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Abstract

Modeling dynamic human control strategy, or human skill, in
response to real-time sensing is becoming an increasingly popu-
lar paradigm in many research areas. These models are learned
from experimental data, and as such can be characterized despite
the lack of a good physical model. Unfortunately, learned models
presently offer few, if any, guarantees in terms of model fidelity to
the source data. As such, we propose an independent, post-train-
ing model validation procedure based on Hidden Markov Models
(HMMs). The proposed method generates a stochastic similarity
measure comparing system trajectories for the source process
and the learned models. Using this method, we are able to verify
model fidelity. We demonstrate the proposed method in the vali-
dation of neural-network models for real-time human driving
skill.

1. Introduction

Models of human skill, or human control strategy, which ac-
curately emulate dynamic human behavior, have far reaching po-
tential in areas ranging from robotics to virtual reality to the
intelligent vehicle highway project. Significant challenges arise
in the modeling of human skill, however. Defying analytic repre-
sentation, little if anything is known about the structure, order or
granularity of an individual’s human controller. Human control
strategy is both dynamic as well as stochastic in nature. In addi-
tion, the complex mapping from sensory inputs to control action
outputs inherent in human control strategy can be highly nonlin-
ear for given tasks. Therefore, developing an accurate and useful
model for this type of dynamic phenomenon is frustrated by a
poor understanding of the underlying basis for that phenomenon.
Consequently, modeling by observation, rather than physical der-
ivation, is becoming an increasingly popular paradigm for charac-
terizing a wide range of complex processes, including human
control strategy. This type of modeling is said to constitute learn-
ing, since the model is not derived froma priori laws of nature,
but rather from observed instances of experimental data, known
collectively as the training set.

The main strength of modeling by learning is that no explicit
physical model is required; this also represents its biggest weak-
ness, however. On the one hand, we are not restricted by the lim-
itations of current scientific knowledge, and are able to model
processes for which we have not yet developed adequate under-
standing. On the other hand, the lack of scientific justification de-
tracts from the confidence that we can show in these learned
models. This is especially true when the unmodeled process is (1)
dynamic and/or (2) stochastic in nature, as is the case for human
control strategy. For a dynamic process, model errors can feed
back on themselves to produce trajectories which are not charac-

teristic of the source process or are even potentially unstable. For
a stochastic process, a static error criterion, based on the differ-
ence between the training data and predicted model outputs may
be inadequate and inappropriate to gauge the fidelity of a learned
model to the source process. Yet, most learning approaches today
utilize some static error measure as a test of convergence for the
learning algorithm. While this measure might be useful during
training, it offers few, if any, guarantees about the dynamic be-
havior of the resulting learned model.

To counter these problems, we propose a post-training model-
validation procedure, which characterizes the totality of the sys-
tem trajectories generated by the learned model. Similar to meth-
ods developed in speech recognition [10], gesture recognition
[11], and action learning [12], our approach centers around Hid-
den Markov Models (HMMs) as the primary tool for analyzing
the multi-dimensional control trajectories generated by the human
control strategy as well as the corresponding learned model. First,
the source trajectories are characterized by training a validating
HMM. Second, this HMM is cross-evaluated with the model-gen-
erated trajectories to arrive at a similarity measure between the
demonstrated human control strategy and the learned model.

Although the proposed method generalizes to any learning
paradigm and to the modeling of any dynamic process, we focus
our attention in this paper on the learning of human control strat-
egy through artificial neural networks. We first motivate the need
for this kind of validation technique in observation-based model-
ing of unknown dynamic, stochastic processes. Second, we de-
scribe the proposed HMM-based validation method. Third, we
discuss our approach for learning human control strategy models
in the context of a driving simulator. Finally, we report results in
validating the learned control strategy models.

2. Dynamic, stochastic model validation

2.1 Need for model validation

For most learning approaches, the modeling of an unknown
process begins with the collection of experimental training data.
This training data generally consists of static input/output vectors,
where the inputs represent sensory data and the state of the sys-
tem, and the outputs represent some desired control action. For
dynamic systems where the state is not available or the order of
the system is unknown, as in human control strategy modeling,
the inputs are actually a time history of present and past sensory
data as well as a time history of previous outputs. The learning
process subsequently attempts to fit that training data to some
general, adjustable model structure. Typically, the criterion for
evaluating the quality of the model-in-training is some error mea-
sure, which is based on the difference between the training set
outputs and the predicted model outputs. The root-mean-squared



(RMS) error is one such measure commonly used. While this stat-
ic performance criterion can serve as a valuable gauge to evaluate
model convergence during learning, it is significantly less instruc-
tive in how well the model matches the source process when ac-
tually employed in a dynamic feedback loop. That is, there are no
guarantees, theoretical or otherwise, that a given RMS error over
the training set will result in model trajectories similar to the
source process. Even unstable trajectories can result.

For a simple illustration of this problem, consider the follow-
ing example. Suppose that we wish to learn a dynamic process
represented by the following simple difference equation,

(Eq. 1)

where ,  represent the output and input of the system,
respectively, at time step . The following input/output training
data is provided,

Note that (Eq. 1) is asymptotically stable. Now, suppose, for ex-
ample, that we train simple neural networks to learn three differ-
ent approximations of the system in (Eq. 1):

#1: (Eq. 2)

#2: (Eq. 3)

#3: (Eq. 4)

The three models all have the same RMS error for the training
set in Table 1. Nevertheless, the dynamic trajectories for the three
models differ significantly. Consider the input,

(Eq. 5)

The resulting output for the system as well as the three models is
shown in Figure 1. Model #2 approximates the system in (Eq. 1)
well; model #3 remains stable, but approximates the system with
significantly poorer accuracy; finally, model #1 diverges into an
unstable trajectory.

The difference in the three models is the distribution of the er-
ror over the training set. Thus, a static error measure, such as RMS
error, does not provide sufficiently satisfactory model validation
for a dynamic process. Furthermore, for stochastic systems, one
cannot expect equivalent trajectories for the process and the
learned model, given the same initial conditions. Thus, we require
a procedure, which examines the totality of the trajectories gener-

Table 1: Input-output training data

Input Output

-0.1 0.1 0.4 0.349

0.1 0.1 0.5 0.599

-0.3 0.2 0.3 0.123

0.3 0.2 0.4 0.673

0.2 0.0 0.5 0.650

0.0 0.2 0.3 0.348
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Fig. 1: The three models result in dramatically different (even
unstable) trajectories.

system #2≈

ated by the learned model and compares those to the trajectories
of the unknown process. To this end, we are proposing the follow-
ing HMM-based model-validation procedure.

2.2 HMM-based model validation

Rich in mathematical structure, HMMs are powerful paramet-
ric models which have been applied extensively in the area of sto-
chastic signal processing. As such, HMMs can provide the proper
framework for the validation analysis of dynamic, stochastic pro-
cesses, such as those exhibited in human control strategy. In
speech recognition, where HMMs have found their widest appli-
cation, one-dimensional audio signals are analyzed as speech pat-
terns [4][10]. Similarly, the multi-dimensional dynamic system
trajectories in human control strategy can be analyzed as skill pat-
terns using HMMs.

A Hidden Markov Model consists of a set ofn states, intercon-
nected through probabilistic transitions; each of these states has
some output probability distribution associated with it. Although
algorithms exist for HMMs with both discrete and continuous
output probability distributions, and although many applications
for HMMs deal with real-valued signals, discrete HMMs are
overwhelmingly preferred to continuous HMMs in practice, due
to their relative computational simplicity and lesser sensitivity to
initial random parameter settings. Therefore, we choose to work
exclusively with discrete output HMMs. Figure 2 below shows an
example of a 5-state HMM, where each state emits one of 16 dis-
crete symbols, based on some probability distribution.

Thus, a discrete HMM is completely defined by the following
triplet: , where A represents the probabilistic

 state transition matrix,B represents the  output prob-
ability matrix withl discrete output symbols, and  represents the
n-length initial state probability distribution vector.

Consider, for the moment, a given system trajectory, be it from
the source process (i.e. the human), or the learned model. This
system trajectory defines a multi-dimensional trajectory of real-
valued signals, including the state variables and control action
outputs. In order to be useful for HMM analysis, this multi-di-
mensional flow of information must be converted to a sequence
of discrete observation symbols [11] as shown in Figure 3. First,
each dimension of the trajectory is normalized and converted to a
sequence of vectors, consisting of short-time FFT power spectral
coefficients. We use the Fast Fourier Transform (FFT) as it im-

λ A B π, ,{ }=
n n× l n×

π



Fig. 3: To analyze human control strategy, the multi-
dimensional control signal must be converted into a suitable
form for HMM-based analysis. The above diagram illustrates
the steps from real-valued signal to HMM symbol.

Fig. 2: A 5-state Hidden Markov Model (HMM), with 16
observable symbols in each state.

parts important dynamic information in characterizing the hu-
man’s control strategy, and spectral conversion has been
successfully used in other HMM-based applications. The short-
time windows (k time-steps long) are overlapped by 50% and fil-
tered through a Hamming window, so as to minimize the loss of
information in the signal. For each short-time window, the indi-
vidual spectral vectors are then joined into one long vector. This
sequence of vectors is passed through a vector quantizer, which
iteratively generates codebooks of size , ,
stopping at an appropriate level of discretization [5] given the
amount of available data and complexity of the trajectories. The
original multi-dimensional, real-valued signal of lengtht has now
been converted to a sequence of discrete symbols of length

.
Now, if this sequence of discrete symbols is generated from

the source process (in our case, the human), it can be used to train
ann-state HMM to maximize  (i.e. the probability of the
model, given the observation) using the well-known Baum-
Welch Expectation-Maximization (EM) algorithm [1][10]. The
resulting HMM can then be employed as a benchmark by which
to judge the learned model of that individual’s control strategy, by
evaluating  (i.e. the probability of the observation, given
the model) for the learned models’ trajectories. Let,

(Eq. 6)

whereO = observation sequence,T = length ofO, and  = HMM.
 represents a probability measure normalized with re-

spect to the length of the observation sequence. Now, define the
similarity measure ,

, (Eq. 7)

where  = HMM trained on observation sequence  of length
,  = observation sequence of length , which we wish to

compare to  through . As shown in Figure 4 below, the
measure  stochastically compares the two observation sequenc-
es  and  through the trained HMM , and will generally
range from 0 to 1. Larger values indicate greater probabilistic
similarity, while smaller values (closer to zero) indicate dissimi-
larity.

If sensory or environmental inputs to the system outside the
control of the system itself (e.g. road characteristics for driving)
are part of the dynamic process, care must be taken that these in-
puts are similar for both the source data and the learned model
when a comparison is made. For example, in modeling human
driving, a sufficient equivalency criterion could be that the roads
in both cases exhibit similar characteristics, such as the frequency
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and sharpness of turns in the road. Alternatively, multiple HMMs
can be trained for a single individual in differing environmental
conditions.

3. Learning human control strategy

Below, we briefly review our general approach to abstracting
human control strategy into computational models. We then nar-
row in on driving as one particular human control strategy. We
describe our experimental driving simulator used to collect data
from human subjects and to test learned models of driving strate-
gy. Finally, we describe results for control strategy models from
two different individuals, Oliver and Stan, which we use in the
subsequent section to illustrate the model-validation procedure.

3.1 Cascade architecture

In learning human control strategy, we wish to approximate
the functional mapping between sensory inputs and control action
outputs which guide an individual’s actions. Human control strat-
egy is dynamic, stochastic, and often highly nonlinear in nature.
Little, if anything, is knowna priori about the underlying struc-
ture, order, or granularity of an individual’s internal controller.
Consequently, we require a flexible, nonlinear learning architec-
ture, capable of generating a wide spectrum of mappings from
smooth to discontinuous, linear to nonlinear. Cascade neural net-
works [2] with variable activation functions [6][7][9] offer such
flexibility.

Cascade neural networks are feed-forward neural networks. In
cascade learning, the structure of the network is adjusted as part
of the training process by adding hidden units one at a time to an
initially minimal network. Hidden units are added in a cascading
fashion, with a new hidden unit taking input from all previous hid-
den units. In addition, each of these hidden units can assume a
variable activation function, which is not restricted to simply the
sigmoidal nonlinearity. This flexibility in functional form leads to
efficiency in learning speed and good function approximation
properties [9]. Thus, we use cascade neural networks with vari-
able activation functions to learn models of human control strate-
gy [7][8].

3.2 Experimental set-up

Figure 5 below illustrates the graphic driving simulator, which
we used to model the control strategy of driving from human ex-

ample. In the interface, the user has full control over the steering
( ) of the car, as well as the brake
( ) and accelerator ( ) con-
trols. By moving the mouse in the horizontal direction, the user
turns the steering wheel back and forth. Through the three mouse
buttons, the user has independent control over the brake and steer-
ing. The left mouse button corresponds to pushing on the brake;
the right mouse button corresponds to pushing on the accelerator;
the middle mouse button corresponds to slowly easing off the cur-
rent pedal being pushed. The vehicle dynamics are given in [3][7],
and are simulated at 50Hz, where,

, (Eq. 8)

, (Eq. 9)

. (Eq. 10)

The road to be navigated is defined by a random sequence of vari-
able-length straight-line segments, and circular arcs of variable
radius and sweep angle [7].

3.3 Human control strategy models

Here, we report modeling results for two different individuals,
Oliver and Stan. The left sides of Figure 6 and Figure 7 show part
of the driving data collected from Oliver and Stan, respectively.
Note that the driving styles for the two individuals are quite dif-
ferent for the same road. Each person “drove” in the driving sim-
ulator for about 10 minutes, yielding approximately 30,000 data
points, 10,000 of which are randomly selected for training the cas-
cade network models.

The inputs to the cascade networks for each individual include
(1) current and previous state information , (2) previ-
ous command information , and a description of the road.
For the road description, we discretize the visible view of the road
ahead into 15 equivalently spaced, body-relative (x, y) coordi-
nates of the road median, and provide the sequence of coordinates
as input to the network. The outputs for the control strategy model
are, of course,  (i.e. the steering and accel-
eration command for the next time step).

Since Stan’s control strategy is relatively simple, his control
strategy model requires 30 hidden units and only the previous two
states as input. Oliver’s more complicated control strategy model,
on the other hand, requires 32 hidden units and relies on the pre-
vious ten states [7] to stay on the road. These input histories were
determined experimentally to achieve stable road following for
each control strategy model. The right sides of Figure 6 and Fig-
ure 7 show part of the model-generated command trajectories for
Oliver and Stan, respectively.

4. Validating human control strategy models

4.1 Implementation issues

In using the validation procedure, several implementation
choices are required. First, what HMM structure should be used
for the validating HMM ( )? Second, which dimensions of the
signal trajectory should be included in the signal-to-symbol con-
version? Third, what data is to be used to generate the vector
quantization codebook? Finally, to how many levels should we
quantize the spectral vectors?

0.2rad– δ 0.2rad< <
8000N– P 0N< < 0N P 4000N< <

θ̇ angular velocity of the car=

vξ lateral velocity of the car=

vη longitudinal velocity of the car=

vξ vη θ̇, ,{ }
δ P,{ }

δ k 1+( ) P k 1+( ),{ }

λ∗

Fig. 4: The source process trajectory trains an HMM. Both the
source process and the model output are then assigned
separate probabilities to arrive at the similarity measure.
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steering and acceleration commands, in the multi-dimensional
signal that we wish to characterize. The two commands capture
the demonstrated human control strategy. Third, for the results re-
ported below, we utilized a single vector quantization codebook,
which is generated from Oliver and Stan’s source data. This en-
sures that the results reported herein are not the consequence of
biased preprocessing. Finally, the number of levels to quantize is
obviously dependent on the amount of data available for training.

First, the human control strategy signals we wish to compare
are temporal signals. As such, we decide to use a five-state left-
to-right model (as shown in Figure 2) for the HMM structure.
Since this model only allows state transitions in one direction, we
split the overall sequence of symbols into multiple, shorter subse-
quences, which then train the Hidden Markov Model using the
Baum-Welch reestimation formulas for multiple observation se-
quences. Second, for the driving example, we include , theδ P,{ }

carcompasssteering wheelodometer

horizon

map

Fig. 5: The driving simulator gives the user a perspective preview of the road ahead. The user has independent controls of the
steering, brake, and accelerator (gas).
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Fig. 6: Oliver’s driving data. On the left, the source training
data; on the right, the model-generated data.

Fig. 7: Stan’s driving data. On the left, the source training data;
on the right, the model-generated data.
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That is, the number of quantized levels directly affects model size,
and therefore the number of nonzero parameters in the HMM. The
number of nonzero parameters should be much less than the
length of the observation sequence used in training. For our case,
this restricts us to 64 levels.

4.2 Validation results

Table 2 below summarizes the similarity measure  for some
different scenarios. The top row indicates whose data is used to
train the validating HMM. In Oliver’s case, the HMM is trained
on a sequence of 2900 observables, while in Stan’s case, the
HMM is trained on a sequence of 3710 observables.

5. Discussion

The similarity results in Table 2 confirm two qualitative as-
sessments of the data in Figure 6 and Figure 7. First, we note that
the two driving styles are objectively quite different. This fact is
clearly reflected in the low similarity measures between one indi-
vidual’s HMM and the other individual’s source or model-gener-
ated data. Second, Stan’s model is a better reflection of his driving
style, than Oliver’s model is of his, as reflected in the two respec-
tive similarity measures, 0.911 and 0.487. This is indicative that
Oliver’s sharply discontinuous driving strategy is more difficult
to learn by a cascade network than Stan’s calmer approach. In-
deed, Oliver’s model generates significant oscillatory behavior,
of which Oliver himself is not guilty.

A low similarity measure can be indicative of some problem
in the model itself. In this case, perhaps too few or too many in-
puts are fed into the model. Or the inputs are not space sufficiently
in time. Or more hidden units are called for. In a sense learning
and validating a model are two tasks which feedback on each oth-
er and offer the potential for improvement. This is especially true
in the area of human control strategy modeling, since little is
known about the underlying structure of the human controller.
The proposed procedure can aid in the selection of the best model
architecture and most relevant input representation for a given hu-
man’s control strategy. For the input representation, both the time
scale and length of the time histories are variable. The best length
can reveal the approximate order of a given person’s control strat-
egy, while the best time scale can reveal a given person’s approx-
imate reaction time.

When modeling human control strategy, the similarity mea-
sure can also serve a purpose besides model validation. It can be
used to compare the control strategies of different individuals. For
our example, it is qualitatively apparent that the driving strategies
are quite different. Consequently, the similarity measure evalu-
ates to very small values across individuals.

Table 2: Similarity measure

 =Oliver  = Stan

Oliver 1.000 0.000

Oliver’s Model 0.487 0.001

Stan 0.052 1.000

Stan’s Model 0.022 0.911

σ

σ

λ∗ λ∗

6. Conclusion

Model validation is an important problem in the area of ma-
chine learning for dynamic systems, if learned models are to be
exploited for their full potential. We have described a stochastic
model validation scheme based on Hidden Markov Models. The
method introduces a similarity measure, by which we can verify
model fidelity to source process trajectories. Such a measure is es-
pecially relevant in the learning and modeling of human control
strategy, where little is known about the structure, order, or gran-
ularity of the underlying human controller. In fact, we have dem-
onstrated the viability of the proposed method in the validation of
human control strategy for the driving task, and have proposed
further avenues of research along this direction.
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