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An Isolated-Word, Speaker-Dependent Speech Recognition System

1. Introduction

This paper describes experiments for an isolated-word, small-vocabulary, speaker-dependent, speech recognition
system. We specifically look at two vocabulary sets:

(1)

(2)

The first vocabulary set  might be useful for an automated telephone service, where a user is guided through
a set of menus by saying one of the five words in the set; many credit card companies and other consumer service
organizations have such systems these days. Of course, in a real-world application, we would want to make such
a system speaker-independent, rather than speaker-dependent; however, such a system is beyond the scope of
this paper.

The second vocabulary set  tests the speech recognition system for two words that sound very similar when
spoken. While many of the techniques used in this paper are borrowed from the speech recognition literature [1],
we do make some simplifications, especially in the feature-extraction step.

2. Speech recognition system

A. Overview

Figure 1 below illustrates the overall speech recognition system, while Figure 2 illustrates the signal-to-sym-
bol preprocessing and conversion. Note that for , , while for , . As can be seen from
Figure 1, words in the speech recognition system are modeled statistically with discrete-output hidden
Markov models (HMMs); therefore, the one-dimensional, real-valued speech signal at the input must be seg-
mented into isolated words and converted to a sequence of discrete observables . For now let us assume
the speech signal at the input has already been segmented into an isolated word. Then, the signal-to-symbol
conversion begins by normalizing the sampled sound signal to a maximum range of . Next, the sampled
speech signal is partitioned into shorter -length sequences with 50% overlap. Each of these -length
sequences is then multiplied by the -length Hamming window function, in order to reduce spectral leakage.
Note that the Hamming coefficients  are defined by,

, . (3)

After windowing with the Hamming function, we apply the Fast Fourier Transform (FFT), take the absolute
value of the resulting spectrum, and retain the first  coefficients, since the last  coefficients will con-
tain no additional information (for real-valued signal). Thus, this procedure converts the one-dimensional
sampled speech signal into a sequence of vectors  of length , where the vectors  contain the
short-term spectral magnitude content of the speech signal over time.

To convert the sequence of vectors to a sequence of symbols, a VQ-codebook of  prototype vectors is
assumed to have been generated during training using the iterative LBG VQ algorithm [2]; during run-time,
therefore, the streaming sequence of spectral vectors  can be converted to a sequence of discrete observ-
ables  through vector quantization with the VQ codebook that was computed during training. Finally, in
order to classify the unknown speech signal at the input, we evaluate , , where 
denotes the trained HMM corresponding to the th word in the vocabulary set, ,

, and  denotes the length of the observation sequence corresponding to the spoken word at
the input. We classify the speech signal at the input as the th word in the vocabulary set, corresponding to
that HMM which yields the largest probability such that,

, . (4)
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B. Data collection

Data was collected through the sound input of a Titanium G4 laptop. For each word instance over both vocab-
ulary sets, a male speaker’s voice saying the same word repeatedly was recorded for approximately two min-
utes at a sampling frequency of 44.1kHz and a resolution of 16 bits; this process yielded between 115 and 120
spoken instances of each word. The resulting speech files were then down-sampled to 8kHz “wav” files1,
which then served as our data for the experiments described below.

1. See http://mil.ufl.edu/~nechyba/eel6825/course_materials.html to listen to these “wav” files.
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Figure 2: Conversion of speech signal to a sequence of discrete symbols.
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  C. Word segmentation 

Each two-minute “wav” file was segmented into isolated words by analyzing the power in the speech signal
over 32ms segments (256 samples at 8kHz), with 16ms overlap (128 samples at 8kHz). Specifically, we nor-
malized each speech file to a maximum range of  and then computed the short-time power  of the signal

, , (5)

where  denotes the th sample in each sound file. We recognized spoken words in the signal for segments
where,

, . (6)

The specific value of  was determined by trial and error, and worked well in segmenting out the
words from the two-minute speech files.

 

D. Training and testing

 

After word segmentation, we converted each spoken word into a sequence of spectral vectors following the
procedure depicted in Figure 2 and summarized in Section 2-A above (with ). Thus each vector 
was of length 128, while the average length of the resulting vector sequences was 22.6 for  and 22.4 for

 (approx. 360 msec/word instance). For each vocabulary set, we now split the data into two groups —
one for training and the other for testing. For each word over both vocabulary sets, we reserved the last 40
spoken word instances for testing, using the first 75 to 80 spoken word instances for training (the number
available for training is variable, because the number of instances for each word varied slightly). The test data
was not used in any part of the training process described below.

For each vocabulary set, we generated a unified VQ codebook of prototype vectors over all words in that
vocabulary set using all available training data of spectral vector sequences. We employed the iterative LBG
VQ algorithm, generating VQ codebooks of sizes . Given the amount of available data and
the number of parameters in a hidden Markov model with  observables, we settled on  prototype
vectors for the results reported below.

Finally, we trained one HMM  per spoken word using the Baum-Welch algorithm on the quantized obser-
vation sequences in the training data. As is discussed in greater detail below, we varied the number of states in
the HMMs to achieve the best classification performance over the test data.

 

3. Results

 

A. Vector quantization

 

In Figures 3 and 4, we draw the  prototype vectors for vocabulary  and , respectively. The
th element of each prototype vector, , indicates that prototype vector’s magnitude at

frequency ,

kHz (7)

For example, the first prototype vector in Figure 3 (red), has its largest component at,

Hz. (8)

Note that most of the frequency content of the recorded speech samples appears to be concentrated in approx-
imately the 0Hz to 1kHz range. Had the speaker of the speech data been a person with a higher-pitched voice,
we would expect a broader range of non-zero frequency components.
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Figure 3: L = 8 prototype vectors for vocabulary set #1 (one, two, three, four, five).

Figure 4: L = 8 prototype vectors for vocabulary set #2 (dog, god).
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Table 1 below reports the classification performance of the trained HMMs in Figures 5 and 6 over th
data. Remember that the test data was not used in any phase of the training procedure, and consists 
In Figures 5 and 6, we illustrate the trained HMMs (6 states1/8 observables) for vocabulary  and 
respectively. Note that the colors in Figures 5 and 6 correspond to the prototype-vector colors in Figu
and 4, respectively.

Set1
  B. Trained HMMs    

,
res 3

Before we see how these HMMs perform in classifying the test data, we point out an interesting feature of the
two sets of HMMs. For the HMMs corresponding to  (Figure 5), both the first and last states of each
HMM exhibit a large probability for the purple observable. Note from Figure 3, that the purple observable
corresponds to the prototype vector with the smallest elements (i.e. least power). This should be expected,
since the power of an isolated word utterance at the beginning and end will be smaller than in the middle of
that utterance. Note that the same observation holds for the HMMs corresponding to  (Figure 6), except
that now the high-probability observable for the first and last states of each HMM corresponds to the cyan
prototype vector in Figure 4.

e test
of 40

 

1. Later in this paper, we explain our selection of six-state HMMs more fully. In short, six-state HMMs 
gave the best classification performance over the test data sets.
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Figure 5: 6 state/8 observable HMMs for vocabulary set #1 (one, two, three, four, five).
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  instances of each spoken word in both vocabulary sets. We used a floor of  during evaluation of the test
data over the trained HMMs; that is, prior to evaluation, we replaced each zero element in the state transition
matrix , the output probability distribution matrix  and the initial state probability vector  of each
HMM by , and then renormalized to meet probabilistic constraints.

As can be observed from Table 1, the classification error over the test data is pretty good — 2.0% error for
vocabulary , and 1.3% error for vocabulary . With more advanced feature extraction, the few classi-
fication errors could probably be reduced further or even eliminated.

 

4. Discussion

 

A. Detailed examples

 

In this section, we illustrate a few detailed classification examples for the 

 

dog

 

/

 

god

 

 vocabulary . Figure 7
shows three different test cases for each word (i.e. 

 

dog

 

 and 

 

god

 

); for each example, we plot the original
speech signal, the corresponding observation sequence, and the relative evaluation probabilities 
and  (green denotes the 

 

dog

 

 class, while red denotes the 

 

god

 

 class). Note that the top two examples
are misclassified and poorly classified, respectively.

By comparing the observation sequences with the HMM models, it should be intuitively obvious why each
test instance results in either misclassification, poor classification or good classification. Consider, for exam-
ple, the test instance 

 

dog

 

, #097 (upper left corner of Figure 7); the long subsequence of green observables in
that observation sequence most likely tilts the relative probability values in favor of the 

 

god

 

 model, due to the
high probability of the green observable in state four of the 

 

god

 

 HMM.

 

B. Different random parameter settings

 

Next, we examine how different random initial parameter values can influence the parameters of the corre-
sponding trained HMMs. In Figure 8, for example, we illustrate three different trained HMMs ,  and

 for the 

 

god

 

 training data set, where the difference between the three HMMs is due to different random ini-
tializations of the HMMs at the beginning of training (i.e. the Baum-Welch algorithm)

 

1

 

. We note that each of
the three HMMs corresponds to a different locally maximal solution on the log-probability hyper-surface in
HMM-parameter space.

While at first blush the three HMMs in Figure 8 might appear to be very different, Table 2 below shows that
they evaluate to similar log probabilities over the entire 

 

god

 

 training data set , although  is margin-

 

Table 1: Classification performance over test data

 

 words classification 
error

 words classification 
error

 

one 1/40 (2.5%) dog 1/40 (2.5%)

two 1/40 (2.5%) god 0/40 (0.0%)

three 1/40 (2.5%)

 

totals 1/80 (1.3%)

 

four 0/40 (0.0%)

five 1/40 (2.5%)

totals 4/200 (2.0%)

1. See http://mil.ufl.edu/~nechyba/eel6825/course_materials.html to view movies corresponding to the 
training of these HMMs.
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ally better than  and . Qualitatively, we note that the role of the first state in  appears to have been
assumed by the first two states in ; consequently, state 3 in  corresponds approximately to state 2 in ,
state 4 in  corresponds approximately to state 3 in , etc. Similar comparisons can be made between 
and , and  and , respectively. 

C. Varying the number of states

Next, we study how the number of states in our HMM word models impacts classification performance. In
Figure 9(a), we illustrate HMM word models for  (i.e. dog/god), varying the number of states from two
to eight. In Figure 9(b), we plot the classification error for these models over the test data set as the number of
states is varied from two to nine. Note that the lowest classification error occurs for HMM models with six,
seven or eight states, while the highest classification error occurs for HMM models with three states. The plot

Figure 7: Detailed classification examples for vocabulary set #2 (dog/god).
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in Figure 9(b) explains our preference for six-state HMMs in our word modeling task; six-state HMMs
appear to be the most compact model to give the smallest classification error (1.3%).

In Figure 9(c) and (d) we illustrate the difference in classification performance between three-state and six-
state HMMs for the specific test instance dog, #099. Note that this test instance is misclassified as the word
god by the three-state HMMs, but is correctly classified by the six-state HMMs. This example, as well as oth-
ers not shown, suggests that the six-state HMMs are able to incorporate temporal properties of our two
classes, while HMMs with fewer number of states lack sufficient temporal structure to encode those same
temporal properties.

D. Viterbi analysis

In this section, we apply the Viterbi algorithm (i.e. decoding the most likely state sequence) to further explain
some of the classification results of the previous sections. In Figure 10(a) and (b) we plot the most likely state
sequence  for the observation sequence and the two HMMs (three-state and six-state) in Figure 9(c) and
(d), respectively. Note from Figure 10(a) that the three-state HMM appears to encode very little temporal
information, since, for the observation sequence in Figure 9,  resides almost entirely in state 3 (the red line
color in Figure 10(a) indicates misclassification of test instance dog, #099, for the three-state HMM). For the
six-state HMM, however,  spends at least some time in each of the six states (see Figure 10(b); the green
line color indicates correct classification of the test instance dog, #099). This example reinforces our conclu-
sions in the previous section regarding different number of states in our HMM word models.

Next, we apply the Viterbi algorithm to recover the most likely state sequences corresponding to all 40 dog
test instances and the six-state dog and god HMMs in Figure 6. In Figure 11(a) we plot the results for the dog
HMM, while in Figure 11(b) we plot the results for the god HMM. Given these plots, we make a couple of
observations. First, note how, in the aggregate, the most likely state sequences certainly appear different for
the two HMM word models over the dog test data. Second, note that there is one instance of a state sequence
for the god model transitioning from state six to state five. Given the left-to-right structure of the trained

Table 2: Training data evaluation probabilities for HMMs in Figure 8

l

a -854.1

b -902.5

c -889.8

Figure 8: Three “god” HMMs with different random initial parameter values.
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HMMs, how is this possible? The answer is that by flooring the HMMs (see Section 3-B), backward state
transitions are in fact possible (although very unlikely).

E. Data compression analysis

Finally, we analyze how much information is lost in our signal-to-symbol conversion. We will proceed by
first computing the approximate number of bytes required to represent the uncompressed training data sets;
then, we will do the same analysis for the converted observation sequences in the training data and compare
the two numbers. The average length of each spoken word instance is approximately 360 msec; at a sampling
frequency of 8kHz and a sampling resolution of 16 bits, that corresponds to,

bits/word (9)

Figure 9: Varying the number of states for example #2 (dog/god).

(a)

(b)

(c) (d)

Figure 10: Most likely state sequences for “dog” HMMs in (a) Figure 9(c) and (b) Figure 9(d).
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or approximately 5,760 bytes/word. Given that the observation sequences are of average length 22.5, and that
each observable can be represented by 3 bits (for 8 observables), an observation sequence can be represented
by,

bits/observation sequence, (10)

or approximately 8.5 bytes/observation sequence. Nominally, the VQ codebook requires,

bytes (11)

assuming 4 bytes/floating-point number. However, since we observed previously that most of the prototype
vectors have approximately zero elements for frequencies above 1000Hz (three-fourth of all vector elements),
the actual number of bytes required to represent the VQ codebook is closer to 1,024 bytes. Therefore, for 
word utterances in the training set, the total number of bytes required for the uncompressed sound files will
be approximately equal to  bytes, while the total number of bytes required for the observation
sequences will be approximately equal to  bytes. Consequently, our compression ratio  is
given by,

, where  = number of training instances, (12)

which is plotted in Figure 12 as a function of . Note that for , we have approximately 400 training
instances (80/word), while for , we have approximately 160 training instances (80/word). Thus, the
approximate compression ratios  and  for our two case studies are 520:1 for  and 380:1 for .
What is remarkable about these numbers is that despite a huge loss of information in the signal-to-symbol
conversion process, we are still able to get very good classification performance over the test instances (for
both case studies).

Figure 11: Most likely state sequences for “dog” test data and (a) “dog” HMM and (b) “god” HMM

(a) (b)
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Figure 12: Data compression ratio as a function of the number of training instances (n).
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5. Conclusion
In this paper, we trained and tested an isolated-word, speaker-dependent speech recognition system using dis-
crete-output hidden Markov models (HMMs). We were able to achieve low classification error over test data
for two different case studies, despite relatively elementary feature extraction and a large data compression
ratio for the signal-to-symbol conversion process. Furthermore, we were able to show that classification per-
formance over the test data changed as a function of the number of states in the HMMs, suggesting that the
HMMs encode significant temporal structure in modeling individual words.

6. References
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7. Appendix
Word segmentation and spectral feature vector extraction were performed in Mathematica; vector quantiza-
tion and HMM training, evaluation and decoding were done using C-coded executables1; visualization of
results was done using Mathematica2.

1. See http://mil.ufl.edu/~nechyba/eel6825/source_code.html
2. See http://mil.ufl.edu/~nechyba/eel6825/course_materials.html
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