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ABSTRACT

 

In earlier work on mapping multi-channel neural spike data
(recorded from multiple cortical areas of an owl monkey) to cor-
responding 3d monkey arm positions during reaching tasks, we
observed that continuous function approximators (such as artifi-
cial neural networks) have difficulty in jointly estimating 3d arm
positions for two distinct cases — namely, when the monkey’s arm
is stationary and when it is moving. Therefore, we propose a mul-
tiple-model approach that first classifies neural spike data into
two classes, corresponding to two states of the moneky’s arm: (1)
stationary and (2) moving. Then, the output of this classifier is
used as a gating mechanism for subsequent continuous models,
with one model per class. In this paper, we first motivate and dis-
cuss our approach. Next, we present encouraging results for the
classifier stage, based on hidden Markov models (HMMs), and
also for the entire bimodal mapping system. Finally, we conclude
with a discussion of the results and suggested areas for future re-
search.

 

1. INTRODUCTION

 

The University of Florida is part of a four-university, multi-
year effort to develop direct brain machine interfaces; a concept
diagram of the overall system is shown in Figure 1. As part of this
research, we seek to develop models that map multi-channel neu-
ral firing data recorded from multiple cortical areas of an owl
monkey to corresponding 3d arm positions when the animal
reaches for food and eats it.
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 To date, our research group has im-
plemented and investigated a number of continuous models for
this reaching task, including various feedforward and recurrent
artificial neural networks [2]. It has been observed that one of the
largest sources of errors in these models occurs when the mon-
key’s arm is stationary (i.e. not moving); that is, while the trained
models track the monkey’s arm closely during movement, they do
not “turn off” for periods of time when the monkey’s arm is not
moving.

To deal with this problem, we propose to develop an HMM-
based input classifier that classifies incoming neural data into two

classes, corresponding to two states of the monkey’s arm: (1) sta-
tionary and (2) moving. Once developed, this classifier can then
serve a gating mechanism for multiple continuous models, the
task of each individual model now simplified. The development
of such a classifier and evaluation of its performance in a bimodal
mapping structure is the main topic of this paper.

In this paper, we first discuss our approach to the segmentation
problem and subsequent bimodal mapping of neural data to 3d
motor movements. We then present experimental results from
neural data recorded for an owl monkey. Finally, we discuss our
results and suggest further avenues of future research.

 

2. APPROACH

 

In this section, we first describe the experimental data and our
segmentation of the experimental data into two broad categories
(movement and non-movement). We then provide a system-level
overview of the neural data classifier, and continue with further
details about the classifier. Finally, we describe how we use the
classifier output to map the neural activity in the motor cortex of
the monkey to 3d arm position.

 

1. These data have been provided to us by researchers at Duke 
University who are using micro-wire arrays to simultaneously 
record the firing patterns for 104 cortical neurons [1].

 

Fig. 1: Overall system diagram.
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2.1 Experimental data

 

Among neural scientists, there is an on-going, unresolved de-
bate whether the motor cortex encodes the arm’s velocity, posi-
tion or both in the neural firing patterns [10,11]. Therefore, we
conduct segmentation experiments with two differently segment-
ed data sets, one based on velocity, the other based on displace-
ment. Below, we describe each of these in turn.

For the velocity hypothesis, ideally, the first group should con-
tain data where the arm appears to be stationary, while the second
group should contain data where the monkey’s arm appears to be
moving. We use a simple threshold to achieve this grouping: if the
instantaneous velocity of the arm is below the noise threshold of
the sensor (determined by inspecting the velocity data visually),
the corresponding neural data are classified as 

 

stationary

 

; other-
wise, the neural data are classified as 

 

moving

 

. In Figure 2, we plot
the instantaneous velocity of the monkey’s arm for a 500 second
segment of the data, where the monkey is repeatedly performing
a reaching task. Based on this plot, we choose 4 mm/sec as the
noise threshold for the above procedure.

For the position hypothesis, we seek to classify the monkey’s
arm movements based on displacement. We use Figure 3 below
to illustrate this concept. In Figure 3(a), we plot a sample feeding
session for the monkey, where the three colored trajectories rep-
resent displacement along the three Cartesian coordinates, as the
monkey is moving its arm from rest to the food tray, from the food
tray to its mouth and, finally, back to the rest position. Figure 3(b)
indicates the segmentation of this data into two distinct displace-
ment classes: 

 

rest

 

 and 

 

active

 

, which are analogous to the 

 

station-
ary

 

 and 

 

moving

 

 classes in the velocity-based segmentation above.

From Figure 3(c) and (d), where we plot the velocity of the tra-
jectories in Figure 3(a) and (b), we see that this segmentation is
not, in fact, the same as the velocity-based segmentation. Note
from the yellow-lines (indicating the velocity threshold previous-
ly described) that some of the 

 

active

 

 class in the displacement-
based segmentation is classified as 

 

stationary

 

 in the velocity-
based segmentation. The question, remains, of course, which type
of segmentation is likely to be more biologically plausible and,
consequently easier to learn. While we will defer our thoughts on
this question until Section 3, we do note that keeping an arm sta-
tionary (1) at rest, or (2) in extension requires different muscle ac-
tions. In the first case, muscles can be relaxed, while in the second
case, at least some muscles must be tensed. Therefore, the veloc-
ity-based segmentation may actually cause two entirely different
sets of neural encodings to be lumped into the same broad catego-
ry, potentially complicating the segmentation task.

 

2.2 Classifier overview

 

We now want to train two statistical models corresponding to
the two classes of data in the previous section. Based on previous
statistical analyses [3], these statistical models should capture the
temporal statistical properties of neural firings that characterize
the monkey’s arm movement or lack thereof. One such statistical
model, the 

 

hidden Markov mode

 

l (

 

HMM

 

), enforces only weak pri-
or assumptions about the underlying statistical properties of the
data, and can encode relevant temporal properties observed in the
data. For these two important reasons, we choose to model the two
classes of neural data (stationary 

 

vs.

 

 moving

 

1

 

) with HMMs. This
choice follows a long line of research that has applied HMMs in
the analysis of stochastic signals, such as in speech recognition [4,
5], modeling open-loop human actions [6], and analyzing similar-
ity between human control strategies [7]. 

Although continuous and semi-continuous HMMs have been
developed, discrete-output HMMs are often preferred in practice
because of their relative computational simplicity and reduced
sensitivity to initial parameter settings during training [4]. A dis-
crete Hidden Markov Model consists of a set of 

 

n

 

 states, intercon-
nected through probabilistic transitions, and is completely defined
by the triplet, , where  is the probabilistic 
state transition matrix,  is the  output probability matrix
with  discrete output symbols, and  is the 

 

n

 

-length initial state
probability distribution vector. For an observation sequence 

 

O

 

 of
discrete symbols, we can locally maximize  (i.e.probabil-
ity of model  given observation sequence 

 

O

 

) using the Baum-
Welch Expectation-Maximization (EM) algorithm. We can also
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Fig. 2: Instantaneous velocity of monkey’s arm movement.

 

1. From this point forward, we will refer to the two classes as 

 

stationary

 

 and 

 

moving

 

, regardless of segmentation approach 
(velocity vs. displacement). While this is, strictly speaking, not 
correct for displacement-based segmentation, where we previ-
ously used the terms 

 

rest

 

 and 

 

active

 

, it does significantly sim-
plify notational considerations.

 

(a)

(c)

 

Fig. 3: (a) Cartesian trajectory of monkey’s arm during 
feeding session; (b) displacement-based segmentation; (c) & 
(d) comparison to velocity-based segmentation.
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evaluate  through the efficient Forward-Backward algo-
rithm. 

Figure 4 illustrates then the overall structure of our HMM-
based classifier. The classifier works as follows:
1. At time index , a neural firing vector  is first converted to a

discrete symbol  in preparation for discrete-output HMM
evaluation. The method of signal-to-symbol conversion will be
discussed in greater detail below.

2. Next, we evaluate the conditional probabilities  and
, where,

, , (1)

and  and  denote HMMs that represent the two possible
states of the monkey’s arm (stationary 

 

vs.

 

 moving). In Figure
4, it is assumed that the two HMMs were previously trained on
the neural spike data using the Baum-Welch algorithm; details
of the training procedure will be discussed in greater detail
below.

3. Finally, we classify the state of the monkey’s arm according to
the two observation probabilities  and .

In step 3 above, a simple decision rule will decide that the mon-
key’s arm is stationary if,

(2)

and is moving if,

.

 

1

 

(3)

The decision rule in equations (2) and (3) is, however, relatively
simplistic in that it does not optimize for overall segmentation
performance, and does not account for possible desirable perfor-
mance metrics. For example, it may be very important for the
overall modeling scheme to err on the side of predicting arm mo-
tion (i.e. action). Therefore, we will investigate a more general de-
cision boundary defined by,

(4)

where  now no longer has to be strictly equal to one. Note that
by varying the value of , we can essentially choose our poison
— that is, we can tune segmentation performance to fit our partic-
ular requirements for such a classifier. Moreover, optimization of
the classifier is no longer a function of the individual HMM eval-
uation probabilities, but rather a function of overall segmentation
performance.

 

2.3 Signal-to-symbol conversion

 

Our particular dataset contains 23,000 discrete binned firing
counts for the 104 neural channels (each binned count corre-
sponds to the number of firings per 100ms). In order to use dis-
crete-output hidden Markov models, we must first convert the
multi-dimensional neural spike data to a sequence of discrete
symbols. At a minimum, this process involves vector quantizing
the input-space vectors . We choose the well-known LBG VQ
algorithm [8], which iteratively generates vector codebooks of
size , , and can be stopped at an appropri-
ate level of discretization, as determined by the amount of avail-
able data. For example, Figure 5 illustrates the LBG VQ
algorithm on some synthetic, two-dimensional data (pink/dark ar-
ea). By optimizing the vector codebook on the neural spike data,
we seek to minimize the amount of distortion introduced by the
signal-to-symbol conversion process.

 

2.4 HMM structure and training

 

For this application, we choose the left-to-right (or Bakis)
HMM model structure; in this structure non-zero probability tran-
sitions between states are only allowed from left to right, as de-
picted in the HMMs in Figure 4. Given that we expect the
monkey’s arm movement to be dependent not only on current
neural firings, but also on a recent time history of firings, we train
each of the HMM models on observation sequences of length .
Since the neural spike data used in this study is binned at 100
msec, , for example, would correspond to neural spike
data over the past one second [see equation (1) above]. During
run-time evaluation of  and , we use the
same value of  as was used during training.

 

2.5 Bimodal structure and training

 

The final step in our bimodal mapping structure is to take the
outputs from the HMM-based classifier and generate an overall
mapping of neural data to 3d arm position. To establish a baseline
for this approach — namely the prior segmenting of neural data at
the input into multiple classes — we assign a single MA (moving
average) model to each class, and train each of the MA models
only on that data that corresponds to its respective class, as shown
in Figure 6 below. Each MA model adapts its weights using nor-
malized least mean square (NLMS) [12]. After training, test in-
puts are fed first to the HMM-based classifier, which acts as a

 

1. Note that this segmentation decision implicitly assumes equal 
prior probabilities for the two classes (stationary vs. moving).
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Fig. 4: Stationary/moving classifier structure.

 

vector quantization

 

t

 

v

 

t

 

O

 

t

 

P O

 

∗ λ

 

s

 

( )

 

P O

 

∗ λ

 

m

 

( )

 

O

 

∗

 

O

 

t N

 

–

 

1

 

+

 

O

 

t N

 

–

 

2

 

+

 

O

 

t

 

1

 

–

 

O

 

t

 

, , ,{ }

 

=

 

N

 

1

 

>

 

λ

 

s

 

λ

 

m

 

P O

 

∗ λ

 

s

 

( )

 

P O

 

∗ λ

 

m

 

( )

 

P O

 

∗ λ

 

s

 

( )

 

P O

 

∗ λ

 

m

 

( )>

 

P O

 

∗ λ

 

m

 

( )

 

P O

 

∗ λ

 

s

 

( )>

 

P O

 

∗ λ

 

s

 

( )

 

P O

 

∗ λ

 

m

 

( )⁄ γ

 

=

 

γ

 

γ

 

v

 

t

 

L

 

2

 

m

 

=

 

m

 

0 1

 

…, ,{ }∈

 

Fig. 5: LBG VQ algorithm on synthetic two-dimensional data.
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gating function for the MA models. Based on the relative obser-
vation probabilities produced by the two HMMs, as given in
equation (4), one of the two MA models is selected to generate the
continuous 3d arm position. With properly trained HMMs, the bi-
modal system should be able to estimate hand positions with rea-
sonably small error variances.

Given 104 neuron channels, each MA model is defined with
10 time delays (1 sec), and 3 outputs so that its weight vector has
3,120 elements. The MA models were trained on a set of 10,000
consecutive bins (1,000 sec.) of data with a NLMS learning rate
of 0.03. Weights for each MA model were adapted for 100 cycles.

After training, all model parameters were fixed and 2,988 con-
secutive bins of test neural data were fed to the model to predict
hand positions. The results of the experiments were then evaluat-
ed in terms of short-time correlation coefficients and the short-
time signal-to-error ratio (SER) between actual and estimated arm
position. For each measure, the short-time window was set to 40
bins (4 sec) since a typical hand movement lasts approximately
four seconds.

Of course, a correlation coefficient value of 1 indicates a per-
fect linear relationship between the desired (actual) and predicted
(system) trajectories, while 0 indicates no linear relationship. The
second measure, the SER, is defined as the power of the desired
signal divided by the power of the estimation error. Since a high
correlation coefficient cannot account for biases in the two trajec-
tories, the SER complements the correlation coefficient to give a
more meaningful measure of prediction performance. Finally, all
our bimodal-system results are compared with two other ap-
proaches, namely, a recurrent neural network (RNN) [2] and a
single MA model.

 

3. RESULTS

 

In this section, we first report results for the HMM-based clas-
sifier, and then report results for the complete bimodal system.
Furthermore, we compare the bimodal approach with two others
— namely, a recurrent neural network (RNN) [2] and a single MA
model.

 

3.1 Classification results

 

Given our classifier structure in Figure 4 and our decision rule
in equation (4), there are a number of design parameters that can
be varied to optimize segmentation performance:

 = number of prototype vectors in VQ codebook; (5)

 = length of observation sequences ; (6)

 = number of states in HMM; (7)

 = classifier bias. (8)

In addition, we have determined previously through first- and sec-
ond-order statistical analysis that some of the 104 recorded neural
channels contribute only negligibly to arm movement prediction
[3]. Therefore, in our experiments we not only vary the four pa-
rameters listed above, but also the subset of neural channels that
are used as temporal features in the segmentation process. Table
1 above lists the seven different subsets of neural channels that
were used in our experiments.

In Tables 2 and 3, we report experimental results for different
combinations of the four parameters in (5) through (8) and subsets
of neural channels. These tables present representative segmenta-
tion results for a large number of experiments. The 

 

L

 

 parameter
(no. of prototype vectors) was varied from 8 to 256; the

 

 N

 

 param-
eter (observation length) was varied from 5 to 10; and the 

 

n 

 

pa-
rameter (no. of states) was varied from 2 to 8.

The two tables differ in how the data was split into training and
test sets. In the “leaving-

 

k

 

-out” approach (Table 2), we took ran-
dom segments of the complete data, removed them from the train-
ing data, and reserved them for testing; care was taken that no
overlap occurred between the training and test data. In the second
approach (Table 3), we split the data sequentially into training and
test data in equivalent fashion to the MA training/testing proce-
dure already described. On the one hand, the advantage of the first
testing approach is that we can repeat the procedure an arbitrary
number of times, leading to more test data, and hence, more sta-
tistically significant results. On the other hand, the advantage of
the second testing approach is that it uses test data in a manner
more likely to be encountered in an eventual BMI system, where
a period of training would be followed by a subsequent period of
testing. 

At this point, we make some general observations about the re-
sults in Tables 2 and 3. First, the displacement-based segmenta-
tion results are substantially better than the velocity-based
segmentation results. Second, we note that the results in Table 2
are marginally better than those in 3. We suggest that one reason
for this is that the neural encoding of the small population of 104
neurons is non-stationary to some extent. If the data is non-sta-
tionary, we should expect the first testing approach to produce
better results, since test data in the “leaving-

 

k

 

-out” approach is
taken from within the complete data set, while the second testing
approach takes the test data from the tail end of the complete data
set. 

 

Fig. 6: Bimodal mapping of neural data to arm movement.
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Table 1: Subsets of neural channels

 

Subset 
number

Explanation

 

1 all 104 neural channels

2-5
different combinations of neural channels with statisti-
cally significant correlations between arm movement/

non-movement [3]

6
neural channels determined to be significant in ANN 
mappings of neural activity to 3d arm movement [2]

7 51 neural probe channels [1]

 

1

 

1

 

 The 104-channel neural data were obtained through 
spike sorting of data from 51 neural probes.
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Finally, from our extensive experiments, which are not all pre-
sented here for space reasons, we make one more observation. In
general, increased temporal structure leads to better segmentation
performance; that is, arm motion is correlated not only with the
most recent neural firings, but a short-time history of neural fir-
ings.

 

3.2 Bimodal mapping results 

 

In this section, we report results for neural-to-motor mappings
of a single MA model, a recurrent neural network (RNN) and the
bimodal system. Since the segmentation results are better for the
displacement-based segmentation, we use these HMMs in the
first stage of the bimodal system.

In Figure 7, we plot the predicted hand trajectories of each
modeling approach, superimposed over the desired (actual) arm
trajectories for the test data; for simplicity, we only plot the tra-
jectory along the 

 

z

 

-coordinate. Qualitatively, we observe that the
bimodal system performs better than the others in terms of reach-
ing targets; this is especially evident for the first, second, and the
seventh peaks in the trajectory. Overall, prediction performance
of the bimodal system is approximately similar to the RNN, and
superior to the single MA model, as evidenced by the empirical
cumulative distribution function of -norms of error vectors,
plotted in Figure 8 below. Figure 8 shows that the population dis-
tribution functions of -norms of error vectors of the bimodal
system and the RNN are similar, and significantly better than the
single MA model. 

In Figure 9 we examine the SER for a 100-second long seg-
ment of data; part (a) plots the desired Cartesian trajectory for that
100 seconds, while part (b) plots the short-time SERs for all three
models over the same 100 seconds. Note that the short-time SER
of the single MA model is significantly lower than the other two
models especially when the arm is not moving. Note also that
there is a sharp drop in the SER of the bimodal system around 40
seconds due to erroneous segmentation of the neural input data.
(The consequences of this erroneous segmentation in stage 1 of
the bimodal system is also evident at the 40 second mark in Figure
7(c) above.)

The overall correlation coefficients over the whole test set, av-
eraged over all three output dimensions, are 0.64, 0.75, and 0.80

 

Table 2: “Leaving-

 

k

 

-out” testing

 

Velocity-based segmentation

 

Subset number stationary moving L N n

1

 

81.5% 83.8% 16 10 6

 

4

 

84.0% 75.1% 64 10 4

 

5

 

81.0% 82.0% 16 10 3

 

6

 

80.4$ 81.2% 32 10 6

 

7

 

83.2% 82.9% 32 10 3

 

Displacement-based segmentation

 

Subset number stationary moving L N n

1

 

87.0% 89.2% 16 7 4

 

4

 

84.4% 86.6% 64 10 3

 

5

 

86.8% 90.3% 32 10 4

 

6

 

83.7% 87.8% 32 7 4

 

7

 

87.3% 90.0% 32 10 3

 

Table 3: Sequential testing

 

Velocity-based segmentation

 

Subset number stationary moving L N n

1

 

82.1% 81.6% 8 7 7

 

4

 

81.1% 74.3% 128 10 7

 

5

 

81.0% 75.7% 16 10 3

 

6

 

80.9% 75.2% 128 10 7

 

7

 

81.7% 83.3% 128 10 6

 

Displacement-based segmentation

 

Subset number stationary moving L N n

1

 

82.1% 85.6% 8 7 7

 

4

 

83.5% 87.5% 128 10 6

 

5

 

84.0% 87.5% 256 10 6

 

6

 

75.6% 81.3% 256 10 4

 

7

 

87.3% 86.1% 256 10 5
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Fig. 7: 3d predicted (blue) and actual arm trajectory (dashed 
red) for (a) single MA model, (b) RNN and (c) bimodal system 
over the test data.
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for the single MA model, the RNN, and the bimodal system, re-
spectively. The mean of the SER averaged over all dimensions for
the single MA model, the RNN, and the bimodal system are

 (standard deviation), , and
, respectively, while the maximum SERs

achieved by each model are 10.4dB, 30.1dB and 24.8dB, respec-
tively.

 

3.3 Discussion 

 

We note that the prediction performance of the proposed bi-
modal system is very similar to that of the RNN, and superior to
that of the single MA model. Clearly, the use of multiple models
improves prediction performance over a single MA model, at
some additional computational cost. Compared to the RNN mod-
el, the bimodal system produces comparable performance and
may lead to a modeling approach that scales better for multiple
movements.

Despite these encouraging results, we believe that substantial
improvements in performance for the bimodal system are possi-
ble. As evidenced by Figures 7 and 9, one of the largest sources
of error for the bimodal system is false segmentation in the HMM
stage of the mapping. We hypothesize two large contributing fac-
tors to that segmentation error. First, given that we are trying to
segment arm motion with a very small number of neurons (com-
pared to the total number of neurons in the motor cortex) at the in-
put, it is certainly possible that all the necessary information to
perform the segmentation task is simply not available in the mea-
sured neural spike data. Second, in the signal-to-symbol conver-
sion of the 104-channel data, we introduce a substantial loss of
available information. Even for 256 prototype vectors, the conse-
quent distortion (uncertainty) in the symbol data is substantial,
since the 104-channel data does not appear to form tight clusters
in the 104-dimensional input space.

Work is on-going by Duke scientists to address the first factor
through the development of micro-arrays of electrodes capable of
measuring a larger number of neurons in the motor cortex. Thus,
we will focus on the second factor, namely altering or eliminating
the vector quantization process in our segmentation scheme.
While this is an on-going process, we believe that single-channel
analysis may suggest possible improvements. 

Our initial experiments along these lines have revealed some
interesting features of the neural spike data. First, we have ob-
served that different neurons appear to be sensitive to different
stages in arm movement. For example, in Figure 10 we plot the
ratio  for a short segment of data and sev-
eral different single-channel HMM classifiers. Note that the first
neuron appears to be sensitive to the beginning of an arm move-
ment (i.e. reaching for food), while the third neuron plotted ap-
pears to be more sensitive to the end of an arm movement. This
level of detail may well be obscured by the distortion introduced
in the vector quantization process for multiple-channel HMMs.

Second, the segmentation performance of single-channel clas-
sifiers for certain neurons is surprisingly good. For example, in
Table 4 we report segmentation results for five single neuron clas-
sifiers. It may well be possible to combine segmentation results of
these individual classifiers to build a better classifier based on all
neurons, yet introduce no vector quantization.  

 

Fig. 8: Empirical CDF of  norms of error vectors for single 
MA model (short-dashed), RNN (long-dashed) and bimodal 
system (solid).
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Fig. 9: (a) 100 sec. of desired trajectory (RGB Cartesian 
coordinates); and (b) corresponding short-time SER for 
single MA model (short-dashed), RNN (long-dashed) and 
bimodal system (solid).
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Fig. 10: Different neurons are sensitive to different stages of 
arm movement.
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Finally, while we have focussed our discussion primarily on
the first stage of the bimodal system, we also anticipate future im-
provements in the second stage of the system. Just as a more so-
phisticated model, such as an RNN, outperforms a simpler model,
such as a single MA model, the same may be true in the multiple-
models approach. Thus, we are currently working towards replac-
ing the MA models in the second stage of the bimodal system with
more expressive modeling frameworks.

 

4. CONCLUSION

 

In this paper, we have proposed a bimodal system for mapping
neural spike data to 3d arm movement. This system consists of an
initial classifier stage and a second mapping stage. We have
shown that this system performs better than a single MA model,
and comparable to an RNN model, with reduced training and
evaluation complexity. Finally, we have suggested some avenues
of future research that we hope will improve performance of the
bimodal system further.
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Table 4: Single-neuron segmentation experiments

 

Neuron # stationary moving

23

 

83.4% 75.0%

 

62

 

80.0% 75.3%

 

8

 

72.0% 64.7%

 

29

 

63.9% 82.0%

 

72

 

62.6% 82.6%


