runs from different
random initial parameter settings to verify the near-optimal
convergence properties of the Baum–Welch algorithm for the
type of data (i.e., human control data) studied in this paper.

Below, we illustrate the behavior of the similarity measure
for some simple HMM’s. First, for single-state HMM’s, the
similarity measure reduces to

(18)

which reaches a maximum when or simply,
and that maximum is equal to one. Fig. 4 shows

Fig. 4. Similarity measure for two binomial distributions. Lighter colors
indicate higher similarity.

a contour plot for

(19)

where
Second, we give an example of how the proposed similarity

measure changes, not as a function of different symbol distri-
butions, but rather as a function of varying HMM structure.
Consider the following HMM:

(20)

and corresponding observation sequences, stochastically
generated from model For all will
have an equivalent aggregate distribution of symbols 0 and
1—namely 1/2 and 1/2. As increases, however, will
become increasingly structured. For example

equivalent to unbiased coin toss (21)

(22)

Fig. 5 graphs as a contour plot for
where each observation sequence of length
is generated stochastically from the corresponding

HMM 2 Greatest similarity is indicated for
while greatest dissimilarity occurs for and

In some cases, it may be more convenient to represent
the similarity between two trajectories through a distance
measure rather than a similarity measure. Given

2This procedure only approximates our similarity measure definition, since
�(�) is only optimal forO(�) asT !1:
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Fig. 5. The similarity measure changes predictably as a function of HMM
structure.

the similarity measure such a measure is easily
derived. Let

(23)

such that

(24)

(25)

if a or b

(26)

The distance measure between two observation
sequences defined in (23) is closely related to the dual notion
of distance between two HMM’s, as proposed in [23].

Let denote a random observation sequence of length
generated by the HMM and let

(27)

Then, [23] defines the following distance measure between
two HMM’s, and

(28)

Unlike the observation sequences the sequences are
not unique, since they are stochastically generated from
Hence, is uniquely determined only in the limit as

Likewise for the HMM’s and are
not unique, since and are in general guaranteed to be
only local, not global maxima. Hence, is uniquely
determined only when and represent global maxima.

While in general, and are not equiv-
alent, the discussion above suggests sufficient conditions for

(a)

(b)

Fig. 6. (a) First eight Walsh-ordered Walsh functions and (b) some sample
human control data.

which the two notions—distance between HMM’s and dis-
tance between observation sequences—do converge to equiv-
alence. Specifically, in general if and
only if

1 (29)

2 are global maxima (30)

3 (31)

D. Signal-to-Symbol Conversion

Since we use discrete-output HMM’s in our similarity
measure, we need to convert multidimensional, real-valued
human control data to a sequence of discrete symbols. We
follow two steps in this conversion:

1) spectral preprocessing;
2) vector quantization, as illustrated in Fig. 8.

The primary purpose of the spectral preprocessing is to extract
meaningful feature vectors for the vector quantizer. In this
work, we rely on the fast Fourier transform (FFT) and the fast
Walsh transform (FWT), the algorithmic counter-
parts of the discrete Fourier transform (DFT) and the discrete
Walsh transform (DWT), respectively. Instead of sinusoidal
basis functions, the Walsh transform decomposes a signal
based on the orthonormal Walsh functions [24]. The first
eight Walsh-ordered Walsh functions are shown in Fig. 6(a).
In Fig. 6(b), we show an example of human control data
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(a) (b)

(c)

Fig. 7. (a) Sample square wave and it’s corresponding (b) Walsh, and (c)
Fourier PSD’s.

(see Section III-A below) which can be characterized better
through the Walsh transform, rather than the Fourier transform,
due to its sharply discontinuous, step-like profile. Consider, for
example, the power spectral densities (PSD’s) for the square
wave in Fig. 7(a). The Walsh PSD in Fig. 7(b) is a more
concise feature vector than the corresponding Fourier PSD
in Fig. 7(c).

For each dimension of the human control data, we partition
the data into overlapping window frames, and perform either
a short-time FFT or FWT on each frame. Generally, we select
the FFT for state trajectories, and the FWT for command
trajectories, since these trajectories tend to have sharp discon-
tinuities for the experimental data in this paper. In the case of
the FFT, the data in each frame is filtered through a Hamming
window before applying the FFT, so as to compensate for the
windowing effect. The spectral coefficients are then converted
to power spectral density (PSD) vectors. In preparation for the
vector quantization, the PSD vectors along each dimension
of the system trajectory are normalized and concatenated
into one long feature vector per frame. We quantize the
resulting sequence of long feature vectors using the iterative
LBG VQ algorithm [25]. This vector quantizer generates
codebooks of size and can be stopped
at an appropriate level of discretization given the amount
of available data and complexity of the system trajectories.
Assuming that we segment the data into window frames of
length with 50% overlap, the original multidimensional, real-
valued signal of length is thus converted to a sequence of
discrete symbols of length

III. COMPARING HUMAN CONTROL STRATEGIES

A. Experimental Set-Up

Fig. 9 shows the real-time graphic driving simulator, from
which we collect human control data. In the interface, the
human operator has full control over the steering of the car
(mouse movement), the brake (left mouse button) and the
accelerator (right mouse button); the middle mouse button
corresponds to slowly easing off whichever pedal is currently
being “pushed.” The vehicle dynamics are given in (32)–(50)

Fig. 8. Conversion of multidimensional human control data to a sequence
of discrete symbols.

below (modified from [26])

(32)

(33)

(34)

(35)
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where

angular velocity of the car (36)

longitudinal velocity of the car (37)

(38)

(39)

(40)

rear tire slip angle (41)

(42)

body-relative lateral axis

body-relative longitudinal axis (43)

cornering stiffness of frontrear tires

N/rad N/rad (44)

lumped coefficient of drag (air resistance)

m (45)

coefficient of friction

(46)

longitudinal force on rear tires

(47)

kg kg-m m

m m (48)

and the controls are given by

longitudinal force on front tires

(49)

rad steering angle rad (50)

Note that the separate brake and gas commands for the
human are, in fact, the single variable, where the sign
indicates whether the brake or the gas is active [Fig. 6(b), for
example, illustrates one person’s profile for part of one
run]. The entire simulator is run at 50 Hz.

B. Similarity Results

For the first set of experiments, we ask five people:

1) Larry;
2) Curly;
3) Moe;
4) Groucho;
5) Harpo;

to practice driving in the simulator for a period of up to 15
min to become accustomed to the simulator’s dynamics. We
then record driving data for each person on three different,
randomly generated 20 km roads, with only short breaks in
between each run. Thus, we have a total of 15 runs.

Fig. 9. The driving simulator generates a perspective view of the road for
the user, who has independent control over steering, braking, and acceleration
(gas).

Each road is described by a sequence of randomly generated
segments of the form (straight-line segments), and
(curves), connected in a manner that ensures continuous first
derivatives between segments. We also place the following
constraints on individual segments:

m m

length of a straight- (51)

m m radius of curvature (52)

sweep angle of curve (53)

Therefore, each segment is one of the following:

1) straight line segment ( 0);
2) left curve ( 0);
3) right curve ( 0).

No segment may be followed by a segment of the same type;
a curve is followed by a straight line segment with probability
0.4, and an opposite curve segment with probability 0.6. A
straight line segment is followed by a left curve or right curve
with equal probability. Roads are defined to be 10 m wide
(the car is 2 m wide), and the visible horizon is set to 100
m. Fig. 10(a)–(c) show the three different roads used for these
experiments.

For notational convenience, let

(54)

denote the run from person (i) on road Table II below
reports some aggregate statistics for each of the 15 runs.

Our goal here is to see

1) how well the similarity measure classifies each individ-
ual’s runs across different roads;

2) how the classification performance of the proposed sim-
ilarity measure compares with a more conventional
statistical technique, namely the Bayes optimal classifier.
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(a) (b) (c)

Fig. 10. (a) Road 1, (b) road 2, and (c) road 3.

The system trajectory for the driving task is defined by the
three state variables and the two control variables

For all the similarity results below (unless otherwise
noted), we choose the following spectral preprocessing:

- - - - - (55)

where F- denotes the k-point FFT, and W-
denotes the k-point Walsh transform, with 50% overlapping
window frames. Note that the PSD vector for a k-point
transform has length thus, the feature vector to be
quantized is of length 45. Also, note that we choose the Walsh
transform for the two control variables since the user’s
control is generally discontinuous and step-like in profile [as
shown in Fig. 6(b) above]. When vector quantized, the feature
vectors generated by the Walsh transform exhibit significantly
reduced distortion as compared to the Fourier-transformed
feature vectors for the two control variables.

From the preprocessed data, we build three vector code-
books each with 128 levels, and corre-
sponding to data from For these
experiments, the number of levels in the VQ codebook is
primarily constrained by the amount of available data to train
the HMM’s, since we want

length of each observation sequence

model parameters (56)

and the number of model parameters increases with the number
of levels in the VQ codebook. Now define

(57)

as the observation sequence of discrete symbols vector quan-
tized from the preprocessed feature vectors of run using
the codebook We can view the observation sequences

as control strategy data which we have already collected,
processed, and modeled, without any information about the
other data ( ). Thus, each sequence represents
a class for individual . On the other hand, we can view the
observation sequences as new control data, which
we wish to classify, using our similarity measure, as belonging

TABLE II
AGGREGATE STATISTICS FOR HUMAN DRIVING DATA

to one of the five individuals represented by the classes.
For a given application, there will generally be known data
from which we define our classes (represented here by the
sequences ), and unknown data which we require to be
classified into one of the defined classes (represented here
by the sequences ). In this context, it would be
quite burdensome to recalculate the vector codebook each time
we wish to classify a new control trajectory. Having separate
codebooks (for only the known data) eliminates the need for
this codebook recalculation.

Tables III–V classify each of the based on
for 1, 2, and 3, respectively, for eight-

state HMM’s. Note that the maximum value in each row is
highlighted. We consider classified correctly if
and only if

(58)

In other words, we expect that two runs from the same
individual (but on different roads) will yield a higher similarity
measure than two runs from two different individuals. From
the tables, we observe that the similarity measure correctly
classifies all 30 comparisons, by assigning the highest similar-
ity between runs from the same individual, and significantly
lower similarity between runs from two different individuals.

Now we compare these classification results with the Bayes
optimal classifier. Define class as

(59)
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TABLE III
(a) SIMILARITY MEASURE CLASSIFICATION AND (b)

BAYES OPTIMAL CLASSIFICATION FOR ROAD #1 DATA

(a)

(b)

where is the mean vector for and is the covariance
matrix for run For each road we have five classes,
one corresponding to each individual. Each data point

in is now classified into class
according to the Bayes decision rule [7]

(60)

where

(61)

(62)

In Tables III–V we report the percentage of data points in
which are classified in class for 1,

2, and 3, respectively. We consider to be classified
correctly when a plurality of the data from falls into class

and observe, from the tables, that the Bayes optimal

TABLE IV
(a) SIMILARITY MEASURE CLASSIFICATION AND (b)

BAYES OPTIMAL CLASSIFICATION FOR ROAD #2 DATA

(a)

(b)

classifier misclassifies seven out 30 (23%) of the runs. The
performance of the similarity measure (0% error) therefore
compares quite favorably.

Next, we present results for task-based classification. We
select from each run all the left-turn maneuvers, and all the
right-turn maneuvers. We get two resulting sets of maneuvers
for each person

(63)

where corresponds to all the left-turn maneuvers for person
i, and corresponds to all the right-turn maneuvers for person
i. We then split each of these sets into two—one to train a VQ
codebook (or calculate the Bayesian statistics), the other to
determine a similarity value (or the Bayesian classification).
Tables VI and VII report the results for the similarity measure
(seven-state HMM’s), and the Bayesian classification. Note
again that the similarity measure classifies all ten sets (five
left-turn, five right-turn) correctly, while, the Bayes classifier
misclassifies three out of ten (30%).
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TABLE V
(a) SIMILARITY MEASURE CLASSIFICATION AND (b)

BAYES OPTIMAL CLASSIFICATION FOR ROAD #3 DATA

(a)

(b)

Finally, we present classification results for data which is
more difficult to classify. Moe is asked to drive over the same
road on two different days, two times each day, generating
four runs (#1, #2, #3, #4). Because the runs are recorded on the
same road, Moe is able to improve his skill relatively quickly.
As recorded in Table VIII, his average speed improves from
65.9–71.9 mi/h. from run #1–#4. We take two additional data
sets, one from Larry and one from Curly, over the same road.
These data sets have similar aggregate statistics compared to
at least some of Moe’s runs.

Now we generate a 64-level VQ codebook with data from
Larry’s and Moe’s fourth run, and another 64-level VQ
codebook with data from Curly’s and Moe’s fourth run. We
also generate corresponding classes for the Bayes-classifier
comparison. We now classify each of Moe’s first three runs
as either similar to Larry or Moe #4, or as either similar to
Curly or Moe #4.

Table IX shows the classification results based on the sim-
ilarity measure and Bayesian statistics. We observe that the
similarity measure misclassifies one out of six (17%), while

TABLE VI
(a) SIMILARITY MEASURE CLASSIFICATION AND (b)
BAYES OPTIMAL CLASSIFICATION FOR LEFT TURNS

(a)

(b)

TABLE VII
(a) SIMILARITY MEASURE CLASSIFICATION AND (b)
BAYES OPTIMAL CLASSIFICATION FOR RIGHT TURNS

(a)

(b)

the Bayes classifier misclassifies five out of six (83%), some
quite badly.

C. Discussion

Here, we discuss two issues which have not yet been
addressed in the above results. First, we demonstrate why
the Bayes classifier fails in some cases, where the similarity
measure succeeds. Fig. 11(a) plots the distribution (overand

of Curly’s data (Table VIII), and the Gaussian approxi-
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(a) (b) (c)

(d) (e) (f)

Fig. 11. Statistical distributions for (a) Curly’s run, (b) Moe’s second run, and (c) Moe’s fourth run; and Gaussian approximations of each distribution
for (d) Curly’s run, (e) Moe’s second run, and (f) Moe’s fourth run.

TABLE VIII
AGGREGATE STATISTICS FOR ADDITIONAL HUMAN DATA

mation of that distribution. Likewise, Fig. 11(b) and (c) show
similar comparisons for Moe’s second run and Moe’s fourth
run, respectively. It is clear that the Bayes classifier is doomed
to fail, since the human data is distributed in a decidedly non-
Gaussian manner. The similarity measure, on the other hand,
succeeds because the HMM’s are trained on the underlying
distributions of the data sets, and make noa priori assumptions
about each individual’s distribution. We should also note that
despite various attempts at improving the Bayes classifier’s
performance over the similarity measure—by only classifying
on a subset of the vector —we have yet to

TABLE IX
DIFFICULT CLASSIFICATIONS

(a)

(b)

identify an example where the Bayes classifier succeeds and
the similarity measure fails.

Second, we show that the increasing the number of states
in the HMM’s improves the discrimination capability of the
similarity measure. Consider the results in Tables III–V, and
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(a)

(b)

Fig. 12. The discrimination between people improves as a function of the
number of states in the HMM. Note also that the administration for the
task-based classification (b) is twice that for the classification across different
roads (a).

define the following measure of discrimination:

(64)

Essentially, forms a ratio of self-similarities over av-
eraged cross-similarities between individuals for observation
sequences vector quantized on codebookFig. 12(a) below
plots this ratio as the number of states in the respective HMM’s
is varied from 1–8. Fig. 12(b) plots a similar ratio for the
left-turn/right-turn classifications. From Fig. 12, we make two
observations:

1) the discrimination of the similarity measure is affected
positively by imparting structure onto the statistical
model (i.e., the HMM) in the form of an increased
number of HMM states;

2) the discrimination of the similarity measure improves
significantly (two-fold in this example), when we train
on specific maneuvers (i.e., left turns and right turns)
rather than arbitrary roads.

Fig. 13. The cascade learning architecture adds hidden units one at a time to
an initially minimal network. All connections in the diagram are feed-forward.

IV. V ALIDATING HUMAN CONTROL STRATEGY MODELS

A. Learning Human Control Strategy

In learning human control strategy, such as driving, we
wish to approximate the functional mapping between sensory
inputs and control action outputs which guide an individual’s
actions. Human control strategy is dynamic, stochastic, and
often highly nonlinear in nature. Little, if anything, is known
a priori about the underlying structure, order, or granularity of
an individual’s internal controller. Consequently, we require a
flexible, nonlinear learning architecture, capable of generating
a wide spectrum of mappings from smooth to discontinuous,
linear to nonlinear. Cascade neural networks [27] with variable
activation functions [28]–[30] offer such flexibility.

Cascade neural networks are feed-forward neural networks.
In cascade learning, the structure of the network is adjusted
as part of the training process by adding hidden units one at a
time to an initially minimal network. Hidden units are added in
a cascading fashion, with a new hidden unit taking input from
all previous hidden units (see Fig. 13). Moreover, each of these
hidden units can assume a variable activation function, which
is not restricted to simply the sigmoidal nonlinearity. This
flexibility in functional form leads to efficiency in learning
speed and good function approximation properties [30].

Below, we report cascade modeling results for human
control data collected from the driving simulator described
in Section III-A above. The inputs to the cascade networks
for each individual include

1) current and previous state information (65);
2) previous control information (66);
3) description of the road (67)

(65)

(66)

(67)

where length of state history to include as input, and
length of command history to include as input. For

the road description, we discretize the visible view (given
a specific horizon) of the road ahead into equivalently
spaced, body-relative coordinates of the road median,
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(a)

(b)

Fig. 14. (a) Oliver’s driving data and (b) Stan’s driving data. On the left of
each figure, we show part of the source training data; on the right of each
figure we show the corresponding model-generated data.

and provide that sequence of coordinates as input to the
network. Thus, for fixed and the total number of
inputs to the network will be

(68)

The outputs for the cascade network are, of course,
(i.e., the steering and acceleration command

for the next time step).

B. Similarity Results

The left sides of Fig. 14(a) and (b) show part of the driving
data collected from two individuals, Oliver and Stan. Note that
the driving styles for the two individuals are quite different
for the same road. The right sides of Fig. 14(a) and (b) show
part of the cascade model-generated command trajectories for
Oliver and Stan. Since Stan’s control strategy is relatively
simple, his control strategy model requires 30 hidden units
and only the previous two states as input (i.e., 2).

TABLE X
HUMAN-TO-MODEL SIMILARITY RESULTS

Oliver’s more complicated control strategy model, on the other
hand, requires 32 hidden units and relies on the previous ten
states ( 10) to stay on the road. We determine these
input histories experimentally to achieve stable road following
for each HCS model. For both models, we let 15.

Table X below summarizes the similarity results for the
data in Fig. 14. All preprocessing and vector quantization was
performed in the same manner as in Section III-B.

C. Discussion and Future Work

The similarity results in Table X confirm two qualitative
assessments of the data in Fig. 14(a) and (b). First, we observe
that the two driving styles are objectively quite different.
This fact is reflected in the low similarity measures between
one individual’s model and the other individual’s source
and model-generated data. Second, Stan’s model is a better
reflection of his driving style, than Oliver’s model is of his, as
reflected in the two respective similarity measures, 0.748 and
0.349. This is indicative that Oliver’s sharply discontinuous
driving strategy is more difficult to learn by a single cascade
network than Stan’s calmer approach. Indeed, Oliver’s model
generates significant oscillatory behavior, of which Oliver
himself is not guilty.

Thus, the relatively low similarity measure between Oliver
and Oliver’s model points to a problem in the model itself,
including possible improper assumptions about the controller
order, granularity and control delay of the actual HCS. As a
matter of fact, the values for and for each model
were arrived at in an essentiallyad hoc manner. To correct
this problem, we are at present working on an algorithm to
improve a model’s input representation based on the similarity
measure. We propose combining the similarity measure with
simultaneously perturbed stochastic approximation (SPSA)
[31] to select the best model input representation.

In general, a given control strategy can be approximated by

(69)

where is some arbitrary unknown function, is a
vector of control outputs, is a vector of sensory inputs
(including both state and environment variables) at time step

indicates the controller resolution or granularity, and
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Fig. 15. Overall approach to model refinement using the similarity measure.

indicates the control delay. The order of the dynamic system
is given by the constants and In order to select the best
input representation for the HCS model, we need to optimize
the parameter vector

(70)

for some given experimental data. Let, denote a trained
HCS model with input representation and let

denote the similarity measure for model Now, the
best input representation is defined in terms of the similarity
measure such that

(71)

This optimization is difficult in principle since

1) we have no explicit gradient information

(72)

2) each measurement of is computationally expensive.

Thus, we resort to simultaneously perturbed stochastic approx-
imation to perform the optimization. We propose to evaluate
the similarity measure for two values of in order to arrive
at a new estimate for at iteration Fig. 15 illustrates the
overall loop, where is a vector of mutually independent,
mean-zero random variables (e.g., symmetric Bernoulli dis-
tributed), the sequence is independent and identically
distributed, and the are positive scalar sequences.

V. CONCLUSION

Model validation is an important problem in the area of
machine learning for dynamic systems, if learned models
are to be exploited to their full potential. In this paper,

we have derived a stochastic similarity measure, based on
HMM analysis, by which we can compare and contrast arbi-
trary, multidimensional, stochastic trajectories. We have shown
that this method performs significantly better than traditional
statistical techniques in classifying human control strategy
data. Furthermore, we have shown that the similarity measure
offers a feasible means of validating a learned HCS model’s
performance to its training data. Finally, we have proposed
an iterative algorithm, based on the similarity measure, which
allows us to refine a model’s input representation to improve
model fidelity. Such an algorithm is of special relevance in
learning human control strategy, where little is knowna priori
about the structure, order, or granularity of each individual’s
human controller.
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