Human Control Strategy: Abstraction,
Verification, and Replication

Michael C. Nechyba and Yangsheng Xu

n this article, we describe and develop methodologies for mod-
Ieling and transferring human control strategy (HCS). This re-
search has potential application in a variety of areas such as the
Intelligent Vehicle Highway System (IVHS), human-machine
interfacing, real-time training, space telerobotics, and agile
manufacturing. We specifically address the following issues: (1)
how to efficiently model human control strategy through learn-
ing cascade neural networks, (2) how to select state inputs in or-
der to generate reliable models, (3) how to validate the computed
models through an independent, Hidden Markov Model-based
procedure, and (4) how to effectively transfer human control
strategy. We have implemented this approach experimentally in
the real-time control of a human driving simulator, and are work-
ing to transfer these methodologies for the control of an autono-
mous vehicle and a mobile robot. In providing a framework for
abstracting computational models of human skill, we expect to
facilitate analysis of human control, the development of human-
like intelligent machines, improved human-robot coordination,
and the transfer of skill from one
human to another.

Introduction

Although humans are quite
adept at mastering complex and
dynamic skills, we are far less im-
pressive in formalizing our be-
havior into algorithmic,
machine-codable strategies.
Therefore, it has been difficult to
duplicate the types of intelligent
skills and actions we witness
every day as humans, in robots
and other machines. This limits
not only the capabilities of indi-
vidual robots, but also the extent
to which humans and robots can
safely interact and cooperate
with one another. Nevertheless,
human actions are currently our
only examples of truly “intelli-
gent” behavior. As such, there
exists a profound need to abstract
human skill into computational
models, capable of realistic emu-

M. Nechyba and Y. Xu are with the
Robotics Institute at Carnegie Mel-
lon University in Pittsburgh, Pa.

45 0272-1708/97/$10.00©1997IEEE

lation of dynamic human behavior. With such models of human
skill, we can transfer intelligent control behaviors to robots. This
is especially critical for robots that have to operate in remote or
inhospitable environments, where humans cannot function. In
otherrobotic applications, we would like robots to carry out tasks
that humans have traditionally performed. For example, the In-
telligent Vehicle Highway System (IVHS), currently being de-
veloped through massive initiatives in the United States, Europe,
and Japan [1,2], envisions automating much of the driving on our
highways. The required automated vehicles will need significant
intelligence to interact safely with variable road conditions and
other traffic. Modeling human intelligence offers one way of
building up the necessary skills for this type of intelligent ma-
chine.

With increased intelligence and sophistication in robotic
systems, analysis of human-robot coordination in tightly cou-
pled human-machine systems will become increasingly rele-
vant. In IVHS, for example, there will be ubiquitous interaction

between autonomous vehicles
o and their human drivers/passen-
g gers. Moreover, the currently
o limited application domain for
& robots may broaden into other
aspects of consumer life, where
household and service robots
will interact primarily with non-
experts. To ensure safe coordina-
tion with humans in a shared
workspace, we must incorporate
appropriate models of human be-
havior into the world model of
the robots. We can assess the
quality of joint human-machine
systems by including computa-
tional models of human behavior
in the overall system analysis.

Realistic simulation of human
behavior is required not only in
human-machine systems, but also
in the burgeoning field of virtual
reality. As graphic displays be-
come increasingly lifelike, the dy-
namic behavior of the virtual world
will need to match the increased
visual realism. Computational
models of human skill can impart
the necessary sense of realism to
the actions and behaviors of vir-
tual humans in the virtual world.

IEEE Control Systems

Some work has been done
in recent years toward learn-
ing skills directly from hu-
mans. In fuzzy control
schemes [4, 5], human ex-
perts are asked to specify “if-
then” control rules with fuzzy
linguistic variables, which
they believe guide their con-
trol actions. For complex sys-
tems, this approach is prone
to error since important de-
tails may be inadvertently
omitted by the expert. A
number of researchers have
solved the inverted pendulum
problem through learning
from a human expert [6-8].

Bias Unit

{nput Unit

First Hidden Unit

. Output Unit

Robot learning from human
experts has recently been ap-
plied to a deburring robot by
Asada and Liu [9], where hu-
man input patterns are associ-
ated with corresponding
output actions for the robot.
Lee and Chen [10] use feasi-
ble state transition graphs
through self-organizing data

Second Hidden Unit

Fig. 1. The cascade learning architecture adds hidden units one at a time to an initially minimal network.

All connections in the diagram are feedforward.

clusters to abstract skill from
human data. Skills are mod-
eled as optimal sequences of
one-step state transitions that

transform the current state

04

qgyvy

into the goal state. The ap-
proach is verified on demon-
strated human Cartesian

A

teleoperation skill. Xu and
Yang [11] implement a differ-
ent state-based approach to
open-loop skill learning and

6(04,02)

JUUOD

telerobotics using Hidden
Markov Models (HMMs).
Several approaches to skill

02
Ao

learning in human driving
have been implemented. In

Fig. 2. Four normalized probability values make up the similarity measure.

Finally, accurate models of human skill can contribute to im-
proved expert training and human-computer interfacing (HCI).
Consider, for example, the tasks of teleoperating robots in re-
mote environments or learning to fly a high-performance jet.
Training for both of these tasks is difficult, expensive, and time-
consuming for a novice [3]. We can accelerate learning for the
novice operator by providing on-line feedback from virtual
teachers in the form of skill models, which capture the control
strategies of expert operators. Through the use of human skill
models, operator performance can be monitored during training
or actual task execution as information is displayed through dif-
ferent sensor modalities and layouts.

October 1997

[12], neural networks are
trained to mimic human be-
havior for a simulated circu-
lar racetrack. Pomerleau [13] implements real-time
road-following with data collected from a human driver. A static
feedforward neural network, with a single hidden layer, learns to
map coarsely digitized camera images of the road ahead to a de-
sired steering direction, whose reliability is given through an
input-reconstruction reliability estimator.

The research thus far has not addressed a number of important
issues. Most recent work in learning from human data deals with
either action skills, static or quasi-static skills, or higher-level ab-
stractions of human skill (e.g., assembly), and does not focus on
abstracting dynamic human control strategy. As such, we need to
develop an efficient and flexible learning architecture for model-

19

Table 1. Cascade Learning for Networks with Different Activation Functions: Quickprop and NDEKF

1RO ‘ Quickprop Algorithm Node-Decoupled Extended Kalman Filtering

N’ o(N) N’ o(erms)” N o(N) eriss G(erMs)

i) variable 734 33 1.4x10° | 35x 10" 182 13 12x10* | 12x10™
sinusoidal 768 55 1.6x10° | 32x10* 187 9 1.9x10% | 1.2x10™

sigmoidal | 2109 103 60x10% | 25x102 183 7 1.7x10° | 82x10*

Hx) variable 723 45 14x10° |53x10* 155 15 9.1x10% | 35x10"
sinusoidal 663 56 19x10° | 98x10™ 162 12 15x10° | 64x10*

sigmoidal | 2077 86 13x107% | 2.6x107 172 8 57x10° | 23x 107

f3(x) variable 770 57 74x10° | 29x107 154 15 3.1x10° | 12x10°
sinusoidal 745 3] 64x10° |33x10° 153 8 47x10° | 9.0x10™*

sigmoidal | 2140 140 23x107% | 9.2x107 110 25 54x107% | 1.7x 107

a. Each cascade network I'(:) can have either (1) variable, (2) sinusoidal, or (3) sigmoidal hidden units.

b. Average number of epochs (V) required to build a 10-hidden-unit network (over 25 trials).

c. Standard deviation of the number of epochs required to build a 10-hidden-unit network (over 25 trials).
d. Average root-mean-squared (RMS) error (eruss) for a 10-hidden-unit network (over 25 trials).

e. Standard deviation of the average RMS error for a 10-hidden-unit network (over 25 trials).

ing human control strategy. We require this architecture to learn
dynamic, nonlinear, stochastic, and possibly discontinuous con-
trol strategies, where the input space for these control strategies
can be relatively large (i.e., on the order of 10-100 inputs for sim-
ple control strategies, significantly more than 100 for compli-
cated strategies). In the next section, we propose the cascade
learning architecture with extended Kalman filtering as the
flexible and efficient basis for modeling human control strategy.

Since we are learning HCS models from experimental data,
we must independently verify or validate the computed models’
fidelity to the source data. Standard cross-validation in neural
network training may not suffice, since we are not interested in
similarity between individual training patterns, but similarity be-
tween overall system trajectories. In the third section, we pro-
pose an independent stochastic model validation procedure,
based on Hidden Markov Models (HMMs) to ensure that our
learned HCS models are a true representation of the human con-
trol training data. Model fidelity is characterized by a stochastic
similarity measure that compares the dynamic trajectories of the
human source data and the learned HCS model through HMM
observation probabilities.

To date, virtually all learning regimes (including neural net-
works) require that a specific input representation be chosen
prior to learning. In general, learning performance degrades sig-
nificantly if uncorrelated inputs are presented to the learning al-
gorithm. For human control strategy, however, we do not know
the best input representation a priori, as it will vary from one in-
dividual to the next. We propose an algorithm that automatically
selects the best input representation for the HCS models to maxi-
mize model fidelity to the source training data. We combine si-
multaneously perturbed stochastic approximation (SPSA) with
the stochastic validation procedure to automatically refine the

50

HCS model’s input representation. A human’s controller order,
controller granularity, and control delay are thereby automati-
cally extracted in the process.

We address important issues in transferring human skill to ro-
bots and other humans. We propose to use HCS models as virtual
teachers in human-to-human control strategy transfer. HCS
models, rather than human instructors, are used to teach a novice
operator an expert’s human control strategy. We address issues in
learning monitoring, and the selection of “good” virtual teach-
ers. Finally, we briefly discuss future work and additional ave-
nues of research.

Learning Human Control Strategy

In modeling human control strategy (HCS), as with other
poorly understood phenomena, we must rely on modeling by
observation, or learning, rather than theoretical or physical
derivation. An individual’s HCS is characterized by unique,
complex, and unknown properties; as such, we require a learn-
ing paradigm that can cope with many difficult challenges. First
of all, little if anything is known a priori about the (1) structure,
(2) order, (3) granularity, or (4) control delay inherent in a par-
ticular individual’s internal controller. Second, human control
strategy is dynamic, stochastic, and nonlinear in nature. Hu-
mans are not machines, and their actions are prone to errors and
gradual changes over time. In addition, human control actions
can vary smoothly as well as discontinuously with sensory in-
puts. Thus, human control strategy is a stochastic, nonlinear,
possibly discontinuous mapping from present and prior sen-
sory inputs and control actions to future control action outputs.
To address these challenges, we use cascade neural networks
with variable activation functions as the foundation for learn-
ing human control strategy.

IEEE Control Systems

Fig. 3. (a) Similarity measure for two binomial distributions (lighter
colors indicate greater similarity); (b) the similarity measure
changes predictably as a function of HMM structure.

Cascade Neural Network Architecture

Cascade neural networks [14] are ideally suited for learning
complex, nonlinear HCS mappings. Unlike more conventional
neural network architectures, the structure of cascade neural net-
works is not fixed before learning begins, but evolves as part of
learning. As such, the cascade learning algorithm combines both
aspects of function approximation—namely, (1) the selection of
an appropriate functional form and (2) the adjustment of free pa-
rameters in the functional model to optimize some error criterion.

October 1997

This is especially important in learning HCS models, since so lit-
tle is known about the underlying human controller structure.

The flexible cascade learning architecture combines the fol-
lowing two notions to adjust the structure of the neural network
as part of learning: (1) a feedforward cascade architecture, in
which hidden units are automatically added one at a time to an
initially minimal network, and (2) the learning algorithm, which
creates and installs new hidden units as the learning requires in
order to reduce the RMS error (egrys) between the network’s out-
puts and the training data.

As originally formulated in [14], network training proceeds
in several steps. Initially, there are no hidden units in the network,
only direct input-output connections. These weights are trained
first, thereby capturing any linear relationship between the in-
puts and outputs. With no further depreciable decrease in the er-
ror measure, a first hidden unit is added to the network from a
pool of candidate units. Using the quickprop algorithm [15],
these candidate units are trained independently and in parallel
with different random initial weights.

Again, after no more appreciable error reduction occurs, the
best candidate unit is selected and installed in the network. Once
installed, the hidden unit input weights are frozen, while the
weights to the output units are retrained. By freezing the input
weights for all previous hidden units, each training cycle is
equivalent to training a three-layer feedforward neural network
with a single hidden unit. This allows for much faster conver-
gence of the weights Juring training than in a standard back-
propagation network where many hidden-unit weights are
trained simultaneously. The process is repeated until the algo-
rithm succeeds in reducing eras sufficiently for the training set
or the number of hidden units reaches a specified maximum
number. Fig. 1 illustrates, for example, how a two-input, single-
output network grows as two hidden units are added. We note
that a cascade network with »; input units (including the bias
unit), n, hidden units, and n, output units, will have r,, connec-
tions where,

Ry = Rile + mp(ni + 1y) + (np - Vinp /2. (D)

Recent theorems which hold that standard layered neural net-
works are universal function approximators [16-19] also hold for
the cascade network topology, since any multi-layer feedforward
neural network with & hidden units arranged in m layers, fully
connected between consecutive layers, is a special case of a cas-
cade network with k hidden units with some weight connections
equal to zero. Below, we discuss two ways to augment standard
cascade learning to improve functional flexibility, learning
speed, and error convergence: (1) variable activation functions
and (2) node-decoupled extended Kalman filtering.

Variable Activation Functions

The cascade architecture relaxes a priori assumptions about
the functional form of the model to be learned by dynamically
adjusting the network size. We further relax these assumptions
by allowing new hidden units to have variable activation func-
tions. This idea is similar to projection pursuit regression, a sta-
tistical procedure where mappings are approximated through an
iterative sum of separable nonlinear functions of the input vari-
ables [20, 21]. In fact, Cybenko [19] shows that sigmoidal func-
tions are not the only possible activation functions that allow for

51

Table 2. Variable Cascade Networks vs. Multi-Layer Feedforward Networks

Multi-Layer Feedforward Neural Network Variable Cascade Network with NDEKF?
Topology Free Parame- N erms® Free Parame- N erus
ters ters
Ailx) 1-25-1 76 2150 1.8 x 107 77 182 12x10*
1-105-1 81 4200 8.6x 107 77 182 12x10™
Hx) 1-25-1 76 5350 4.0x 107 77 155 9.1x10*
) 1-25-1 76 4750 59% 1072 77 154 3.1x107

a. Each cascade network is allowed to grow to 10 hidden units.
b. Average number of epochs (V) over 25 trials.
¢. Average root-mean-squared (RMS) error (erms) over 25 trials.

universal function approximation. There are other nonlinear
functions, such as sine and cosine, for example, that are complete
in the space of n-dimensional continuous functions. In the pool
of candidate units, we can assign a different nonlinear activation
function to each unit, rather than just the standard sigmoidal
function. During candidate training, the algorithm will select for
installment whichever candidate unit reduces egass for the train-
ing data the most. Hence, the unit with the most appropriate acti-
vation function at that point during training is selected. Typical
alternatives to the sigmoidal activation function are the Gaussian
function, Bessel functions, and sinusoidal functions of various
frequency.

Node-Decoupled Extended Kalman Filtering

While quickprop is an improvement over the standard back-
propagation algorithm for adjusting the weights in the cascade
network, it is still essentially a gradient-descent based algorithm,
which, although simple, can require many iterations until satis-
factory convergence is reached [15, 22]. Thus, we modify stan-
dard cascade learning by replacing the quickprop algorithm with
node-decoupled extended Kalman filtering (NDEKF) [23],
which has been shown to have better convergence properties and
faster training times than gradient-descent

then freezing that unit’s weights, we minimize the potentially
detrimental effect of the node-decoupling.

Denote @, as the input-side weight vector of length m; at itera-
tion k, foruniti € {0, 1, ..., n,}, where i = 0 corresponds to the
current hidden unit being trained, and i € {1, ..., 1o} corresponds
to the ith output unit. The NDEKF weight-update recursion is
then given by

0 =0} +{ (1) (48 91)

where & is the n,-dimensional error vector for the current train-
ing pattern, W/, is the no-dimensional vector of partial derivatives
of the network’s output unit signals with respect to the ith unit’s
net input, and

0, = PG, 3)

a= S @y s]|

“

techniques for multi-layer feedforward net- | EeEErees
works.

In general extended Kalman filtering
(GEKF) [22], an m x m conditional error co-
variance matrix P, which stores the interde-
pendence of each pair of m weights in a given
neural network is explicitly generated. NDEKF
reduces this computational and storage com-

plexity by—as the name suggests—decoupling

weights by node, so that we consider only the
interdependence of weights feeding into the
same unit (or node). This, of course, is a natural
formulation for cascade learning, since we only

train the input-side weights of one hidden unit
and the output units at any one time; we can par-
tition the m weights by unit into 7, + 1
groups—one group for the current hidden unit,

n, groups for the output units. In fact, by itera- Fig. 4. The driving simulator gives the user a perspeétive preview of the road ahead. The
tively training one hidden unit at a time and user has independent controls of the steering, brake, and accelerator (gas).

52

IEEFE Control Systems

Pl =B ={ (i) () Hoio) [

where (! is the m;-dimensional input vector for the ith unit, P/ is
the m; x m; approximate conditional error covariance matrix for
the ith unit, and 1 is a small number (0.0001) which alleviates
singularity problems for P/ [23]. In (2) through (5), { }’s, ()’s, and
[I’s evaluate to scalars, vectors and matrices, respectively. The
computational complexity for cascade learning with NDEKF is
given by

P¢N)
4000 FEr== B PR M I T T T R T R TR
2000f ,L - M V o TR e TR
SR R R L R TR O
0 P ;
-2000 | L
-4000 | i
-6000 |
-8000 E -
0 100 200 300 0
d(rad
0.2 F : i T
‘\ ! J ' 3 1 o ! ‘
01y RN] [‘1 .
W L
A 1 PR 11 B : [|
0" | T TR
Lo bont “ I
! }‘ ' [' P‘\‘ {[‘ ‘ I i
~-0.1 a co ! i “‘ ‘
) ! E I
02kb o - il E SR . 43
0 100 200 300 0 100 200 300
Training Data Time (sec) Model Data
(a)
P¢N)
4000 F~ " " E
2000 _ o
0 _— . ~ T e T
—2000 |
—4000 }
-6000 |
-8000 E. N A o
0 100 200 300 © 100 200 300
S(rad)
0.2F
017
- ' — J I -
0 ey -
_01 F
-0.2 b . . =
0 100 200 300 O 100 200 300
Training Data Time (sec) Model Data
(b)

Fig. 5. (a) Oliver’s driving data, and (b) Stan’s driving data. On the left of each figure,
we show part of the source training data; on the right of each figure we show the
corresponding model-generated data.

October 1997

nu
3 2
O(no iy j ,
i=1

(6)
while the storage complexity is given by
@

Table 1 summarizes cascade learning results for three sample

continuous functions:

fi) =2+ 038 -04x, xe [-1,1] (8)

) =111 +x7), xe [4,4])

Sf3(x) = 0.6 sin (nx) + 0.3 sin (3mx) + 0.1 sin
(5mx), x € [-1, 1]
10)

Since as many as 80 percent of all variable ac-
tivation functions selected during training are of
some sinusoidal type [24,25], we include results
for cascade networks with only (1) variable, (2)
sinusoidal and (3) sigmoidal hidden units. The
results in Table 1 are averaged over 25 trials
each, with 10 hidden units allowed in each cas-
cade network. For each example, 1500 randomly
selected data points are chosen for training, and
1500 points for cross validation. Table 2 com-
pares the performance of variable cascade net-
works (trained using NDEKF) to that of
comparably sized multi-layer feedforward neu-
ral networks (trained using quickprop) for the
same three examples.

From Tables 1 and 2, we note the following.
First, without exception, variable cascade net-
works (trained using NDEKF) converge to the
smallest approximation error, followed closely by
sinusoidal cascade networks (trained using
NDEKF). In many instances, the improvement
over cascade networks with sigmoidal units or
those trained using quickprop is an order of mag-
nitude difference. Second, cascade networks
trained with NDEKF converge (by far) in the few-
est number of epochs. Therefore, we feel well mo-
tivated in preferring this learning architecture
over others due to (1) its efficiency in learning
speed, (2) its flexibility in functional form and (3)
its good function approximation properties. All
the cascade networks described in the remainder
of this article have either variable or exclusively
sinusoidal hidden units.

Mapping Dynamic Systems into Static
Cascade Networks

The cascade architecture approximates only
static mappings; human control strategy is dy-

53

namic, however. That is, HCS depends not only on current sen-
sory perceptions, but also on a recent time history of the sensory
data. Therefore, a dynamic system (i.e., the HCS) must be
mapped onto a static map (i.e., the cascade network). We can ap-
proximate a dynamic system by a difference equation of the gen-
eral form, '

al (k+1)1+8]|=T(x[kc]). x[(k- D7}, ...,
f[(k - m)T], ufkt], E[(k - 1)1], - ﬁ[(k - n)'c] . a1

where I'(-) is some arbitrary unknown function, ﬁ(k) is a vector
of control outputs, X(k) is a vector of sensory inputs (including
both state and environment variables) at time step &, T indicates
the controller resolution or granularity, and d indicates the con-
trol delay. The order of the dynamic system is given by the con-
stants n and m, which may be infinite. From (11), we observe that
a static neural network can learn the unknown dynamic mapping
T'(-) by providing a sufficient time history of data as input to the
neural network [26, 27].

Model Validation
The main strength of modeling by learning, is that no explicit
physical model is required; however, this also represents its big-
gest weakness. On the one

of convergence. While this measure is very useful during train-
ing, it offers no guarantees, theoretical or otherwise, about the
dynamic behavior of the resulting learned model (see example in
[28]). We therefore require a procedure that evaluates the com-
plete trajectories generated by the learned model and compares
those to the trajectories of the original human control data. Such
a procedure allows us to perform multiple tasks in the context of
human control strategy modeling:

¢ Validate the dynamic performance of existing models.

o Compare different methodologies of modeling.

o Characterize differences in control strategies among differ-

ent individuals. '

To this end, we have developed a stochastic similarity meas-
ure based on Hidden Markov Models, capable of comparing dy-
namic, multi-dimensional trajectories.

Stochastic Similarity with Hidden Markov Models

Similarity measures or metrics have been given considerable
attention in computer vision [29-31], image database retrieval
[32], and 2-D or 3-D shape analysis [33, 34]. These methods,
however, generally rely on the special properties of images, and
are therefore not appropriate for analyzing sequential trajecto-
ries. Other work has focused on classifying temporal patterns us-
ing standard statistical techniques [35], wavelet analysis [36],

hand, we are not restricted by

entific knowledge, and are

the limitations of current sci- l
able to model HCS for which i

Current Input
Representation (6y)

we have not yet developed
adequate biological or psy- /

i

chological understanding.
On the other hand, the lack of Stochastically Perturbed
scientific justification de- Representation (8 + cxAy)

Stochastically Perturbed
Representation (6, — ¢, Ay)

tracts from the confidence
that we can show in these

learned models. This is espe-
cially true when the unmod-

eled process is (1) dynamic ?\]ascade
and (2) stochastic in nature, Tet_w_ork
’ raining

as is the case for human con-

X DBk + cAy)
trol strategy. For a dynamic

Cascade

Network

Training
T'(0k — kA

process, model errors can
feed back on themselves to
produce trajectories that are

not characteristic of the @@@ HMM
SOurce process or are even Validation

Validation

stochastic process, a static er-

potentially unstable. For a
ror criterion, based on the dif- j

ference between the training "

¢ R .
data and predicted model out- Similarity Measure (cy”)
puts may be inadequate and

Similarity Measure (c{’)

inappropriate to gauge the fi- \
delity of a learned model to

/

the source process. Yet most
learning approaches today,
including the cascade learn-

Stochastic Gradient New Input
Approximation (Gy) Representation (6, 1)

ing algorithm, utilize a static

error measure (egys) as a test Fig. 6. Overall approach to stochastic optimization of controller structure.

54

IEEE Control Systems

Table 3. Similarity Between Model Data and Human Data

o Stan Stan’s HCS Model Oliver Oliver’s HCS Model
Stan 1.000 0.748 0.009 0.007
Stan’s HCS Model 0.748 1.000 0.006 0.004
Oliver 0.009 0.006 1.000 0.349
Oliver’s HCS Model 0.007 0.004 0.349 1.000

neural networks [37, 38], and Hidden Markov Models (see dis-
cussion below). Much of this work, however, analyzes only
short-time trajectories or patterns, and, in many cases, generates
only a binary classification, rather than a continuously valued
similarity measure. Prior work has not addressed the problem of
comparing long, multi-dimensional, stochastic trajectories, es-
pecially of human control data. Thus, we propose to evaluate sto-
chastic similarity between two dynamic, multi-dimensional
trajectories using Hidden Markov Model (HMM) analysis.

Rich in mathematical structure, HMMs are trainable statistical
models, with two appealing features: (1) no a priori assumptions
are made about the statistical distribution of the data to be ana-
lyzed, and (2) a high degree of sequential structure can be encoded
by the Hidden Markov Models. As such, they have been applied
for a variety of stochastic signal processing, such as speech recog-
nition [39, 40], transient sonar signal classification [41], task
structure classification in teleoperation [42], open-loop action
skill learning {43], and human gesture recognition {44].

A Hidden Markov Model consists of a set of n states, inter-
connected through probabilistic transitions; each of these states
has some output probability distribution associated with it. Al-
though algorithms exist for training HMMSs with both discrete
and continuous output probability distributions, and although
most applications of HMMs deal with real-valued signals, dis-
crete HMMs are preferred to continuous HMMs in practice, due
to their relative computational simplicity and lesser sensitivity to
initial random parameter settings [45]. Using discrete HMMs for
analysis of real-valued signals requires that data be converted to
discrete symbols through pre-processing and vector quantization
[28,46). Thus, a discrete HMM is completely defined by the trip-
let A ={A, B, 7t} [40], where A is the probabilistic n X z state tran-
sition matrix, B is the L x n output probability matrix with L
discrete output symbols x € {1, 2, ..., L}, and w is the n-length
initial state probability distribution vector for the HMM.

For an observation sequence O of discrete symbols, Hidden
Markov Model parameters can be locally optimized to maximize
P(A! O) (i.e., the probability of the model A given the observation
sequence O) off-line using the Baum-Welch Expectation-
Maximization (EM) algorithm [40, 47], or on-line, as presented
in[48, 49]. We can also evaluate P(O | &) (i.e., the probability that
a given observation sequence O is generated from the model).

Now, we derive a stochastic similarity measure, based on
discrete-output HMMs. Let Oy, i € {1, 2, ...}, denote a distinct
observation sequence of discrete symbols with length T:. Also let
Ai={A;, Bj,m},j€ {1,2,...},denote a discrete HMM locally op-
timized (using the Baum-Welch algorithm) to maximize Py |
0)). Similarly, let P(Oi | A;) denote the probability of the observa-
tion sequence Oi given the model A, and let

October 1997

1
P,=P(0Jr,) = PO} (12)
denote the probability of the observation sequence O; given the
model Aj, normalized with respect to T;. In practice, we calculate
Py as
log P O\,)T,
P =107 (13)
to avoid problems of numerical underflow for long observation
sequences.

Fig. 2 illustrates our overall approach to evaluating similarity
between two observation sequences. Each observation sequence
is first used to train a corresponding HMM; this allows us to
evaluate P11 and Pay. Furthermore, we subsequently cross-
evaluate each observation sequence on the other HMM (i.e. P(O1
[A2), P(O21 1)) to arrive at P12 and P21. Given these four normal-
ized probability values, we now propose the following similarity
measure between O1 and Oz (In [28], we proposed a different
similarity measure which gives potentially inconsistent and mis-
leading results for certain data. The similarity measure in (14)
corrects these problems):

PP

12

0,0,)=
(%) PPy,

)

This measure takes the ratio of the cross probabilities over the
training probabilities, and normalizes for the multiplication of
the two probability values in the numerator and denominator by
taking the square root. We note that in practice, we calculate the

Pjj not on A itself, but rather A , which is a smoothed version of

A;, where zero elements in the matrices {A;, Bj, 7;} are replaced
by £ >0 and renormalized to fit probabilistic constraints. The re-

sults reported below use € = 0.0001 as the smoothing value.
We now describe some of the properties of the similarity
measure defined above. First we note that (by definition)
6(01, 02) =0(02, 01) . (15)

Second, consider the class of single-state, discrete HMMs
given by
A= (A, B} = (110, (b <. Bl (10 (16)

These HMMs essentially encode only the distribution of sym-
bols, without capturing any of the sequential properties of obser-

55

Apprentice

Fig. 7. One expert can teach many apprentices (left), and many experts can contribute to the learning of a single apprentice (right).

vation sequence Oj. Itis easy to show that for two suchmodels A; they may in fact evaluate to identical P(O | A). The following two

and A2, the similarity measure reduces to [46], HMM models, for example, are equivalent:
(bu=b) r 05 05][1 0] r
A, =41(1],[05 05) ,[1 A, = , ,105 05
6(01502) = ﬁ[ﬁj i s ' {[] [] []} : {|:0.5 O.SJ LO IJ []
=\ B an 22)

WhiCh reaches a maximum when b_lk = b%k’ Vke {1,2,...,L}, o Below, we show one empirical example of how the similarity
simply, B1=b, and that that maximum is equal to one. Further- meagure changes, not as a function of different symbol distribu-
more, since Py 2 0, 6(01, O2) itself is lower bounded by zero. ions, but rather as a function of varying HMM structure. Con-

Hence, sider the following Hidden Markov Model:
0 <0(01, 09 <1 18) (MM+a 1-a] [1+a 1-o
- 2 2 2 2 T
and Ma)=4| %, IMJ,[L«Q o Jos 05] t-1<a<l
. . 2 2 2 2
6 (01,02)=1ifand onlyif A; = Az . (19)

(23)

As an example, consider the case where and corresponding observation sequences, O(at), stochastically
_ T _ 4T generated from model A(ar). Forall A € (-1, 1), O(x) will have an
Bi=lpt1-pi" Ba=[p21-pal, 20 equivalent aggregate distribution of symbols 0 and 1—namely
1/2 and 1/2. As | o | increases, however, O(a) will become in-

which is graphed in Fig. 3(a) as a contour plot for O <p1, p2 < 1. creasingly structured. For example,

For a number of reasons, a similar proof is not possible for
multi-state HMMs. No known analytic solution exists for P(O | .
| ={..
) for general O and A. Furthermore, P(O | A) can only be lo- otg}}lO(Oc) { -1,0,1,0,1,0.1,0, } (24)
cally—not globally-—maximized using the Baum-Welch algo-
rithm. Finally, although two HMMs A1 and A> may appear quite HimA (o) =
different such that, a0

{[1], [os O.S]T, [1]} (equivalent to unbiased coin toss)

A1 # 42 B1#B; T #m, (21) (25)

56 IEEE Control Systems

Graphic Interface

Control Advice

Human Control

Human Operator

tors using the iterative LBG
VQ algorithm [51]. This vec-
tor quantizer generates code-
books of size 2", me {0, 1,2,
...}, and can be stopped at an
appropriate level of discreti-
zation given the amount of
available data and complexity
of the system trajectories. As-
suming that we segment the
data into window frames of
length & with 50% overlap,
the original multi-
dimensional, real-valued sig-
nal of length ¢ is thus con-
verted to a sequence of
discrete symbols of length T

Expert HCS Model

Dynamic System

= int(2t/k).

Fig. 8. Human-to-human control strategy transfer utilizes expert HCS models to train human operators.

LiLI}O((x) ={..1,1,10,0,0,..,0,0,0,1,1,1,..} (26)

Fig. 3(b) graphs 6[O(0t1), O(tr2)] as a contour plot for -1 < o4,
02 < 1, where each observation sequence O() of length 7= 10,
000 is generated stochastically from the corresponding HMM
A(o). Greatest similarity is indicated for o = 02, and around the
origin, (oi =0, oz = 0, while greatest dissimilarity occurs for oy
— 1, 00=-1),and (ot —> -1, 02 =1).

Signal-to-Symbol Conversion

Since we choose to work with discrete-output HMMs, multi-
dimensional, real-valued human control data must be converted
to a sequence of discrete symbols in order to apply the similarity
measure defined in Equation (14). Such conversion involves two
steps: (1) spectral preprocessing and (2) vector quantization. The
primary purpose of the spectral preprocessing is to extract mean-
ingful feature vectors for the vector quantizer. In this work, we
rely on the fast Fourier transform (FFT) and the fast Walsh trans-
form (FWT), the O(n log) algorithmic counterparts of the dis-
crete Fourier transform (DFT) and the discrete Walsh transform
(DWT), respectively. Instead of sinusoidal basis functions, the
Walsh transform decomposes a signal based on the orthonormal
Walsh functions [50]. Certain types of sharply discontinuous hu-
man control data are characterized more concisely through the
‘Walsh PSD than the Fourier PSD [46].

For each dimension of the human control data, we partition
the data into overlapping window frames and perform either a
short-time FFT or FWT on each frame. Generally, we select the
FFT for state trajectories, and the FWT for command trajecto-
ries, since these trajectories tend to have sharp discontinuities for
the experimental data in this article. In the case of the FFT, the
data in each frame is filtered through a Hamming window before
applying the FFT, so as to compensate for the windowing effect.
The spectral coefficients are then converted to power spectral
density (PSD) vectors. In preparation for the vector quantization,
the PSD vectors along each dimension of the system trajectory
are normalized and concatenated into one long feature vector per
frame. We quantize the resulting sequence of long feature vec-

October 1997

Experiment
Here, we present validation results for the task of human driv-
ing [46]. With independent steering, acceleration, and braking
control, a human operator is asked to negotiate different roads in
a driving simulator, whose interface is shown in Fig. 4. The state
of the car is given by [52]

6 = angular velocity of the car, N
v = lateral velocity of the car, (28)
vy = longitudinal velocity of the car, 29)

and the controls are given by

-8000N < (Py= longitudinal force on front tires) < 4000N,
(30)
-0.2 rad < (8 = steering angle) < 0.2 rad . 31

Note that the separate brake and gas commands for the human
are, in fact, the single Py variable, where the sign indicates
whether the brake or the gas is active.

We collect data from two human operators, Stan and Oliver.
For each individual we train a simple HCS model using cascade
networks. The inputs to the cascade networks for each individual
include (1) current and previous state information, (2) previous
control information, and (3) a description of the road:

(ve(k=n), o v (k=1), v (k). v (k=n),)
sy (k=1),%,(k), 6(k—n,),...,0(k~1),6(k) |’ 32)

{8k - no), ..., 8(k - 1), 8(k), Pk - no), ..., Pk - 1), PAk)}
(33)

{x(D), x(2), ..., x(np), y(1), y2), ..., y(nr)} , 34)

57

where n; = length of state his-

tory to include as input, and 7.
= length of command history to 240
include as input. State and

command histories are spaced 220
at T=0.02 sec. For the road de- 500
scription, we discretize the
visible view (given a 100m ho- = 180
rizon) of the road ahead into n, | 160
equivalently spaced, body-
relative (x, y) coordinates of the 140
road median, and provide that
sequence of coordinates as in- 120

put to the network. Thus, for

240

220

200

180

r(m)

160

140

120

100

fixed ny, n., and n, the total
number of inputs to the net-
work is

10 15 20 25
Vinif{m/s}

B Unsuccessful Run

Rinpuss = 305 + 20¢ + 21,(35)

30 35 40 10 15 20 25 30 35 40

B Marginally Successful Run

(a) Vinit(m/s) (b)

=5] Successful Runs

The outputs for the cascade
network are, of course, {d(k +
1), PAk + 1)} (i.e., the steering
and acceleration command for the next time step).

The left sides of Figure S(a) and (b) show part of the driving
data collected from two individuals, Oliver and Stan. Note that
the driving styles for the two individuals are quite different for
the same road. The right sides of Figure 5(a) and (b) show part of
the cascade model-generated command trajectories for Oliver
and Stan. Since Stan’s control strategy is relatively simple, his
control strategy model requires 30 hidden units and only the pre-
vious two states as input (i.e., #s = ne = 2). Oliver’s more compli-
cated control strategy model, on the other hand, requires 32
hidden units and relies on the previous ten states (ns=n. = 10) to
stay on the road. We determine these input histories experimen-
tally to achieve stable road following for each HCS model. For
both models, we let n, = 15.

To conduct the similarity analysis, we preprocess the state tra-
jectories using the 16-point FFT with 50% overlap, and we pre-
process the command trajectories using the 16-point FWT with
50% overlap. The resulting feature vectors are quantized to 128
levels. Table 3 summarizes the similarity results for the data in
Fig. 5 for eight-state HMMs.

The similarity results in Table 3 confirm two qualitative as-
sessments of the data in Fig. 5. First, we observe that the two
driving styles are objectively quite different. This factis reflected
in the low similarity measures between one individual’s model
and the other individual’s source and model-generated data. Sec-
ond, Stan’s model is a better reflection of his driving style than
Oliver’s modelis of his, as reflected in the two respective similar-
ity measures, 0.748 and 0.349. This indicates that Oliver’s
sharply discontinuous driving strategy is more difficult to learn
by a single cascade network than Stan’s calmer approach. In-
deed, Oliver’s model generates significant oscillatory behavior,
of which Oliver himself is not guilty. Thus, a low similarity
measure can point to problems in the model itself, including im-
proper assumptions about the controller order, granularity, and
control delay of the HCS. We address these problems in the fol-
lowing section.

speeds.

58

Fig. 9. Stability profiles for (a) Stan and (b) Oliver through an s-curve with varying radii and initial

Finally, we note that we have applied the similarity measure
in comparing control data across individuals. We collect driving
data from five individuals over three different roads, and then at-
tempt to correctly classify each individual’s data. While the simi-
larity measure correctly classifies every run, the more traditional
Bayes optimal classifier incorrectly classifies about 1/3 of all the
runs [46]. Hence, it appears that the similarity measures encodes
more than simply aggregate statistics.

Input Selection

For the example, Stan’s driving model requires state and com-
mand histories of length 2, while Oliver’s driving model requires
state and command histories of at Jeast length 10 to ensure stable
behavior. In human control of an inverted pendulum system, we
have found similar variations among individuals in controller
granularity and control delay [8]. Thus, we require a procedure
that automatically refines the input representation for HCS mod-
els, so as to arrive at better approximations of the actual human
control strategy. To this end, we propose combining the model
validation procedure with simultaneously perturbed stochastic
approximation (SPSA) [53] to select the best model input repre-
sentation.

Based on (11), in order to select the best input representa-
tion for the HCS model, we need to optimize the parameter
vector,

8=[mn 1 8", (36)
for some given experimental HCS data. Let I'(8) denote a trained
HCS model with input representation 0, and let o[T(0)] = 6(8)
denote the similarity measure for model I'(8). Now, the best in-

put representation 6* is defined in terms of the similarity meas-
ure ¢, such that

o(6*) > o(0), VO = 0* 37

IEEE Control Systems

This optimization is difficult in principle since (1) we have no
explicit gradient information,

G(6) = %G(e) -

and (2) each measurement of ¢ is computationally expensive.
Thus, we resort to simultaneously perturbed stochastic approxi-
mation to perform the optimization.

We propose to evaluate the similarity measure ¢ for two values
of 8 in order to arrive at a new estimate for 0 at iteration k. Fig. 6 il-
lustrates the overall input-selection feedback loop, where Ay is a
vector of mutually independent, mean-zero random variables
(e.g., symmetric Bernoulli distributed), the sequence { Az} is inde-
pendent and identically distributed, and the {ax}, {ct} are positive
scalar sequences. We can verify the proposed method on dynamic
systems whose input parameter vector 0 is known a priori.

Skill Transfer

Here, we discuss the important application of HCS models as
virtual expert instructors. Rather than getting advice from the
human expert directly, an apprentice can get guidance from an
expert’s HCS model, which acts as the virtual teacher. The
model-generated advice can be presented continuously to the ap-
prentice, while exploiting multiple sensor modalities. This has
the potential to improve both learning speed and the quality of
learning by the apprentice, as is qualitatively shown in human
subject experiments for an inverted-pendulum system [8]. In this
approach, apprentice training need no longer be one-to-one. A
single expert can efficiently train many apprentices through
his/her HCS model, without increased demands on the expert’s
time, conversely, a single apprentice can efficiently benefit from
diverse advice of many experts at once (Fig. 7). Moreover, since
HCS models are trained on physically plausible human data,
feedback advice from the HCS model does not require unrea-
sonably high precision or control fidelity from the apprentice.

Fig. 8 illustrates our overall approach to human-to-human
control strategy transfer. Suppose we wish to train an apprentice
operator to control some dynamic system, such as a robot, car, or
airplane. We first collect data from an expert to train the expert
HCS model. We then utilize this expert model to display recom-
mended actions to a human operator. The human operator then
acts and learns based upon the recommendations of the expert
model (i.e., the virtual expert instructor). During learning by the
apprentice, it is advisable to replace the actual dynamic system
with a simulator, as we do not wish the apprentice to do harm ei-
ther to the system or to himself/herself. It has been shown that
simulated training of this nature still dramatically improves per-
formance once the apprentice transitions to control of the real dy-
namic system [54, 55].

Good vs. Bad Virtual Teacher

Just as an apprentice needs to feel comfortable with the teach-
ing characteristics of a human instructor, so will the apprentice
require a comfort level with his/her virtual teacher. In other
words, alternate expert HCS models can result in varying learn-
ing quality and learning speed by the apprentice; in general, dif-
ferent apprentices will prefer HCS models of different character
and complexity during training. By allowing apprentices to ex-

October 1997

periment with differing HCS models, and select which they, in
fact, prefer, we can evaluate both the accepted and rejected HCS
models in terms of the performance criteria discussed previ-
ously, and identify those performance criteria (if any) which dif-
ferentiate the “good” from the “bad” virtual teachers.

Monitoring Apprentice Learning

We can monitor the progress of an apprentice’s learning on-
line. Let, Ar denote a Hidden Markov Model trained on trajecto-
ries from the expert HCS model I'. During learning, we can con-
tinuously monitor,

P =P(Op, w7} Ar) (39)
where Oy, 1] denotes the symbol-converted data from the ap-
prentice in time window [f, 4t] during training. Increasing val-
ues of p indicate positive learning by the apprentice. Once p
reaches some threshold value, we can test the quality of the ap-
prentice’s learning by momentarily switching off the feedback
advice and monitoring the value of p. If p remains steady, the ap-
prentice has truly learned the expert’s human control strategy; if
p drops sharply, however, it indicates that the apprentice is still
relying heavily on the feedback advice, and more learning by the
apprentice is required.

Future Work

There are of course many additional areas of research in hu-
man control strategy modeling. One such area which has impor-
tant implications for the effective use of HCS models is skill
evaluation, without which it is difficult to rank or prefer one con-
trol strategy over another. As the phrase, “garbage in, garbage
out” asserts, a model’s fidelity to human training data offers no
estimator of the quality of the demonstrated skill itself. Model
validation is a necessary, but not sufficient condition for the ap-
propriate application of HCS models. Skill is not a unique figure
of merit; rather, skill consists of an entire set of task-independent
as well as task-dependent performance criteria, which may or
may not be in conflict. Consider, for example, the driving control
strategies in Fig. 5 for Oliver and Stan. Which control strategy
demonstrates better skill? On the one hand, Stan’s control strat-
egy offers a smoother ride compared to Oliver’s strategy, and is
significantly more fuel-efficient to boot. On the other hand, Oliv-
er’s strategy achieves higher average speeds over equivalent
roads (72 m.p.h. vs. 56 m.p.h.) and exhibits stability for a broader
range of initial and environmental conditions (Fig. 9), where
each control strategy model is asked to steer through s-curves of
various radii and different initial velocities.

By definition, task-dependent criteria for skill evaluation can-
not be enumerated. Consider, however, the task of driving as an
example of human control strategy. There are any number of
task-specific skill criteria in human driving such as (1) average
fuel consumption per mile, (2) RMS distance from the center of
the lane, (3) maximum exhibited lateral and longitudinal forces,
(4) performance in tight turns, (5) average velocity, and (6) con-
trol output (i.e. steering and power) magnitudes. Task-
independent criteria, on the other hand, include such perform-
ance indices as (1) long-term consistency, (2) generalizability,
and (3) robustness.

59

Given specific skill criteria, we may be interested in optimizing
a HCS model’s performance. Since the unoptimized HCS model
already gives an initial, stable control law, adaptive optimal con-
trol, in terms of a specified performance criterion, is now possible.
Specifically, we can optimize the performance in stable HCS
models through simultanecusly perturbed stochastic approxima-
tion (SPSA) by measuring a specified performance index J for 2p
perturbed models of the original HCS model, approximating the
gradient of J with respect to the weights in the model, and generat-
ing a new estimate for the optimal weight vector.

Conclusion

Modeling and transferring human control strategies is an im-
portant area of research, with potential impact in a number of di-
verse applications. The most significant impact of this research is
in the design and control of dynamic systems where humans
demonstrate good skill, and where humans and machines must
interact with one another. This article identifies key problems in
modeling and transferring human control strategy, offers meth-
odologies to deal with each problem in turn, and summarizes
some results of this ongoing work. We explicitly address the
learning of HCS models, independent validation, and transfer of
human skill from human to robot, as well as human to human. We
have implemented much of the work proposed herein in the real-
time control of two simulated testbeds, and are working to trans-
fer the methodologies for the navigation and control of autono-
mous and teleoperated robots and land vehicles.

References
[1] K. Chen and R. D. Ervin, “Worldwide IVHS Activities: A Comparative
Overview,” Proc. CONVERGENCE’92 - Int. Congress on Transportation
Electronics, pp. 339-349, 1992,

[21 W.C. Collier and R.J. Weiland, “Smart Cars, Smart Highways,” IEEE
Spectrum, vol. 31, no. 4, pp. 27-33, 1994.

[3]1D. O’Hare and S. Roscoe, Flight Deck Performance: The Human Factor,
Jowa State University Press, Ames, 1990.

[4] C.C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Control-
ler—Part 1,” IEEE Trans. Systems, Man and Cybernetics, vol. 20, no. 2, pp.
404-418, 1990. i

[5] C.C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Control-
lex—Part IL” IEEE Trans. Systems, Man and Cybernetics, vol. 20, no. 2, pp.
419-435, 1990.

[6] B. Widrow, “The Original Adaptive Neural Net Broom Balancer,” Proc.
IEEE Symp. on Circuits and Systems, vol. 2, pp. 351-357, 1987.

[71 A. Guez and J. Selinsky, “A Trainable Neuromorphic Controller,” Journal
of Robotic Systems, vol 5., no. 4, pp. 363-388, 1988.

[8] M. Nechyba and Y. Xu, “Human Skill Transfer: Neural Networks as
Learners and Teachers,” Proc. IEEE Int. Conf. on Intelligent Robots and Sys-
tems, vol. 3, pp. 314-319, August 1995.

[9]H. Asada and S. Liu, “Transfer of Human Skills to Neural Net Robot Con-
trollers,” Proc. IEEE Int. Conf. on Robotics and Automation, vol. 3, pp.
2442-2447, 1991.

[10] S. Lee and J. Chen, “Skill Learning from Observations,” Proc. IEEE Int.
Conf. on Robotics and Automation, vol. 4, pp. 3245-3250, 1994.

{111Y. Xu and J. Yang, “Towards Human-Robot Coordination: Skill Model-
ing and Transferring via Hidden Markov Model,” Proc. IEEE Int. Conf. on
Robotics and Automation, vol. 1, pp. 906-911, 1995.

60

[12]1 E. Fix and H.G. Armstrong, “Modeling Human Performance with Neu
ral Networks,” Proc. Int. Joint Conf. on Neural Networks, vol. 1, pp. 247-252,
1990.

[13} D.A. Pomerleau, “Neural Network Perception for Mobile Robot Guid-
ance,” Ph.D. thesis, School of Computer Science, Carnegie Mellon Univer-
sity, 1992.

[14] S.E. Fahlman and C. Lebiere, “The Cascade-Correlation Learning Al-
gorithm,” Advances in Neural Information Processing Systems 2, ed. D. S.
Touretzky, Morgan Kaufmann Publishers, pp. 524-532, 1990.

{15] S.E. Fahlman, “An Empirical Study of Learning Speed in Back-
Propagation Networks,” Technical Report, CMU-CS-TR-88-162, Carnegie
Mellon University, 1988.

[16] K. Funahashi, “On the Approximate Realization of Continuous Map-
pings by Neural Networks,” Neural Networks, vol. 2, no. 3, pp. 183-192,
1989.

[17] K. Hornik, M. Stinchcomb, and H. White, “Multilayer Feedforward
Networks are Universal Approximators,” Neural Networks, vol. 2, no. 3, pp.
359-366, 1989.

[18] V. Kurkova, “Kolmogorov’s Theorem and Multilayer Neural Net-
works,” Neural Networks, vol. 5, no. 3, pp. 501-506, 1992.

{19} G. Cybenko, “Approximation by Superposition of a Sigmoidal Func-
tion,” Mathematics of Control, Signals, and Systems, vol. 2, no. 4, pp. 303-
314, 1989.

[20] J.H. Friedman and W. Stuetzle, “Projection Pursuit Regression,” Jour-
nal of the American Statistical Association, vol. 76, no. 376, pp. 817-823,
1981.

[21]J. Hwang and I. Hang, “A Comparison of Projection Pursuit and Neural
Network Regression Modeling,” Advances in Neural Information Process-
ing Systems 4, ed.].E. Moody, S.J. Hanson and R.P. Lippmann, Morgan
Kaufmann Publishers, pp. 1159-1166, 1992.

[22] S. Singhal and L. Wy, “Training Multilayer Perceptrons with the Ex-
tended Kalman Algorithm,” Advances in Neural Information Processing
Systems 1, ed. D.S. Touretzky, Morgan Kaufmann Publishers, pp. 133-140,
1989,

[23] G.V. Puskorius and L.A. Feldkamp, “Decoupled Extended Kalman Fil-
ter Training of Feedforward Layered Networks,” Proc. Int. Joint Conf. on
Neural Networks, vol. 1, pp. 771-777, 1991.

[24] M. Nechyba and Y. Xu, “Neural Network Approach to Control System
Identification with Variable Activation Functions,” Proc. [EEE Int. Symp. In-
telligent Control, pp. 358-363, 1994.

[25] M. Nechyba and Y. Xu, “Towards Human Control Strategy Learning:
Neural Network Approach with Variable Activation Functions,” Technical
Report, CMU-RI-TR-95-09, Carnegie Mellon University, 1995.

[26] K.S. Narendra, “Adaptive Control of Dynamical Systems Using Neural
Networks,” Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive
Approaches, ed. D.A. White and D.A. Sofge, pp. 141-184, 1992.

[27] K.S. Narendra and K. Parthasarathy, “Identification and Control of Dy-
namical Systems Using Neural Networks,” IEEE Trans. Neural Networks,
vol. 1, no. 1, pp. 4-27, 1990.

[28]1 M. Nechyba and Y. Xu, “On the Fidelity of Human Skill Models,” Proc.
IEEE Int. Conf. in Robotics and Automation, vol. 3, pp. 2688-2693, 1996.

[29] R. Basri and D. Weinshall, “Distance Metric Between 3D models and
2D Images for Recognition and Classification,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 18, no. 4, pp. 465-479, 1996.

[30] M. Boninsegna and M. Rossi, “Similarity Measures in Computer Vi-
sion,” Pattern Recognition Letters, vol 15., no. 12, pp. 1255-1260, 1994.

IEEE Control Systems

[31}1 M. Werman and D. Weinshall, “Similarity and Affine Invariant Dis-
tances Between 2D point Sets,” IEEE Trans. on Paitern Analysis and Ma-
chine Intelligence, vol. 17, no. 8, pp. 810-814, 1995.

[32] R. Jain, S. Murty, et al., “Similarity Measures for Image Databases,”
Proc. IEEE Int. Conf. on Fuzzy Systems, vol. 3, pp. 1247-1254, 1995.

[33] K.Y. Kupeev and H.J. Wolfson, “On Shape Similarity,” Proc. of 12th
IAPR Int. Conf. on Pattern Recognition, vol. 1, pp. 227-231, 1994.

[34] H.Y. Shum, M. Hebert, and K. Ikeuchi, “On 3D Shape Similarity,” Tech-
nical Report, CMU-CS-95-212, Carnegie Mellon University, 1995.

[35] R.O. Duda and PE. Hart, Pattern Classification and Scene Analysis,
John Wiley & Sons, New York, 1973.

[36] M. Sun, G. Burk and R.J. Sclabassi, “Measurement of Signal Similarity
Using the Maxima of the Wavelet Transform,” Proc. IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, vol. 3, pp. 583-586, 1993.

[37]1). Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neu-
ral Computation, Addison-Wesley Publishing, Redwood City, 1991.

[38] L.G. Sotelino, M. Saerens, and H. Bersini, “Classification of Temporal
Trajectories by Continuous-Time Recurrent Nets,” Neural Networks, vol. 7,
no. 5, pp. 767-776, 1994.

[39] X.D. Huang, Y. Ariki, and M.A. Jack, Hidden Markov Models for
Speech Recognition, Edinburgh University Press, 1990.

[40] L.R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Ap-
plications in Speech Recognition,” Proc. of the IEEE, vol. 77, no. 2, pp. 257-
286, 1989.

[41]A.Kundu, G.C. Chen, and C.E. Persons, “Transient Sonar Signal Classi-
fication Using Hidden Markov Models and Neural Nets,” IEEE Journal of
Oceanic Engineering, vol. 19, no. 1, pp. 87-99, 1994.

[42] B. Hannaford and P. Lee, “Hidden Markov Model Analysis of
Force/Torque Information in Telemanipulation,” Int. Journal of Robotics Re-
search, vol. 10, no. 5, pp. 528-539, 1991.

[43]]J. Yang, Y. Xu, and C.S. Chen, “Hidden Markov Model Approach to
Skill Learning and Its Application to Telerobotics,” IEEE Trans. Robotics
and Automation, vol. 10, no. 5, pp. 621-631, 1994,

[44]]. Yang, Y. Xu and C.S. Chen, “Gesture Interface: Modeling and Learn-
ing,” Proc. IEEE Int. Conf. on Robotics and Automation, vol. 2, pp. 1747-52,
1994,

[45] L.R. Rabiner, et. al., “Some Properties of Continuous Hidden Markov
Model Representations,” AT&T Technical Journal, vol. 64, no. 6, pp. 1211-
1222, 1986.

[46] M. Nechyba and Y. Xu, “Stochastic Similarity for Validating Human
Control Strategy Models,” Technical Report, CMU-RI-TR-96-29, Carnegie
Mellon University, 1996.

[47] L.E. Baum, T. Petrie, G. Soules, and N. Weiss, “A Maximization Tech-
nique Occurring in the Statistical Analysis of Probabilistic Functions of Mar-

October 1997

kov Chains,” Annals of Mathematical Statistics, vol. 41, no. 1, pp. 164-171,
1970.

[48] P. Baldi and Y. Chauvin, “Smooth On-Line Learning Algorithm for Hid-
den Markov Models,” Neural Computation, vol. 6,no. 2, pp. 307-318, 1994,

[49] V. Krishnamurthy and J.B. Moore, “On-Line Estimation of Hidden Mar-
kov Model Parameters Based on the Kullback-Leibler Information Meas-
ure,” IEEE Trans. Signal Processing, vol. 41, no. 8, pp. 2557-2573, 1993.

[50] D.F. Elliott and K.R. Rao, Fast Transforms: Algorithms, Analyses, Ap-
plications, Academic Press, New York, 1982,

[511Y. Linde, A. Buzo, and R.M. Gray, “An Algorithm for Vector Quantizer
Design,” IEEE Trans. Communication, vol. COM-28, no. 1, pp. 84-95, 1980.

[52] H. Hatwal and E.C. Mikulcik, “Some Inverse Solutions to an Automo-
bile Path-Tracking Problem with Input Control of Steering and Brakes,” Ve-
hicle System Dynamics, vol. 15, pp. 61-71, 1986.

[53]1.C. Spall, “Multivariate Stochastic Approximation Using a Simultane-
ous Perturbation Gradient Approximation,” IEEE Trans. Automatic Control,
vol. 37, no. 3, pp. 332-341, 1992.

[54] D. Gopher, M. Weil, and T. Bareket, “The Transfer of Skill from a Com-
puter Game Trainer to Actual Flight,” Proc. Human Factors Society 36th An-
nual Meeting, vol. 2, pp. 1285-1290, 1992.

[55] W.L. Shebilske and J.W. Regian, “Video Games, Training, and Investi-
gating Complex Skills,” Proc. Human Factors Society 36th Annual Meeting,
vol. 2, pp. 1296-1300, 1992.

_ Michael C. Nechyba was born in Vienna, Austria, in
1970. He received a B.S. degree in electrical engineer-
ing from the University of Florida in 1992. Since 1992,
he has been working toward a Ph.D. degree in robotics
at Carnegie Mellon University. His research interests
include the learning and transfer of human control strat-
egy, dynamically stable systems, neural networks, Hid-
den Markov Models, and applications in space robotics
and teleoperation. Mr. Nechyba is an NSF Graduate
Fellow, as well as a DOE Doctoral Feltow.

| Yangsheng Xu worked in the GRASP lab at the Univer-
sity of Pennsylvania where he received his Ph.D. degree
in 1989. Since then, he has been working at the Robotics
Institute of Carnegie Mellon University as Research Sci-
| entist. At Carnegie Mellon, he has been leading research
| in the areas of space robotics, intelligent control, and
manufacturing automation. With his colleagues, he de-
veloped several novel robot systems including the well-

. known space station walker, the Self-Mobile Space Ma-
nipulator (SM), and a ground-based space telerobotics testbed including
zero-gravity compensation systems. His current interests include real-time
modeling and transfer of human control strategies, dynamically stable robots,
and design and control of high-performance mechatronics systems.

61

