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Abstract

In this paper, we address the problem of transferring
human control strategies (HCS) from an expert model
to an apprentice model. The proposed algorithm al-
lows us to develop useful apprentice models that nev-
ertheless incorporate some of the robust aspects of the
ezpert HCS models. We first describe our experimen-
tal platform — a real-time graphic driving simulator -
for collecting and modeling human control strategies.
Then, we discuss an adaptive neural network learning
architecture for abstracting HCS models. Next, we de-
fine a hidden Markov model (HMM) based similarity
measure which allows us to compare different human
control strategies. This similarity measure is combined
subsequently with simultaneously perturbed stochastic
approzimation to develop our proposed transfer learn-
ing algorithm. In this algorithm, an expert HCS model
influences both the structure and the parametric repre-
sentation of the eventual apprentice HCS model. Fi-
nally we describe some experimental results of the pro-
posed algorithm.

1 Introduction

Transferring human control strategy (HCS) has poten-
tial application in a number of research areas ranging
from virtual reality and robotics to intelligent highway
systems. In previous work, transfer of human control
strategies from human experts to human apprentices
has been studied [1]. In this paper, we investigate the
transfer of human control strategies, not between hu-
man expert and human apprentice, but rather between
an expert HCS model and an apprentice HCS model.

In developing an algorithm to accomplish this trans-
fer of control strategies, we rely on a number of re-
lated results in human control strategy research. First,
we need to be able to successfully abstract a human
control strategy to a reliable computational model.
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Since human control strategies are dynamic, nonlin-
ear stochastic processes, however, developing good an-
alytic HCS models tends to be difficult. Therefore,
recent work in modeling HCS has focused on learn-
ing empirical models from real-time input-output hu-
man control data, through, for example, fuzzy logic
[2, 3, 4, 5], and neural network techniques [6].

Second, we need to be able to evaluate our resulting
models both with respect to how well they approxi-
mate the human control data, and how well they meet
certain performance criteria. Since the HCS models
are empirical, this is especially important, as few theo-
retical gnarantees exist about their stability or perfor-
mance. In [7], a stochastic similarity measure, based on
hidden Markov model (HMM) analysis, was developed
for validating the fidelity of HCS models to the source
training data, while in [8, 9], several performance cri-
teria were developed for evaluating the skill inherent
in learned HCS models.

This previous work forms the basis for our transfer
learning algorithm proposed herein. The algorithm re-
quires that we first collect control data from experts
and apprentices. From this data, we can then ab-
stract two types of HCS models, one for the expert
and one for the apprentice, using previously developed
techniques. Our main goal in this paper is to improve
the apprentice model’s performance while still retain-
ing important characteristics of the apprentice model.
To do this, we look towards the stochastic similarity
measure proposed in {7], which is capable of comparing
long, multi-dimensional, stochastic trajectories, and
has been applied previously towards validating mod-
els of human control strategy.

In our transfer learning algorithm, we propose to
raise the similarity between an expert HCS model and
an apprentice HCS model. Alternatively, we can think
of the expert model guiding the actions of the appren-
tice model. The overall algorithm consists of two steps.
In the first step, we let the expert model influence the
eventual structure of the HCS model. Once an appro-
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priate model structure has been chosen, we then tune
the parameters of the apprentice model through si-
multaneously perturbed stochastic approximation, an
optimization algorithm that requires no analytic for-
mulation, only two empirical measurements of a user-
defined objective function.

In this paper, we first describe our experimental
platform for collecting and modeling human control
data — a real-time graphic driving simulator. We then
describe an adaptive neural network learning architec-
ture for abstracting HCS models given human control
data. Next, we define the notion of similarity between
control trajectories, and develop our transfer learning
algorithm for expert and apprentice HCS models. Fi-
nally, we describe experimental results of the learning
algorithm in the driving domain.

2 HCS modeling

For this work, we collect expert and apprentice driv-
ing data through a real-time graphic simulator, whose
interface is shown in Figure 1. In the simulator, the

Figure 1: The driving simulator gives the user a perspec-
tive preview of the road ahead.

driving operator has independent control of the vehi-
cle’s steering as well as the brake and gas pedals. We
ask different individuals to navigate across a number
of different randomly generated roads, which consist of
a sequence of (1) straight-line segments, (2) left turns,
and (3) right turns. The map in Figure 1, for exam-
ple, illustrates one randomly generated 20km road for
which human (expert or apprentice) driving data was
recorded. Each straight-line segment as well as the ra-
dius of curvature for each turn range in length between
100m and 200m. Nominally, the road is divided into
two lanes, each of which has width w = 5m. The hu-

man operator’s view of the road ahead is limited to
100m, and the entire simulator is run at 50Hz.

Using the collected data, we choose the flexible cas-
cade neural network architecture with node-decoupled
extended Kalman filtering (NDEKF) [10] for modeling
the human driving data. We prefer this learning ar-
chitecture over others for a number of reasons. First,
no a priori model structure is assumed; the neural net-
work automatically adds hidden units one at a time to
an initially minimal network as the training requires.
Second, hidden unit activation functions are not con-
strained to be a particular type. Rather, for each new
hidden unit, the incremental learning algorithm can
select that functional form which maximally reduces
the residual error over the training data. Typical al-
ternatives to the standard sigmoidal function are sine,
cosine, and the Gaussian function. Finally, it has been
shown that node-decoupled extended Kalman filtering,
a quadratically convergent alternative to slower gradi-
ent descent training algorithms (such as backpropaga-
tion) fits well within the cascade learning framework
and converges to good local minima with less compu-
tation [10].

The flexible functional form which cascade learn-
ing allows is ideal for abstracting human (expert or
apprentice) control strategies, since we know very lit-
tle about the underlying structure of each individual’s
internal controller. By making as few a prior: assump-
tions as possible in modeling the human driving data,
we improve the likelihood that the learning algorithm
will converge to a good model of the human control
data.

In order for the learning algorithm to properly
model each individual’s human control strategy, the
model must be presented with those state and envi-
ronmental variables upon which the human operator
relies. Thus, the inputs to the cascade neural network
should include: (1) current and previous state infor-
mation {vg, vy, 0}, (2) previous output (command)
information {d, Py}, and (3) a description of the road
visible from the current car position. More precisely,
the network inputs are,

{ve(k —ns), -, ve(k — 1), v (),
Vﬂ(k"’ns)""7yn(k_1)7Vﬂ(k)> (1)

Ok — ng), -, 8(k — 1),0(k)}

{6(k ~nc),---,6(k — 1),6(k),

Ps(k = nc), -+, Ps(k — 1), Pr(k)} 2
{z(1),z(2), -+, z(n,),y(1),4(2), -+, y(nr)} 3)
where v¢ (k) is the lateral velocity of the car at time k,
vy(k) is the longitudinal velocity of the car at time k,

6(k) is the angular velocity of the car at time k, §(k) is
the steering command at time k, P¢(k) is the acceler-
ation command at time k,n; is the length of the state
histories and n. is the length of the previous command
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histories presented to the network as input. For the
road description, we partition the visible view of the
road ahead into n, equivalently spaced, body-relative
(z,y) coordinates of the road median, and provide that
sequence of coordinates as input to the network. Thus,
the total number of inputs to the network n; is given

by,

n; = 3ng + 2n, + 2n, (4)

The two outputs of the cascade network are {d(k +
1), Ps(k + 1)}. For the system as a whole, the cascade
neural network can be viewed as a feedback controller,
whose two outputs control the driving of the vehicle.

3 HCS similarity

In this section, we describe a similarity measure [7],
which has previously been applied towards validating
HCS models, and which we will use in a subsequent sec-
tion for our HCS model comparisons. This similarity
measure is based on hidden Markov models (HMMs),
which are trainable statistical models with two appeal-
ing features: (1) no a priori assumptions are made
about the statistical distribution of the data to be an-
alyzed, and (2) a degree of sequential structure can be
encoded by the hidden Markov models. As such, they
have previously been applied in a number of different
stochastic signal processing applications.

A discrete-output HMM is completely defined by
the following triplet,

A={4,B,n} )

where A is the probabilistic n, x ng state transition ma-
trix, B is the L x ng output probability matrix with L
discrete output symbols ! € {1,2,---,L}, and 7 is the
n-length initial state probability distribution vector for
the HMM.

Below, we define a stochastic similarity measure,
based on discrete-output HMMs. Assume that we wish
to compare observation sequences from two stochas-
tic processes I'; and I'y. Let O; = {05’“)}, k €
{1,2,---,n;},i € {1,2}, denote the set of n; obser-
vation sequences of discrete symbols generated by pro-
cess I';. Each observation sequence is of length Ti(k),
so that the total number of symbols in set O; is given
by,

T =Y 1®,ie{1,2). (6)
k=1

Also let A\; = {A;,B;,7;},j € {1,2}, denote a dis-
crete HMM locally optimized with the Baum-Welch
algorithm to maximize,

P()|0;) = ﬁP(Aj|o§k)),j € {1,2}, )
k=1

and let,

PO = T[] POP™) )
k=1
Py = P(O:A\)Y T i, € {1,2) (9)

denote the probability of the observation sequences O;
given the model );, normalized with respect to the
sequence lengths T;. .

Using definition (9), we now define the following
similarity measure between O; and O,:

A A Po1 Py

=4/ = 10
9(01,00) = || o (10)
In other words, we first use each set of observation
sequences to train a corresponding HMM; this allows
us to evaluate P;; and P;. We then cross-evaluate
each observation sequence on the other HMM to arrive
at P, and P»;. Finally we take the ratio of these

probabilities and take the square root.

For any two sets of observation sequences, the simi-
larity measure o will range between 0 and 1. For very
similar observation sequences, o will be close to one,
while for very dissimilar observation sequences, o will
be close to zero. Additional detailed discussion of the
similarity measure’s properties can be found in [7].

Finally, we note that in order to apply this similar-
ity measure towards comparing human control strate-
gies, we need to convert real-valued trajectories to
a sequence of discrete symbols. To achieve this, we
follow a two-step signal-to-symbol conversion process
First, we window the data into frames and filter the
data through spectral transforms such as the well-
known short-time Fourier transform. Then, the re-
sulting spectral coefficient vectors are vector-quantized
into discrete symbols. For further details on this pro-
cessing, please consult [7].

4 HCS transfer

In this section, we develop a learning algorithm for
transferring skill from an expert HCS model to an ap-
prentice HCS model. Rather than simply discard the
apprentice HCS model, we attempt to preserve im-
portant aspects of the apprentice model, while at the
same time improving the apprentice model’s perfor-
mance. In the proposed algorithm, the expert model
serves as the guide or teacher to the apprentice model,
and influences both the eventual structure and para-
metric representation of the apprentice model. As we
will demonstrate shortly, the similarity measure de-
fined in the previous section will play a crucial role in
this transfer learning algorithm.
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4.1 Structure learning

Recall that in cascade neural network learning, the
structure of the neural network is adjusted during
training, as hidden units are added one at a time until
satisfactory error convergence is reached. Suppose that
we train a HCS model from human control data pro-
vided by an expert using cascade learning. The final
trained expert model will then consist of a given struc-
ture, which, in cascade learning, is completely defined
by the number of hidden units in the final model.

Now, suppose that we have collected training data
from an apprentice — that is, from an individual less
skilled than the expert. What final structure should
his learned model assume? One answer is that we let
the model converge to the “best” structure as was the
case for the expert model. Since, we already have an
expert model at hand, however, we can let the expert
model inform the choice of structure for the apprentice
model.

Figure 2 illustrates our approach for structure learn-
ing in apprentice HCS models, as guided by an ex-
pert HCS model. We first train the expert HCS model
in the usual fashion. Then, we train the apprentice
HCS model, but impose an additional constraint dur-
ing learning ~ namely, that the final structure (i.e. the
number of hidden units) of the apprentice model and
the expert model be the same.

NDEKF

r Training l
[ ]
1Im Driving
7] Driving Simulato

Data

Teacher

Cascade Structure
Comparison

®
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n Data

Apprenticd

Cascade Model

L]
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Figure 2: Structure learning in apprentice HCS model.

4.2 Parameter learning

Even though we impose the same structure on the
expert and apprentice HCS models, they will clearly
converge to different parametric representations. The

expert model will be similar to the expert’s control
strategy, while the apprentice model will be similar
to the apprentice’s control strategy. We would now
like to tune the apprentice model so as to retain part
of the control strategy encoded within, while at the
same time improving the performance in the appren-
tice model. Once again we will use the expert model as
a guide in this learning, by examining the similarity (as
defined previously) between the expert and apprentice
models.

Let,

denote a vector consisting of all the weights in the
apprentice HCS model T'(w). Also let o(Oc,0p(w))
denote the HMM similarity between the apprentice
HCS model and expert HCS model. We would now
like to determine a weight vector w* which raises the
expert/apprentice similarity o(Oe,Op(w*)), while at
the same time retaining part of the apprentice control
strategy.

Determining a suitable w* is difficult in principle
because (1) we have no explicit gradient information

G(w) = 5-0(04, 0(v) (12)

(2) each experimental measurement of o(O,, O, (w))
requires a significant amount of computation. We
lack explicit gradient information, since we can
only evaluate the similarity measure empirically.
Hence, gradient-based optimization techniques, such
as steepest-descent and Newton-Raphson are not suit-
able. Furthermore, because each similarity evaluation
is potentially computationally expensive, genetic op-
timization, which can require many iterations to con-
verge, also does not offer a good alternative. Therefore
we turn to simultaneously perturbed stochastic approz-
imation (SPSA) to adjust w.

Stochastic approximation (SA) is a well known it-
erative algorithm for finding roots of equations in the
presence of noisy measurements. Simultaneously per-
turbed stochastic approximation (SPSA) [11] is a par-
ticular multivariate SA technique which requires as few
as two measurements per iteration and shows fast con-
vergence in practice. Hence, it is well suited for our
application. Denote wy as our estimate of w* at the
kth iteration of the SA algorithm, and let w; be de-
fined by the following recursive relationship:

We41 = Wi — akG‘k (13)

where Gy, is the simultaneously perturbed gradient ap-
proximation at the kth iteration,

) I ;. 0
Gy = EEG ~5;a(03,0p(w)) (14)

i=1
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I/Akwl
" -0 | 1/0kw, (15)
1/Akw"

Equation (14) averages ¢ stochastic two-point measure-
ments G}, for a better overall gradient approximation,
where,

" = (0, Op(wk + cr k) (16)
57 = 0(0c,Op(wi — cklAr) (17)
Dy = [Drw, Drw, - A’W’n]T (18)

where A is a vector of mutually independent, mean-
zero random variables (e.g. symmetric Bernoulli dis-
tributed), the sequence {A} is independent and iden-
tically distributed, and the {ax}, {cx} are positive
scalar sequences satisfying the following properties:

o =0, cx—0ask— oo, (19)
- 2

D_ak=00, ) () <o (20)

k=0 k=0

For our problem, we define the objective function to
be & = 1 — 0(0¢, Op(w)). The weight vector wy is of
course the weight representation in the initially stable
apprentice model. Finally, we note that while larger
values of ¢ in equation (14) will give more accurate ap-
proximations of the gradient, in practice, two measure-
ments (g = 1) per iteration is often sufficient. Figure
3 illustrates the overall parameter tuning algorithm.

5 Experiment

Here, we test the transfer learning algorithm on control
data collected from three individuals, Tom, Dick and
Harry. In previous work [8], we have observed that
Harry’s driving model performs better with respect to
certain important performance measures. Therefore,
we view Harry as the expert, and Dick and Tom as
the apprentices. Furthermore, in order to simplify the
problem somewhat, we keep the applied force constant
at Py = 300N. In other words, we ask each driver to
control the steering ¢ only.

For this experiment, we first train the expert model
on Harry’s control data. The final trained model con-
sists of two hidden units with n; = n, = 3, and
n, = 15; because we are keeping Py constant, the total
number of inputs for the cascade network model there-
fore is n; = 42. Keeping in mind that we want the final
structure of the apprentice models to be the same as
the expert model’s structure, we also train Dick’s and
Tom’s models to two hidden units each, with the same
number of inputs (n; = 42).

We now would like to improve the performance
of the apprentice models, while still retaining some

Apprentice model
parameters ( @y )

\

Stochastically perturbed
parameters ( ®, — € Ay)

\

Stochastically perturbed
parameters ( @, + CyA,)

Teacher cascade Perturbed cascade
network model

model ( I(®¢ )) (T(O, ¢ Ay))
L

T

HMM similarity
o(0 ,Op)

7—

Stochastic gradient
approximation (G k)

Perturbed cascade
network model

(T (@A)

.

HMM similarity
0(0( N OP")

/

Updated model
parameters( Wy,)

Figure 3: Stochastic transfer learning algorithm for HCS
models.

aspects of the apprentice control strategies. In
other words, we would like to improve the similarity
0(0, O,) defined in equation (10) between Harry’s ex-
pert model and each of the apprentice models using the
SPSA algorithm as discussed in the previous section.
In the SPSA algorithm, we empirically determine
the following values for the scaling sequences {ay},

{ex}:
ax = 0.00001/k2,
¢k = 0.001/k125

E>0 (1)
k>0 (22)

Furthermore, we set the number of measurements
per gradient estimation in equation (14) to ¢ = 1. Fi-
nally, we denote (O, OF) as the similarity o(O,, O,)
after iteration k of the learning algorithm; hence,
a(Oe,Og) denotes the similarity prior to any weight
adjustment in the apprentice models.

Figure 4 plots the similarity measure between Tom’s
and Dick’s apprentice models and Harry’s expert HCS
model, respectively, as a function of iteration k in
the transfer learning algorithm. We observe that for
Dick’s model, the similarity to Harry’s model improves
from 0(0,,0;) = 41.5% to o(0.,0) = 78.5%.
Although for Tom’s model the change is less dra-
matic, his model’s similarity nevertheless rises from
7(0e, 09) = 55.0% to 0(O,,0L%) = 72.2%. Thus, the
transfer learning algorithm improves the similarity of
Dick’s model by approximately 37% and Tom’s model
by about 17.2% over their respective initial models.
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HMM similarity measure %
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Figure 4: Similarity between Harry’s and Dick’s (solid)
and Harry’s and Tom’s (dashed) models during transfer
learning.

Since the similarity in control strategies improves,
we would expect that apprentice performance improves
as well. In order to test this, we examine model per-
formance as measured by the obstacle avoidance per-
formance criterion J defined previously in [8]. Let
Je denote the performance criterion value for Harry’s
expert model. Also, let Jg denote apprentice perfor-
mance before learning, and let J35 denote apprentice
performance after transfer learning. We note that the
performance criterion is defined so that smaller values
indicate better obstacle avoidance performance.

Table 1 lists these performance values for Dick and
Tom.

l T 1 Jp |
Harry | 0.51 | 0.51
Tom | 123|087
Dick | 1.37 | 1.13

Table 1: Obstacle avoidance performance measure

From Table 1, we note that Harry’s performance
does not change, of course, since we keep his model
fixed. The models for Dick and Tom do, however, im-
prove with respect to the obstacle avoidance perfor-
mance measure. The adjusted apprentice models can
be viewed as hybrid models, which combine the ap-
prentice control strategy with some of the improved
techniques of the expert model.

6 Conclusion
In this paper, we have proposed an iterative learning

algorithm, based on simultaneously perturbed stochas-
tic approximation (SPSA), for improving the similarity

between apprentice and expert models of human con-
trol strategy. The transfer algorithm consists of two
steps. In the first step, we ensure that the apprentice
model reaches the same overall structure as the expert
model. In the second step, we tune the parameters (i.e.
weights) in the apprentice model to improve its simi-
larity with the expert model. The resulting model will
preserve some aspects of the original apprentice model
while at the same time improving performance. The
proposed algorithm requires no analytic formulation,
only two experimental similarity measurements per it-
eration. In initial experiments, we have demonstrated
that apprentice performance improves with the help of
the expert model.
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