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Abstract

Recently, substantial progress has been made towards design-
ing, building and test-flying remotely piloted Micro Air Vehicles
(MAVSs). This progress in overcoming the aerodynamic obstacles
to flight at very small scales has, unfortunately, not been matched
by similar progressin autonomous MAV flight. Thus, we propose
a robust, vision-based horizon detection algorithm as the first
step towards autonomous MAVS. In this paper, we first motivate
the use of computer vision for the horizon detection task by exam-
ining the flight of birds (biological MAVs) and considering other
practical factors. We then describe our vision-based horizon de-
tection algorithm, which has been demonstrated at 30Hz with
over 99.9% correct horizon identification, over terrain that in-
cludesroads, buildingslarge and small, meadows, wooded areas,
and a lake. We conclude with some sample horizon detection re-
sults and preview a companion paper [4], where the work dis-
cussed here forms the core of a complete autonomous flight
stability system.

1. Introduction

Ever since humankind’s first powered flight, research efforts
have continually pushed the envelope to create flying machines
that arefaster and/or larger than ever before. Now, however, there
is an effort to design aircraft at the other, largely unexplored end
of the spectrum, where the desire for portable, low-altitude aerial
surveillance has driven the development and testing of aircraft
that are as small and slow asthelaws of aerodynamicswill permit
— in other words, on the scale and in the operationa range of
small birds. Vehicles in this class of small-scale aircraft are
known as Micro Air Vehicles or MAVS.

Equipped with small video cameras and transmitters, MAVs
have great potential for surveillance and monitoring tasksin areas
either too remote or too dangerous to send human scouts. Opera-
tional MAVswill enable anumber of important missions, includ-
ing  chemical/radiation  spill monitoring,  forest-fire
reconnaissance, visual monitoring of volcanic activity, surveys of
natural disaster areas, and even inexpensive traffic and accident
monitoring. Additional on-board sensors can further augment
MAYV mission profiles to include for example airborne chemical
analysis.

In the military, one of the primary roles for MAVs will be as
small-unit battlefield surveillance agents, where MAV's can act as

an extended set of eyes in the sky for military units in the field.
Thisuse of MAV technology isintended to reduce the risk to mil-
itary personnel and has, perhaps, taken on increased importance
in light of the U.S.’s new war on terrorism, where special opera-
tions forces will play a crucia role. Virtually undetectable from
the ground, MAV's could penetrate potentia terrorist camps and
other targets prior to any action against thosetargets, significantly
raising the chance for overall mission success.

Researchers in the Aerospace Engineering Department at the
University of Florida have established a long track record in de-
signing, building and test-flying (remotely human-piloted) practi-
cal MAVs[6-8,13,14]. For example, Figure 1(a) shows one of our
latest MAV designs, while Figure 1(b) shows an earlier model in
flight; the inset depicts the on-board camera’s view. Figures 1(a)
and (b) are both examples of flexible wing micro air vehicles that
have distinct advantages over conventional lifting body designs
[8,13,14].

While much progress has been made in the design of ever
smaller MAVs by researchers at UF and others in the past five
years, significantly less progress has been made towards equip-
ping these MAV s with autonomous capabilities that could signif-
icantly enhance the utility of MAVsfor awide array of missions.
In order for MAVsto be usable in real-world deployments, how-
ever, MAVs must be able to execute a Slate of behaviors with a
large degree of autonomy that does not, as of yet, exist.

The first step in achieving such MAV autonomy is basic sta-
bility and control, although this goal presents some difficult chal-
lenges. The low moments of inertia of MAVs make them
vulnerable to rapid angular accel erations, a problem further com-
plicated by the fact that aerodynamic damping of angular rates de-
creases with areduction in wingspan. Another potential source of
instability for MAVs is the relative magnitudes of wind gusts,
which are much higher at the MAV scale than for larger aircraft.
Infact, wind gusts can typically be equal to or greater than thefor-
ward airspeed of the MAV itself. Thus, an average wind gust can
immediately affect a dramatic change in the flight path of these
vehicles.

To deal with these challenges, we propose a vision-based ho-
rizon detection algorithm as the first step of a complete MAV
flight stability and control system. A companion paper [4] extends
this basic algorithm by addressing real-time control issues, and
discussesour initial implementation of acomplete control system,



Fig. 1: (a) recent MAV design and (b) another MAV in flight, and its view through an on-board camera.

with self-stabilized MAYV flight results. In this paper, wefirst mo-
tivate the use of computer vision for the horizon detection task by
examining the flight of birds (biological MAV's) and considering
other practical factors. We then, describe our vision-based hori-
zon detection algorithm. Finally, we show sample results and of-
fer some concluding thoughts.

2. Background and motivation
2.1 Biological inspiration

Whileit is certainly true that man-made or mechanical MAVs
do not, as of yet, exhibit autonomy, their biological counterparts
— namely, birds— do. For aerospace and robotic researchers, the
extraordinary capabilities of birds are a source of wonderment
and frustration at the same time — wonderment, because birds ex-
hibit a remarkably complex and rich set of behaviors, frustration,
because the duplication of those behaviors in man-made systems
has thus far been elusive. Given this sad state of affairs, it is nat-
ural for engineers and researchers to want to learn from and emu-
late these biological systems. Here, we do not intend to seek
structural eguivalence between artificial MAV systems and bio-
logical neural systems; rather, we seek to learn important func-
tional lessons from biology.

In studying the nervous system of birds, one basic observation
holds true for virtually all of the thousands of different bird spe-
cies: Birds rely heavily on sharp eyes and vision to guide almost
every aspect of their behavior [15]. Through evolution over time,
bird anatomy has adapted to streamline and lighten body weight
in order to be ableto fly. Thishas been achieved through the elim-
ination of some bones, the “ pneumatization” or hollowing of the
remaining ones, and even the total elimination of other unneces-
sary body partslike the urinary bladder [1]. Y et, when it comesto
their nervous system, and especially their eyes, similar reductions
in weight have not occurred.

Bird brains are proportionally much larger than those of liz-
ards and are comparable in size to those of rodents; yet, the most
striking feature of avian nervous systems arethe eyes[1]. Eyesin
birds tend to be large in relation to the size of their head; in fact,
for some birds, such as the European starling, eyes make up fully
15% of the mass of their head, compared to 1% for humans [12].

Not only is the relative size of avian eyes impressive, but so is
their color perception and sharpness of vision. Photoreceptor
(cone) densitiesin the foveae can be as high as 65,000 per square
millimeter in bird eyes, compared to 38,000 per square millimeter
for humans [15]. And some birds exhibit visual acuity three times
that of humans; for example, the American Kestrel can recognize
an insect two millimetersin length from a distance as far away as
18 meters[5]. Given the excellent sight of birds, asubstantial por-
tion of their brainsis devoted to processing visua stimuli.

Birds use their eyes in a number of different ways. During
flight, bird eyes assist in obstacle avoidance and flight stability.
Predatory birds also rely on their sight to precisely track, target
and capture prey. When migrating geese fly in a V-formation, it
is believed that they use their vision to stay together as a group
and to avoid flying into one another [2]. And while the mecha-
nism for long-distance migration of birds s still not fully under-
stood, various experiments that have been conducted suggest that
at | east some species of birds appear to usetheir vision to navigate
based on landmarks on the ground, the sun’s position in the sky
and even the arrangement of starsat night [10]. It is certainly true
that some bird species do rely on other sensing, such as smell,
hearing (e.g. echolocation) and inner-ear balance as well; howev-
er, the relative importance of these senses varies between bird
species[15], and, as such, cannot be the unifying principle behind
complex bird behaviors, including flight, tracking and navigation.

2.2 Other consider ations

Biologica systems, whileforceful evidence of the importance
of vision in flight, do not, however, in and of themselves warrant
a computer-vision based approach to MAV autonomy. Other
equally important factors guide this decision as well. Perhaps
most critical, the technologies used in rate and acceleration sen-
sors on larger aircraft are not currently available at the MAV
scale. It has proven very difficult, if not impossible, to scale these
technologies down to meet the very low payload requirements of
MAVs. While anumber of sensor technologies do currently exist
insmall enough packagesto beusedin MAV systems, these small
sensors have sacrificed accuracy for reduced size and weight.
Take, for example, MEMs (Micro Electro-Mechanical Systems)



rate gyros and accel erometers. MEMss piezoelectric gyros, while
only weighing approximately one gram, have drift rates on the or-
der of 100° per minute and are highly sensitive to changes in
temperature. While elaborate temperature calibration procedures
can improvetheir accuracy somewhat, their useininertial naviga-
tion is problematic at best.

Evenif sufficient rate and accel eration sensors did exist, how-
ever, their use on MAVs may still not be the best allocation of
payload capacity. For many potential MAV missions, vision may
be the only practical sensor than can achieve required and/or de-
sirable autonomous behaviors. Furthermore, given that surveil-
lance has been identified as one their primary missions, MAVs
must necessarily be equipped with on-board imaging sensors,
such as cameras or infrared arrays. Thus, computer-vision tech-
niques exploit already present sensors, rich in information con-
tent, to significantly extend the capabilities of MAV's, without
increasing the MAV’ s required payload.

2.3 Horizon detection for stability

So what vision-based information do we hope to extract from
the on-board camera? At a minimum, a measurement of the
MAV’sangular orientation is required for basic stability and con-
trol. While for larger aircraft this is typically estimated through
theintegration of the aircraft’ sangular rates or accelerations, avi-
sion-based system can directly measure the aircraft’s orientation
with respect to the ground. The two degrees of freedom critical for
stability — the bank angle (@) and the pitch angle ( ) — can be
derived from a line corresponding to the horizon as seen from a
forward facing camera on the aircraft. The bank angleis given by
the inverse tangent of the lope m of the horizon line,

@ = tan~!(m). 1)

While the pitch angle cannot be exactly calculated from an arbi-
trary horizon line, it will be closely proportional to the percentage
of theimage above or below that line. In our devel opment below,
the percentage above or below the horizon line will be denoted by
the symbols ¢, and g, , respectively, where of course,

o, =1-0,. 2

In arectangular image, the relationship between g, and 6 isnon-
linear, may be lightly coupled with @, and can vary asafunction
of camera distortions. While a calibration table can be used to
mode! the exact relationship between g, and 6, our flight tests
have shown adequate performance modeling that relationship as
linear.

3. Vision-guided horizon detection
3.1 Challenges

Thus, at the heart of our MAV stability and control system is
avision-based horizon detection algorithm, that findstheline (i.e.
the horizon) with the highest likelihood of separating ground from
SKy inagivenimage. ldentifying thisline between ground and sky
is a very straightforward task for humans; autonomous horizon
detection, on the other hand presents significant challenges.
Viewed from a statistical perspective, color and texture distribu-
tions of the ground and sky can vary dramatically based on the
time of day, the current weather and the specific terrain over
whichthe MAV isflying at any given moment. Therefore, any ro-

bust approach to the problem should not make too many or too re-
strictive a priori assumptions about the appearance of either the
sky or theground. The sky isn’t alwaysblue; it can vary in appear-
ance from light blue, to textured patterns of blue, yellow and
white (from clouds), to dark gray and anything in between.
Ground terrain can be even more variable in appearance. Roads,
buildings, meadows, forests, cars, rivers, lakes, sand and snow all
introduce substantial variationsin ground appearance, and, unlike
the sky, ground images can sharply differ from one video frame
to the next.

3.2 Initial attempt

Given theseredlities, it is difficult to envision arobust vision-
based horizon fitting algorithm that relies heavily on a priori sta-
tistical assumptions about the sky and ground. Rather, arobust al-
gorithm will look not at absolute appearance, but instead focus on
relative differences in appearance between the ground and the
sky. Our first attempt to capture this principlein an agorithm pro-
ceedsasfollows. Firgt, sharp differencesin appearance are detect-
ed along the vertical columns of the image array, and y -values
that maximally separate the aggregate distribution of pixelson ei-
ther side (above and below) are identified.! Ideally, the identified
(x,y) pixelsshould locate arough outline of the border between
sky and ground in theimage, and alinethat isfitted to those points
should identify the two degrees of freedom of the horizon line.
Whilethis approach provesto be relatively successful for uniform
ground terrain, the algorithm tends to break down in the presence
of significant large objects on the ground, such as buildings or
roads. Yet in MAV missions, man-made structures and vehicles
are precisely those thingsin which we are likely to be most inter-
ested. Consider, for example, Figure 2, which identifies points of
sharpest distinction in green, and the consequent (wrong) estimate
of the horizon. Modificationsto thisinitial algorithm, such as out-
lier rejection and other heuristic methods, do little to aleviate
these problems.

3.3 Robust algorithm

Given the result in Figure 2 (and other similar failures), it is
clear that a different approach is required. We build the develop-
ment of a second, much more robust algorithm on two basic as-
sumptions: (1) the horizon line will appear as approximately a
straight line in the image, something the initial algorithm fails to
do; and (2) the horizon line will separate the image into two re-
gions that have different appearance; in other words, sky pixels
will look more like other sky pixels and less like ground pixels,
and vice versa. The question now is how to transform these basic
assumptions into a workable algorithm.

The first assumption — namely, that the horizon line will ap-
pear asastraight line in theimage — reduces the space of all pos-
sible horizons to a two-dimensional search in line-parameter
space. For each possible line in that two-dimensional space, we
must be able to tell how well that particular line agrees with the
second assumption — namely that the correct horizon line will

1. This approach was originally inspired by the work in [11] on
cut/uncut crop-line detection for autonomous harvesting and
appears similar in nature to the preliminary autonomous fly-
ing work described in [9].



Fig. 2: An early attempt at horizon detection. Pixels marked in
green indicate the sharpest distinction in color values down
vertical columns; the yellow line indicates the consequent
incorrect horizon detection.

separate the image into two regions that have different appear-
ance. Thusour algorithm can be divided into two functional parts:
(1) for any given hypothesized horizon line, the definition of an
optimization criterion that measures agreement with the second
assumption, and (2) the means for conducting an efficient search
through all possible horizonsin two-dimensional parameter space
to maximize that optimization criterion. Below, we discuss each
of thesein turn.

3.4 Optimization criterion

So far, we have talked about the “appearance” of the sky and
ground in an image, but have not made explicit what exactly is
meant by that. For our purposes, we view color, as defined in
RGB space, as the most important measure of appearance. While
other measures, such as texture, may aso play an important role
in distinguishing sky from ground, real-time constraints force a
relatively simple representation of appearance.

For any given hypothesized horizon line, we label pixels
above the line as sky, and pixels below the line as ground. Let us
denote all hypothesized sky pixels as,

xi = [ g b 1041 m} ®)

1

where r; denotes the red channel value, g§ denotes the green
channel value and b7 denotes the blue channel value of the i th
sky pixel, and let us denote all hypothesized ground pixels as,

xg = [rlgglgbig},iﬂ{l,...,ng} , (4)

where 7§ denotes the red channel value, g& denotes the green
channel value and b$ denotes the blue channel value of the ith
ground pixel.

Now, given this pixel grouping, we want to quantify the as-
sumption that sky pixelswill look similar to other sky pixels, and
that ground pixels will look similar to other ground pixels. One
measure of thisisthe degree of variance exhibited by each distri-
bution. Therefore, we propose the following optimization criteri-
on:

1

TR

Ji ‘
g

®

based on the covariance matrices ¥, and Z, of thetwo pixel dis-
tributions,

nS
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denote the mean vectors for the sky and ground distributions re-
spectively (note the implicit assumption that the sky and ground
distributions are roughly Gaussian distributed). In equation (5),
| O] denotes the determinant, which measures the volume or
variance of each distribution; maximizing J, therefore minimiz-
estheintra-class variance of the ground and sky distributions.

Assuming that the means of the actual sky and ground distri-
butions are distinct (a requirement for a detectable horizon, even
for people), the line that best separates the two regions should ex-
hibit the lowest variance from the mean. If the hypothesized hori-
zon line is incorrect, some ground pixels will be mistakenly
grouped with sky pixels and vice versa. The incorrectly grouped
pixels will lie farther from each mean, consequently increasing
the variance of the two distributions. Moreover, the incorrectly
grouped pixelswill skew each mean vector slightly, contributing
further to increased variance in the distributions.

For images with sufficient color information, the optimization
criterion J; works well. In practice, however, the video signal
from the MAV can easily lose color information! and become
nearly black and white. This causes the covariance matrices Z
and X o 10 become ill-conditioned or singular:

Z]=0,|Z,]=0. ©)

In other words, one or more of the eigenvalues,
Af A8, i0{1,2,3}, (20)

for each covariance matrix degenerates to zero, so that the deter-
minant, which is equivalent to the product of the eigenvalues, no
longer represents a useful measure of variance, and J; becomes
ill-defined. For such cases, the augmented optimization criterion
J, better captures the desired quality of the hypothesized horizon
line:

1. On-board cameras are required to be very small due to the
limited payload capacity of MAVs. As such, cameras used in
our flight testing are single-chip CMOS model s exhibiting
poor color characteristics. Moreover, color information can
occasionally belost through video transmission aswell, dueto
limited transmission range and/or outside electronic interfer-
ence.
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(11)

Note that in ./, , the determinant terms will dominate as long as
enough color information is available; however, when such color
information is not present, the largest elgenval ues of each covari-
ance matrix will become controlling instead.

3.5 Horizon detection

Giventhe J, optimization criterionin equation (11), whichal-
lows usto evaluate any given hypothesized horizon line, we must
now find that horizon line which maximizes J, . Aswe have stat-
ed previoudly, this boils down to asearch in two-dimensional line
parameter space.

Let usfirst define our search space of horizon lines more pre-
cisely. Two-dimensional lines can be parameterized in at least
two ways that are relevant to our application. The first is the fa-
miliar slope-intercept parameterization:

y=mx+b (12)

where m denotesthe slope of theline, and » denotesthe y -inter-
cept. Alternatively, we can parameterize aline using the bank an-
gle @ and pitch value g, previously defined. On the one hand,
the (@, o,) parameterization is more convenient for clearly
bounding the search space,

e0[-w2, 2], 0, 0[0%, 100%] , (13)

and for stability and control during flight; on the other hand, the
(m, b) parameterization is required for rectangular image pro-
cessing. Therefore, we have developed an efficient transforma-
tion between the two parameter spaces (as detailed in [3]); for the
remainder of the paper, however, we will refer exclusively to the
(@, 0,) parameterization.

Now, given sufficient computing resources, we could deter-
mine the horizon line by simply evaluating J, at the following
valuesof @ and g, :

(9.0,,) = ELLIT_;, 100}{55, 0<i<n ,0<js<n, (14)
and choosing the maximum value of J, . Aslong as n; and n,
aresufficiently large—that is, weareevaluating J, at sufficient-
ly fine resolution over @ and g, — this procedure will generate
a good approximation of the actual horizon line. Note, however,
that the required »| x n, evaluations of J, may be prohibitively
expensive at full video resolution, especialy if wewish to run our
algorithm at 30 Hz. Gradient-based optimization techniques also
do not offer aviable alternative, since (1) the gradient of ./, over
(@, g,) isnot expressible in closed form, and (2) gradient-based
optimization techniques are guaranteed to converge only to local
maxima.

Wetherefore adopt the following two-step approach. First, we
evaluate J, on coarse, down-sampled images (X; x Y; ) with
n, = n,<40 [see equation (14)]. Second, we fine-tune this
coarse estimate through a bisection-like search about the initial
guess on a higher resolution image (XX Yy, X;«Xp,
Y; « Yy ). Exact valuesfor n,, n,, (X}, ¥;) and (X, Y5) de-
pend on the available processing power of the current system;
samplevalues are given in Section 4 below. Further details on the
search part of the algorithm may be found in [3].

The reader might be wondering at this stage whether a full
search of the line-parameter space (even at coarse resolution) is
really required once flying, since the horizon at the current time
step should be very close to the horizon at the previous time step;
perhaps speed improvements could be made by limiting this ini-
tial search. There is, however, at least one very important reason
for not limiting the initial search — namely robustness to single
frame errorsin horizon estimation. Assume, for example, that the
agorithm makes an error in the horizon estimate at time ¢ ; then,
attime ¢+ 1, alimited search could permanently lock usinto the
initial incorrect horizon estimate, with potentially catastrophic re-
sults. A full, coarse search of line parameter space, on the other
hand, guards against cascading failures dueto single-frameerrors.

3.6 Summary

Here, we summarize the horizon-detection algorithm. Given

animageat X, x Y, resolution:

1. Down-sample the image to X, xY,, where X, «X,,
Y, «Yy.

2. Evaluate J, on the down-sampled image for line parameters
(9, cb’].) , where,

(@0, = F-T 1004 o<isn 0sjsn (19

3. Select (¢H 0,1) such that,

) i,/ . (16)

> ,
0=¢lo,=g,0 2‘q)= ©0,=0p;

4. Use bisection search on the high-resolution image to fine-tune
vaueof (¢d o0 .

For space reasons, our presentation thus far has omitted some
computationa efficiency details, that allow the algorithm to be
run at full frame rate (30 Hz). For example, as we perform the
search in line-parameter space, we do not have to recompute J,
from scratch for every new set of values (@, g,) . The statistics of
the distributions on each side of the hypothesized horizon line
change only incrementally. Computations can likewise be stream-
lined to be incremental for each new J, evaluation when com-
bined with on-line computations of u, Hg o and X, . These
and other algorithmic optimizations can be found in [3].

4., Results

Figure 3 illustrates our current experimental setup. The video
signal fromthe MAV istransmitted from the plane through an an-
tennato a ground-based computer, where all vision processing is
performed. Normally, the planeis controlled during flight by are-
mote human pilot through a standard radio link. The goal of this
work, is of course, to automate flight control and stability of
MAVs.

Figure 4 illustrates several examples of our current algorithm
at work. Additional examples and videos can be found at http://
mil.ufl.edu/~nechyba/mav. In each image, the yellow line indi-
cates the algorithm’ s estimated location of the horizon. Note that
the images in Figure 4(a) and Figure 2 are identical; thus, where
theinitial algorithm failed, the newer algorithm succeeds. Figure
4(b) plots the optimization criterion J, for the image in Figure
4(a) as afunction of the bank angle ¢ and pitch percentage gy, .
Notethe definitive peak in J, at the appropriate horizon estimate.
Figure 4(c) plots the distribution of pixels on each side of the es-
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Fig. 4: (a) Horizon detection example; (b) optimization function in line-parameter space for image (a); (c) Distribution of sky (blue
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Fig. 3: Experimental setup.

timated horizon; blue crosses correspond to sky pixels in RGB
color space, while green circles correspond to ground pixels in
RGB space. In Figure 4(d) we show that the current algorithm
correctly identifies the horizon, despite the fact that in thisimage,
the uneven horizon violates the straight-line assumption implicit
inour current approach. In Figure 4(e) we show that our algorithm
is very robust to video interference or noise. Thisis so, despite
drastic differences in color distributions, as depicted in Figure
4(c) and 4(f), between images 4(a) and 4(d), respectively.

Our horizon-detection a gorithm has been demonstrated to run
at 30 Hz on a 900 MHz x86 processor with a down-sampled im-
age of X; x Y, = 80x60 resolution, a search resolution of
n = 36, and afinal image of X}, x ¥,; = 320 x 240 resolution.
If such computing power is not available, we have shown only
dightly reduced performance at values as low as
X, xY, =40%x30,n = 12 and X;; x ¥; = 160 x 120 .

5. Conclusions

At different times of the day, and under both fair and cloudy
conditions, we have gathered hours of video on-board our MAV,
flying under manua control over terrain that includes roads,
buildings large and small, meadows, wooded areas, and a lake.
For these data, our horizon-detection agorithm correctly identi-
fiesthe horizon in over 99.9% of cases. Thishorizon-detection al-
gorithm lies at the core of aflight-stability system for MAVsthat
we describe in acompanion paper [4], wherewe addressreal-time
control issues, including extreme attitude detection (i.e. no hori-
zon in the image), confidence measures in the detected horizon
estimate, filtering of horizon estimates, and actual self-stabilized
flight data.

Horizon detection and flight stability are, of course, only the
first step in full vision-based autonomy of Micro Air Vehicles.
Weare currently exploring additional vision processing of the on-
board video to perform detection and recognition of targets of in-
terest on the ground, vision-based navigation through landmark
detection, and tracking of other MAVS, as a precursor to MAV
formation flying (i.e. swarming). We also believe that in-flight

horizon detection and tracking may well alow partia system
identification of notoriously difficult-to-characterize micro air ve-
hicles.
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