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Abstract

Much work has been done in recent years to
abstract computational models of human control
strategy (HCS) that are capable of accurately
emulating dynamic human control behaviors.
Land-based autonomous vehicles, both in simula-
tion and on real roads, have made successful use
of this modeling formalism. Little work has been
done, however, in attempting such skill transfer
from humans to aerial robotic vehicles. Although
control of an aerial vehicle is quite different from
that of ground vehicles, we contend that human
pilots can potentially serve as excellent guides in
the development of intelligent autonomous aerial
vehicles. As a first step in modeling human
control strategies in aerial vehicles, we are
developing a robotic airplane (Figure 1) as an
experimental platform for studying human-to-
machine skill transfer in aerial vehicles. This
paper describes the configuration of this airplane,
the results of early experiments, and future
planned experiments.

Figurel- TheAvigator platform

1. Introduction
Motivation

Over the past two decades, rapid advances in
computer performance have nat been matched by

similar advances in the development of intelli gent
robots. Humans are much better at performing
complex dynamic skills than at describing those
skills in an algorithmic, machine-codeable way.
This has limited our ability to develop intelli gence
in robots and dher machines. This inability has
limited nd only the capabilities of indvidual
machines, but also the extent to which humans and
robots can safdly interact and work cooperatively.
There «ists a profound reed to abstract human
skill s into computational models which are capable

of realistic emulation of dynamic human behaviors.

Autonamous control and ravigation d ground
vehicles is one area of robotics research which has
benefited from learning through doservation d
humans. Pomerleau [1,2], for example, has imple-
mented in the ALVINN system real-time road-
following using dhta collected from a human
driver. A static feadforward neural network with a
single hidden layer learned to map from coarsdy
digitized images of the road ahead to a desired
steging ange. The ALVINN system has been
demonstrated succesgully at speads up to 70 mph.
Pentland and Liu [3] have applied hidden Markov
modes to inferring a driver’s high-level intentions,
such as turning and stopping. Finaly, [4,5,6]
address the autonamous corntrol of a dynamic car
-- including steging and accderation -- through
observation and modding d human driving using a
driving simulator.

Surprisingy, little work has been dore in using
observation d human pilots to create inteli gent
autonamous aerial vehicles. An intdli gent autono-
mous aerial vehicle could have application in a
number of areas. Many d the activities that
currently invave remotely piloted vehicles (RPVS)
would benefit in some way from automation. In
many applications, such as surveying, reconrais-



sance, and target acquisition, it may be possble to
automate the eitire misson. For other applica-
tions, where more sophisticated control is required,
it may be that a human pilot is dill required, but
that the less complex parts of the misgon can be
automated. Addng intelligence to RPVs could
reduce the amount of skill required o the human
pilots, and could also allow ore pilot to cortrol
multiple vehicles.

Although the control challenges in flying are
different from those in driving, the basic paradigm
of learning from humans is equally applicable. We
are therefore attempting to extend to aerial vehicles
some of the methods previously used for learning
in ground wehicles. As a first step in this process
we are devedoping a robotic airplane as an
experimental platform.

Project outline

We have divided the overall project into three
stages acoording to the levd of autonamous
behavior to be achieved: (1) The airplane will be
able to fly straight and level, maintaining a given
heading, and will be able to make a turn to a new
heading, (2) The airplane will be able to land and
take off; (3) The airplane will be able to ravigate
to given map coordinates.

At this point, we have assembled and tested the
hardware necessary to implement stage one, and
have shown that we can produce an accurate mode
of the human pilot for straight and levd flight. In
the near future we will test this modd by letting the
computer fly the airplane.

2. Platform Description
M echanics

The basis of the platform is a radio-control (R/C)
airplane kit, the Sig Kadet Senior. This airframe
was chosen because of its dow and stable flying
characteristics and because it has a large payload
capacity, both in vdume and in weight. The
airframe has awing area of 1150in?, and an empty
weight of about 6 Ibs, giving a wing loading d
about 12 0z/ft>. An R/C airplaneis dill considered
‘light’ at 20 oz/ft?, and we should be able to easily
go to 30 oz/ft> with no significant detrimental
effects on the flying characteristics. A wing

loading & 30 oz/ft? corresponds to a payload of
about 9 Ib. In reality, we will run out of internal
volume before we reach 9 Ib of dectronics,
although the fusdage could be modfied to provide
more volume.

During construction, the airframe was modfied in
many small ways to accommodate the neals of this
project. In many places thinner wood was substi-
tuted in arder to reduce weight. The interior of the
fusdage beneath the wing was modfied in arder to
maximize the volume of the payload compartment.
An extra servo was used for the nosewhed, in
order to diminate the need for control-rods running
through the payload compartment. The forward
servos were moved into the nose, and the rearward
servos placed at the very rear of the payload
compartment, again to maximize payload vdume
and accessibility.

When the platform was first designed, it was to be
propeled dectrically. Electrical propulsion is
desirable for a project like this because an internal
combustion engne has traits that are harmful to
sensitive dectronics, specifically vibration and
caustic fluids. We designed a propulsion system
consisting d a brushless motor, a reducing geer-
box, and ricke-metal-hydride batteries [7]. This
system was tested extensively, and provided the
capability to lift a 3-4 |b payload for flight
durations of 8-10 minutes, which was adequate
performance to accomplish stages 1 and 2 of the
project. Unfortunately, the dectric drive system
proved too fragile to med our neals in the areas of
consistency and reliability. After many trips to the
repair shop, we decided to rebuild the platform
with an internal combustion engine.

Most R/C aircraft use small two-cycle engines. In
recent years, four-cycle engnes have become more
popular due to their lower noise, lower vibration,
and more reliable and consistent performance. The
downside of a four-cycle engne is that it produces
less power per pound and much less power per
ddlar in comparison to a two-cycle exgne
Reducing Mibration was a high priority for us, so
we choseto install a four-cycle engine. The engne
we are using fes a displacement of 0.52in* and is
rated at 0.9 hp.



The performance of the airplane was sgnificantly
improved with the new engine -- although the
takeoff weight dropped by less than a pound
compared with the dectric, the takeoff run required
onacalmday with a2 Ib payload went from about
50 ft to about 30 ft. This performance was not
naticeably changed when we tested it with an
additional 5 Ib of payload.

The new engine brought many dfficulties in the
form of vibration. The sensors and the computers
had been hard mounted with the dectric motor, and
performed wel. With the new engne, several
comporents showed erratic behavior.  Several
methods of soft-mounting the components were
tried. For most of the components, a sandwich o
soft foam between plywood mounts provided
adequate damping. For the computer’s hard drive
and the accderometer-based tilt sensor, however,
no adequate vibration reduction method fes yet
been found. As a result, we have had to leave off
the hard drive and rely ona small solid-state drive,
and also leave off thetilt sensor and rely onthe tilt
sensor built into the compass.

The human-in-control system is provided by a
standard six-channd R/C radio system and
standard R/C servos. Four channds are used for
control of the arplane -- rudder, devator,
nosewhed, and throttle. A fifth channd, whichisa
togde switch, is used to switch between human
and computer control of the aircraft. The sixth
channd is currently unused and may be used in the
future to send commands to the computer from the
ground. The only modfication to the R/C system
has been tapping into the recever to bring the
servo-control signals out to the computer.

Intelligent Electronics

The primary processng power of the platform is
provided by a 386-class processor in a PC/104
format. This PC/104 loard provides all of the
features usualy found on a desktop computer,
including video and ethernet, on a 3.6" by 3.8"
board, and weighs lessthan 4 oz. The PC/104 bws
makes future e&pansion d the system
straightforward, using readily-available daughter-

boards. A 386 was chosen over a 486 or 586, in

large part because it uses much less power, and
also because of its lower cost.

In addtion to the primary computer, there is a
Motorola MC68HC11 (HC11) microcortroller on
a Machine Intdlli gence Laboratory (MIL)-designed
MRC-11 oard. This board provides the HC11 in
expanded mode with 32k of SRAM and 32 of
ROM, and provides convenient accessto all of the
HC11 pins via a header.

The HC11 is responsible for capture of al sensor
and cortrol data except for the compass data,
which gaes directly to the 386, The HC11 trans-
mits this information to the 386 through an RS-
232 serial conrection. It also accepts cortrol
commands from the 386 and then produces the
control signals for the servos.

Data storage is provided by an 0.7 MB solid-state
disk on the PC/104 koard. This is adequate for
storage of about 10 minutes of data. We have
ordered a 64 MB solid-state disk which will enable
us to store many flights worth o data onboard.
This will be a significant improvement since we
currently have to remove the wing between flights
in arder to copy the data off of the 386 onto a
laptop computer or a floppy disk.

We are currently using MS-DOS as our operating
system, due to the limited storage available. When
we were using a hard dive with the dectric
propulsion system, we eperimented with Linux
and found it to have many advantages over MS-
DOS including (1) a higher sampling rate and (2)
the ahility to log in from anather computer and
debug progams while they are running. The
major disadvantage of Linux, besides its gace
requirements, is that it takes a very long time to
boat ona 386 When we install the new solid-state
drive we will experiment with some new versions
of Linux that are designed for embedded
applications.

The sensor suite currently provides heading, pitch,
and roll data, all of which are provided by a
Precision Navigation éectronic compass which
interfaces to the 386 through an RS-232 interface.
Thetilt sensor in this compassis na very goodfor



our application, since it is of the liquid-leve type
and thus ill -suited to dyramic environments. It
also has a limited tilt range &#5°.

We have developed a tilt sensor around the Analog
Devices ADXL202 accderometer, which has
superior performance to the compass tilt sensor,
but which we are currently unable to use because it
is very sensitive to the engine vibrations.

Addtional sensors are under development,
including a pressure-based atimeter for coarse
altitude measurement, an ultrasonic ranger-based
altimeter for finer altitude measurement near the
ground, and a pressure-based airspeed sensor.

Tying the intdligent components into the radio
control system is a special multiplexing circuit
which was designed to allow the human pilot to
switch between human control and computer
control of the aircraft using an extra channd onthe
radio. This circuit operates off of the recever
battery, and is independent of the computer
systems 9 that, in the event of a computer failure,
the pilot can still assume control of the aircraft.

Software

During the data-coll ection phase of the project, the
HC11 is responsible for capturing sensor inputs,
and also for decoding the pulse-width-modulated
(PWM) signals from the radio receiver. All of this
data is then transmitted through the serial interface
to the 386.

During dhta coll ection the function d the 386is to
collect the serial data from the HC11 and the
compass timestamp them, and save them to disk.
This raw data consists of five numbers represen-
ting heading, pitch, roll, rudder control position,
and elevator control position.

Data procesdng and training are performed onthe
ground using more-powerful computers. The first
step in data processng is to manualy sdect
sections of the data which are representative of the
behavior to be learned (eg., ‘flying straight and
levd’). Thisisa subjectivetask, sincefor dynamic
real-world data it is often hard to say exactly
where ‘straight’ stops and ‘turn’ starts.

After several data segments have been sdected, the
data ae preprocessd by the following steps: (1)
heading values are adjusted by increments of 360°
to diminate the problem of values flipping across
the 360°=0° boundary. (2) Change-in-heading (Ah)
values are calculated, and any value of |Ah| greater
than 45° is replaced with 0, sinceit is obviously an
invalid reading (there are several posdble causes
of this stuation, but the most likdy is data
dropout). (3) The data is resampled to a constant
timestep of 0.1 s. The raw data, even without
dropouts, have varying timesteps, due to the lack
of synchronization d the two serial streams, and
also due to some qualities of the solid-state disk.
Any time period d lessthan 300 ms is considered
avalid interval, and the data is resampled. A gap
of greater than 300 msis considered a bregk in the
data streem and the data following the gap is
flagged as a new section d data. (4) the data ae
scaled to lie within the range £1. (5) Finaly, the
data ae reformatted as a time-history so that a set
of data now consists of 20 values, 18 inputs
(current and past sensor values and past cortrol
values) and 2 outputs (current control values).

Data preprocessng steps 1 and 2 are performed
more or less by hand using a spreadshed, and
steps 3-5 are performed by a C progam. (All
code is written in C).

After preprocessng, the data is used to train a
cascade neural network (CNN).  We have
previously found that continuous human cortrol
can be modded wdl through CNNs, which are
powerful  norlinear function approximators
offering several advantages over more traditional
neural network architectures: (1) the network
architecture is nat fixed prior to learning, but
rather adapts as a function d learning [8]; (2)
hidden units in the neural network can assume
variable activation functions [9]; and (3) the
weights in the neural network are trained through
the fast-converging nock-decoupled extended
Kalman filter [9]. The flexibility of these cascade
networks is ideal for HCS moadding, since few a
priori assumptions are made about the underlying
structure of the human controller.



In the execution stage, the trained neural network
is used by the 386 to produce cortrol outputs from
the sensor inputs. These cortrol values are passd
to the HC11, where they are used to generate
appropriate PWM signals which are then sent to
the control servos. We are currently in the process
of shaking dawvn the hardware required to attempt
this step.

3. Experimental Results

To date we have performed neural network training
using chta representing straight and levd flight.
For this data the result of the neural network
training has been a purely linear cortroller. Thisis
unsurprising, given the highly linear correation
seen between the control inputs and sensor outputs.
Figure 2 shows the correlation between the rudder
control input and the roll angle of the airplane.
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Figure 2 - Rudder and roll angle

The resulting control system was then used to
calculate predicted values for pilot commands at
time t given the time-history of sensor and control
values. Our control system was found to predict
the pilot’s cortrol actions very wdl, with RMS
error lessthan 0.1%. Figure 3 ill ustrates the close
corrdation between the predicted and actual
control values.

4. Conclusion and future work

This paper describes the first stages in the
development of an autonamous airplane using
human skill modding. At the time of this writing,

we have shown that we can generate a modd
which accuratdy predicts the next pilot command
from past commands and current and past sensor
data. In the near future, we epect to test the
modd by allowing the computer to fly the airplane
in straight-and-levd flight. From that point we
will work to develop additional models of turning,
landing, and takeoff behaviors.
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Figure 3 - Predicted and actual controls
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