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Abstract

Much work has been done in recent years to
abstract computational models of human control
strategy (HCS) that are capable of accurately
emulating dynamic human control behaviors.
Land-based autonomous vehicles, both in simula-
tion and on real roads, have made successful use
of this modeling formalism.  Little work has been
done, however, in attempting such skill transfer
from humans to aerial robotic vehicles.  Although
control of an aerial vehicle is quite different from
that of ground vehicles, we contend that human
pilots can potentially serve as excellent guides in
the development of intelligent autonomous aerial
vehicles.  As a first step in modeling human
control strategies in aerial vehicles, we are
developing a robotic airplane (Figure 1) as an
experimental platform for studying human-to-
machine skill transfer in aerial vehicles.  This
paper describes the configuration of this airplane,
the results of early experiments, and future
planned experiments.

1. Introduction

Motivation

Over the past two decades, rapid advances in
computer performance have not been matched by

similar advances in the development of intelli gent
robots.  Humans are much better at performing
complex dynamic skill s than at describing those
skill s in an algorithmic, machine-codeable way.
This has limited our abili ty to develop intelli gence
in robots and other machines.  This inabili ty has
limited not only the capabili ties of individual
machines, but also the extent to which humans and
robots can safely interact and work cooperatively.
There exists a profound need to abstract human
skill s into computational models which are capable
of realistic emulation of dynamic human behaviors.

Autonomous control and navigation of ground
vehicles is one area of robotics research which has
benefited from learning through observation of
humans.  Pomerleau [1,2], for example, has imple-
mented in the ALVINN system real-time road-
following using data collected from a human
driver.  A static feedforward neural network with a
single hidden layer learned to map from coarsely
digitized images of the road ahead to a desired
steering angle.  The ALVINN system has been
demonstrated successfully at speeds up to 70 mph.
Pentland and Liu [3] have applied hidden Markov
models to inferring a driver’s high-level intentions,
such as turning and stopping.  Finally, [4,5,6]
address the autonomous control of a dynamic car
-- including steering and acceleration -- through
observation and modeling of human driving using a
driving simulator.

Surprisingly, li ttle work has been done in using
observation of human pilots to create intelli gent
autonomous aerial vehicles.  An intelli gent autono-
mous aerial vehicle could have application in a
number of areas.  Many of the activities that
currently involve remotely piloted vehicles (RPVs)
would benefit in some way from automation.  In
many applications, such as surveying, reconnais-

Figure 1 - The Avigator platform
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sance, and target acquisition, it may be possible to
automate the entire mission.  For other applica-
tions, where more sophisticated control is required,
it may be that a human pilot is still required, but
that the less complex parts of the mission can be
automated.  Adding intelli gence to RPVs could
reduce the amount of skill required of the human
pilots, and could also allow one pilot to control
multiple vehicles.

Although the control challenges in flying are
different from those in driving, the basic paradigm
of learning from humans is equally applicable.  We
are therefore attempting to extend to aerial vehicles
some of the methods previously used for learning
in ground vehicles.  As a first step in this process,
we are developing a robotic airplane as an
experimental platform.

Project outline

We have divided the overall project into three
stages according to the level of autonomous
behavior to be achieved: (1) The airplane will be
able to fly straight and level, maintaining a given
heading, and will be able to make a turn to a new
heading;  (2) The airplane will be able to land and
take off ;  (3) The airplane will be able to navigate
to given map coordinates.

At this point, we have assembled and tested the
hardware necessary to implement stage one, and
have shown that we can produce an accurate model
of the human pilot for straight and level flight.  In
the near future we will test this model by letting the
computer fly the airplane.

2. Platform Description

Mechanics

The basis of the platform is a radio-control (R/C)
airplane kit, the Sig Kadet Senior.  This airframe
was chosen because of its slow and stable flying
characteristics and because it has a large payload
capacity, both in volume and in weight.  The
airframe has a wing area of 1150 in2, and an empty
weight of about 6 lbs, giving a wing loading of
about 12 oz/ft2.  An R/C airplane is still considered
‘ light’ at 20 oz/ft2, and we should be able to easily
go to 30 oz/ft2 with no significant detrimental
effects on the flying characteristics.  A wing

loading of 30 oz/ft2 corresponds to a payload of
about 9 lb.  In reali ty, we will run out of internal
volume before we reach 9 lb of electronics,
although the fuselage could be modified to provide
more volume.

During construction, the airframe was modified in
many small ways to accommodate the needs of this
project.  In many places thinner wood was substi-
tuted in order to reduce weight.  The interior of the
fuselage beneath the wing was modified in order to
maximize the volume of the payload compartment.
An extra servo was used for the nosewheel, in
order to eliminate the need for control-rods running
through the payload compartment.  The forward
servos were moved into the nose, and the rearward
servos placed at the very rear of the payload
compartment, again to maximize payload volume
and accessibility.

When the platform was first designed, it was to be
propelled electrically.  Electrical propulsion is
desirable for a project like this because an internal
combustion engine has traits that are harmful to
sensitive electronics, specifically vibration and
caustic fluids.  We designed a propulsion system
consisting of a brushless motor, a reducing gear-
box, and nickel-metal-hydride batteries [7].  This
system was tested extensively, and provided the
capabili ty to li ft a 3-4 lb payload for flight
durations of 8-10 minutes, which was adequate
performance to accomplish stages 1 and 2 of the
project.  Unfortunately, the electric drive system
proved too fragile to meet our needs in the areas of
consistency and reliabili ty.  After many trips to the
repair shop, we decided to rebuild the platform
with an internal combustion engine.

Most R/C aircraft use small two-cycle engines.  In
recent years, four-cycle engines have become more
popular due to their lower noise, lower vibration,
and more reliable and consistent performance.  The
downside of a four-cycle engine is that it produces
less power per pound and much less power per
dollar in comparison to a two-cycle engine.
Reducing vibration was a high priority for us, so
we chose to install a four-cycle engine.  The engine
we are using has a displacement of 0.52 in3 and is
rated at 0.9 hp.
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The performance of the airplane was significantly
improved with the new engine -- although the
takeoff weight dropped by less than a pound
compared with the electric, the takeoff run required
on a calm day with a 2 lb payload went from about
50 ft to about 30 ft.  This performance was not
noticeably changed when we tested it with an
additional 5 lb of payload.

The new engine brought many diff iculties in the
form of vibration.  The sensors and the computers
had been hard mounted with the electric motor, and
performed well .  With the new engine, several
components showed erratic behavior.  Several
methods of soft-mounting the components were
tried.  For most of the components, a sandwich of
soft foam between plywood mounts provided
adequate damping.  For the computer’s hard drive
and the accelerometer-based til t sensor, however,
no adequate vibration reduction method has yet
been found.  As a result, we have had to leave off
the hard drive and rely on a small solid-state drive,
and also leave off the til t sensor and rely on the til t
sensor built into the compass.

The human-in-control system is provided by a
standard six-channel R/C radio system and
standard R/C servos.  Four channels are used for
control of the airplane -- rudder, elevator,
nosewheel, and throttle.  A fifth channel, which is a
toggle switch, is used to switch between human
and computer control of the aircraft.  The sixth
channel is currently unused and may be used in the
future to send commands to the computer from the
ground.  The only modification to the R/C system
has been tapping into the receiver to bring the
servo-control signals out to the computer.

Intelligent Electronics

The primary processing power of the platform is
provided by a 386-class processor in a PC/104
format.  This PC/104 board provides all of the
features usually found on a desktop computer,
including video and ethernet, on a 3.6” by 3.8”
board, and weighs less than 4 oz.  The PC/104 bus
makes future expansion of the system
straightforward, using readily-available daughter-
boards.  A 386 was chosen over a 486 or 586, in

large part because it uses much less power, and
also because of its lower cost.

In addition to the primary computer, there is a
Motorola MC68HC11 (HC11) microcontroller on
a Machine Intelli gence Laboratory (MIL)-designed
MRC-11 board.  This board provides the HC11 in
expanded mode with 32k of SRAM and 32k of
ROM, and provides convenient access to all of the
HC11 pins via a header.

The HC11 is responsible for capture of all sensor
and control data except for the compass data,
which goes directly to the 386.  The HC11 trans-
mits this information to the 386 through an RS-
232 serial connection.  It also accepts control
commands from the 386 and then produces the
control signals for the servos.

Data storage is provided by an 0.7 MB solid-state
disk on the PC/104 board.  This is adequate for
storage of about 10 minutes of data.  We have
ordered a 64 MB solid-state disk which will enable
us to store many flights worth of data onboard.
This will be a significant improvement since we
currently have to remove the wing between flights
in order to copy the data off of the 386 onto a
laptop computer or a floppy disk.

We are currently using MS-DOS as our operating
system, due to the limited storage available.  When
we were using a hard drive with the electric
propulsion system, we experimented with Linux
and found it to have many advantages over MS-
DOS including (1) a higher sampling rate and (2)
the abili ty to log in from another computer and
debug programs while they are running.  The
major disadvantage of Linux, besides its space
requirements, is that it takes a very long time to
boot on a 386.  When we install the new solid-state
drive we will experiment with some new versions
of Linux that are designed for embedded
applications.

The sensor suite currently provides heading, pitch,
and roll data, all of which are provided by a
Precision Navigation electronic compass, which
interfaces to the 386 through an RS-232 interface.
The til t sensor in this compass is not very good for
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our application, since it is of the liquid-level type
and thus ill -suited to dynamic environments.  It
also has a limited tilt range of ±45°.

We have developed a til t sensor around the Analog
Devices ADXL202 accelerometer, which has
superior performance to the compass’ til t sensor,
but which we are currently unable to use because it
is very sensitive to the engine vibrations.

Additional sensors are under development,
including a pressure-based altimeter for coarse
altitude measurement, an ultrasonic ranger-based
altimeter for finer altitude measurement near the
ground, and a pressure-based airspeed sensor.

Tying the intelli gent components into the radio
control system is a special multiplexing circuit
which was designed to allow the human pilot to
switch between human control and computer
control of the aircraft using an extra channel on the
radio.  This circuit operates off of the receiver
battery, and is independent of the computer
systems so that, in the event of a computer failure,
the pilot can still assume control of the aircraft.

Software

During the data-collection phase of the project, the
HC11 is responsible for capturing sensor inputs,
and also for decoding the pulse-width-modulated
(PWM) signals from the radio receiver.  All of this
data is then transmitted through the serial interface
to the 386.

During data collection the function of the 386 is to
collect the serial data from the HC11 and the
compass, timestamp them, and save them to disk.
This raw data consists of five numbers represen-
ting heading, pitch, roll , rudder control position,
and elevator control position.

Data processing and training are performed on the
ground using more-powerful computers.  The first
step in data processing is to manually select
sections of the data which are representative of the
behavior to be learned (e.g., ‘f lying straight and
level’) .  This is a subjective task, since for dynamic
real-world data it is often hard to say exactly
where ‘straight’ stops and ‘turn’ starts.

After several data segments have been selected, the
data are preprocessed by the following steps: (1)
heading values are adjusted by increments of 360°
to eliminate the problem of values flipping across
the 360°=0° boundary. (2) Change-in-heading (∆h)
values are calculated, and any value of |∆h| greater
than 45° is replaced with 0, since it is obviously an
invalid reading (there are several possible causes
of this situation, but the most likely is data
dropout).  (3) The data is resampled to a constant
timestep of 0.1 s.  The raw data, even without
dropouts, have varying timesteps, due to the lack
of synchronization of the two serial streams, and
also due to some quali ties of the solid-state disk.
Any time period of less than 300 ms is considered
a valid interval, and the data is resampled.  A gap
of  greater than 300 ms is considered a break in the
data stream and the data following the gap is
flagged as a new section of data.  (4) the data are
scaled to lie within the range ±1.  (5) Finally, the
data are reformatted as a time-history so that a set
of data now consists of 20 values, 18 inputs
(current and past sensor values and past control
values) and 2 outputs (current control values).

Data preprocessing steps 1 and 2 are performed
more or less by hand using a spreadsheet, and
steps 3-5 are performed by a C program.  (All
code is written in C).

After preprocessing, the data is used to train a
cascade neural network (CNN).  We have
previously found that continuous human control
can be modeled well through CNNs, which are
powerful nonlinear function approximators
offering several advantages over more traditional
neural network architectures: (1) the network
architecture is not fixed prior to learning, but
rather adapts as a function of learning [8]; (2)
hidden units in the neural network can assume
variable activation functions [9]; and (3) the
weights in the neural network are trained through
the fast-converging node-decoupled extended
Kalman fil ter [9].  The flexibili ty of these cascade
networks is ideal for HCS modeling, since few a
priori assumptions are made about the underlying
structure of the human controller.
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In the execution stage, the trained neural network
is used by the 386 to produce control outputs from
the sensor inputs.  These control values are passed
to the HC11, where they are used to generate
appropriate PWM signals which are then sent to
the control servos.  We are currently in the process
of shaking down the hardware required to attempt
this step.

3. Experimental Results

To date we have performed neural network training
using data representing straight and level flight.
For this data the result of the neural network
training has been a purely linear controller.  This is
unsurprising, given the highly linear correlation
seen between the control inputs and sensor outputs.
Figure 2 shows the correlation between the rudder
control input and the roll angle of the airplane.

The resulting control system was then used to
calculate predicted values for pilot commands at
time t given the time-history of sensor and control
values.  Our control system was found to predict
the pilot’s control actions very well , with RMS
error less than 0.1%.  Figure 3 ill ustrates the close
correlation between the predicted and actual
control values.

4. Conclusion and future work

This paper describes the first stages in the
development of an autonomous airplane using
human skill modeling.  At the time of this writing,

we have shown that we can generate a model
which accurately predicts the next pilot command
from past commands and current and past sensor
data.  In the near future, we expect to test the
model by allowing the computer to fly the airplane
in straight-and-level flight.  From that point we
will work to develop additional models of turning,
landing, and takeoff behaviors.
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