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Abstract13

Modeling human control strategy (HCS) is becoming an increasingly popular paradigm in a number of different research
areas, ranging from robotics and intelligent vehicle highway systems to expert training and virtual reality computer games.
Usually, HCS models are derived empirically, rather than analytically, from real-time human input–output data. While these
empirical models offer an effective means of transferring intelligent behaviors from humans to robots and other machines,
there is a great need to develop adequate performance criteria for these models. It is our goal in this paper to develop several
such criteria for the task of human driving. We first collect driving data from different individuals through a real-time graphic
driving simulator that we have developed, and identify each individual’s control strategy model through the flexible cascade
neural network learning architecture. We then define performance measures for evaluating two aspects of the resultant HCS
models. The first is based on event analysis, while the second is based on inherent analysis. Using the proposed performance
criteria, we demonstrate the procedure for evaluating the relative skill of different HCS models. Finally, we propose an iterative
algorithm for optimizing an initially stable HCS model with respect to independent, user-specified performance criteria, by
applying the simultaneously perturbed stochastic approximation (SPSA) algorithm. The methods proposed herein offer a
means for modeling and transferring HCS in response to real-time inputs, and improving the intelligent behaviors of artificial
machines. © 2002 Published by Elsevier Science B.V.
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1. Introduction30

HCS models, which accurately emulate dynamic31

human behavior, find application in a number of re-32

search areas ranging from robotics to the intelligent33

vehicle highway system. Because human control strat-34

egy (HCS) is a dynamic, nonlinear, stochastic pro-35

∗ Corresponding author.
E-mail address: nechyba@mil.ufl.edu (M.C. Nechyba).

cess, developing good analytic models of human ac-36

tions, however, tends to be quite difficult, if not im-37

possible. Therefore, recent work in modeling HCS38

has focused on learning empirical models, through,39

e.g., fuzzy logic [7,16], and neural network techniques40

[1,8,11]. See [2,4,6,8], for detailed surveys of the hu-41

man modeling literature. 42

Since most HCS models are empirical, few if any43

guarantees exist about their theoretical performance.44

In previous work, a stochastic similarity measure,45

1 0921-8890/02/$ – see front matter © 2002 Published by Elsevier Science B.V.
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which compares model-generated control trajectories46

to the original human training data, has been proposed47

for validating HCS models [9]. While this similarity48

measure can ensure that a given HCS model ade-49

quately captures the driving characteristics of the hu-50

man operator, it does not measure a particular model’s51

skill or performance. In other words, it does not (nor52

can it) tell us which model is better or worse. Thus,53

performance evaluation forms an integral part of HCS54

modeling research, without which it becomes impossi-55

ble to rank or prefer one HCS controller over another.56

Moreover, only when we have developed adequate57

performance criteria, can we hope to optimize the HCS58

models with respect to those performance criteria.59

In general, skill or performance can be defined60

through a number of task-dependent as well as61

task-independent criteria. Some of these criteria may62

conflict with one another, and which is most appro-63

priate for a given task depends in part on the specific64

goals of the task. Overall, there are two approaches65

for defining performance criteria: (1) event analysis66

and (2) inherent analysis.67

In event analysis, we examine performance within68

the context of a some event. Consider the task of hu-69

man driving, e.g., For this task we can define any70

number of performance criteria tied to specific events.71

In preliminary work [14], e.g., two such event-based72

criteria were defined, one based on the HCS model’s73

ability to avoid sudden obstacles, and the second based74

on the HCS model’s ability to negotiate tight turns in75

a safe and stable manner. Each of these performance76

measures tests the HCS model’s performance outside77

the range of its training data.78

In inherent analysis, we examine a given model’s79

behavior on a more global scale. Once again, consider80

the task of human driving. For a given HCS model, we81

might be interested in such measures as average speed,82

passenger comfort, driving smoothness, and fuel ef-83

ficiency. These measures are not based on any sin-84

gle event, but rather are aggregate measures of per-85

formance. In other words, they measure the inherent86

characteristics of a particular HCS model.87

Performance evaluation is, however, only one part88

of the solution for effectively applying models of HCS.89

When performing a specified task, a human will often90

commit occasional errors and deviate randomly from91

some nominal trajectory. Any empirical learning algo-92

rithm will necessarily incorporate those problems in93

the learned model, and will consequently be less than94

optimal. Furthermore, control requirements may dif-95

fer between humans and robots, where stringent power96

or force requirements often have to be met. A given97

individual’s performance level, therefore, may or may98

not be sufficient for a particular application. 99

Hence, in this paper, we not only consider the100

problem of performance evaluation, but the additional101

problem of performance optimization. We propose an102

iterative optimization algorithm, based on simultane-103

ously perturbed stochastic approximation (SPSA), for104

improving the performance of learned HCS models.105

This algorithm leaves the learned model’s structure106

in tact, but tunes the parameters of the HCS model in107

order to improve performance. It requires no analytic108

formulation of performance, only two experimental109

measurements of a user-defined performance crite-110

rion per iteration. The initial HCS model serves as a111

good starting point for the algorithm, since it already112

generates stable control commands. 113

In this paper, we first introduce the dynamic graphic114

driving simulator from which we collect human con-115

trol data and with which we investigate the model-116

ing and evaluation of human control strategies. We117

then show how we model a given individual’s driv-118

ing control strategies using the flexible cascade neural119

network learning architecture. Next, we develop and120

test performance criteria specifically related to the task121

of human driving, where we apply both event-based,122

as well as inherent analysis. We then propose the it-123

erative optimization algorithm for improving perfor-124

mance in the HCS models. Finally, we describe and125

discuss some experimental results of the optimization126

algorithm. 127

2. Experimental setup 128

HCS, as we define the term, encompasses a large set129

of human-controlled tasks. It is neither practical nor130

possible to investigate all of these tasks comprehen-131

sively. In this paper, we therefore look towards a pro-132

totypical control application the task of human driv-133

ing to collect, model and analyze control strategy data134

from different human subjects. 135

Within the driving domain, we have a choice be-136

tween simulated driving (i.e. driving through a sim-137

ulator) and real driving. For our purposes, the ideal138
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control task should embody several desirable quali-139

ties. First, during the execution of the control task, the140

human subject must not be injured or harmed in any141

way. Second, the human subject should have prior ex-142

periences that will help him complete the control task143

successfully. Third, the control task should pose a sig-144

nificant challenge to the human controller. Finally, the145

task should be complex enough that it allows for vari-146

ations in strategy across different individuals.147

Let us examine real driving in the context of these148

four criteria (safety, prior experience, control difficulty149

and control strategy variations). First, unless we ask150

individuals to drive very conservatively, it is difficult151

to guarantee the safety of our human subjects in real152

driving experiments. If we do ask them to drive con-153

servatively, however, the control task will not be very154

challenging; moreover, variations between individuals155

will be somewhat muted. Finally, with respect to prior156

experience, real driving measures up to the qualities157

we seek in our control task.158

Simulated driving, on the other hand, differs from159

real driving in a number of important respects. Most160

importantly, the human subject poses no threat to him-161

self or others while driving in the simulator, no mat-162

ter how recklessly he chooses to drive. Consequently,163

unlike in real driving, we can challenge individuals to164

drive near the edge of their abilities. This produces165

driving control strategies that are richer and more com-166

plex than their real counterparts. Because of this in-167

creased complexity, the demonstrated control strate-168

gies will potentially exhibit greater variations from169

one individual to the next. Finally, while human sub-170

jects may not be familiar with respect to a specific171

driving simulator prior to testing, they can, as experi-172

enced drivers, transition from real driving to simulated173

driving with relative ease and efficiency.174

With respect to our goal of modeling and analyzing175

human control strategies, simulated driving embod-176

ies more of the qualities which we desire. Thus, we177

choose simulated driving as our primary control task.178

We emphasize that in choosing simulated driving, we179

do not suggest that simulation is in general better than180

reality for experimentation. We only suggest that since181

the focus of this paper is the human control strate-182

gies themselves, a simulated task can be appropriate if183

it bears substantial resemblance to a comparable real184

task. We believe that our driving simulation environ-185

ment does meet that criterion.186

Thus, for this work, we collect human driving data187

from a real-time graphic simulator, whose interface188

is shown in Fig. 1. In the simulator, the human op-189

erator has independent control of the vehicle’s steer-190

ing as well as the brake and gas pedals. The simu-191

lated vehicle’s dynamics are given by the following192

second-order nonlinear model [5]: 193

θ̈ = lfPf δ + lfFξ f − lrFξ r

I
, (1) 194

ν̇ξ = Pf δ + Fξ f + Fξ r

m
− νηθ̇ − (sgnνξ )cdν

2
ξ , (2) 195

ν̇η = Pf + Pr − Fξ f δ

m
+ νξ θ̇ − (sgnνη)cdν

2
η, (3) 196[

ẋ

ẏ

]
=
[

cosθ sinθ
− sinθ cosθ

] [
νξ
νη

]
, (4)

197

where 198

θ̇ = angular velocity of the car, (5) 199

νξ = lateral velocity of the car, (6) 200

νη = longitudinal velocity of the car, (7) 201

202

Fξk =µFzk

(
α̃k − (sgnδ)α̃2

k

3
+ α̃3

k

27

)
203

×
√

1 − P 2
k

(µFzk)2
+ P 2

k

c2
k

, k ∈ {f, r}, (8)
204

α̃k = ckαk

µFzk
, k ∈ {f, r}, (9)

205

αf = front tire slip angle= δ − lf θ̇ + νξ

νη
, (10)

206

αr = rear tire slip angle= lr θ̇ − νξ

νη
, (11)

207

208

Fzf = mglr − (Pf + Pr)h

lf + lr
,

209

Fzr = mglf + (Pf + Pr)h

lf + lr
, (12)

210

ξ, η = body-relative lateral, longitudinal axis, (13) 211

cf , cr = 50 000, 64 000 N/rad, (14) 212
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Fig. 1. The driving simulator gives the user a perspective preview of the road ahead. The user has independent control of the steering,
break, and accelerator (gas).

cd = air resistance= 0.0005 m−1, (15)213

whereµ = coefficient of friction which is equal to 1.214215

Fjk = frictional forces, j ∈ {ξ, η}, k ∈ {f, r},216

(16)217

Pr =
{

0, Pf ≥ 0,
kbPf , Pf < 0

, kb = 0.34, (17)
218

219

m = 1500 kg, I = 2500 kg m−2,220

lf = 1.25 m, lr = 1.5 m, h = 0.5 m, (18)221

and the controls are given by 222

−8000 N≤ Pf ≤ 4000 N, (19) 223

−0.2 rad≤ δ ≤ 0.2 rad, (20) 224

wherePf is the longitudinal force on the front tires,225

andδ the steering angle. 226

We ask each individual to navigate across several227

randomly generated roads, which consist of a sequence228

of: (1) straight-line segments, (2) left turns, and (3)229

right turns. The map in Fig. 1, e.g., illustrates one ran-230

domly generated 20 km road for which human driving231



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

FY. Xu et al. / Robotics and Autonomous Systems 965 (2002) 1–18 5

data was recorded. Each straight-line segment as well232

as the radius of curvature for each turn range in length233

from 100 to 200 m. Nominally, the road is divided into234

two lanes, each of which has widthw = 5 m. The hu-235

man operator’s view of the road ahead is limited to236

100 m. Finally, the entire simulator is run at 50 Hz.237

3. HCS modeling238

In this paper, we choose the flexible cascade neural239

network architecture with node-decoupled extended240

Kalman filtering (NDEKF) [10] for modeling the hu-241

man driving data. We prefer this learning architecture242

over others for a number of reasons. First, no a priori243

model structure is assumed; the neural network au-244

tomatically adds hidden units to an initially minimal245

network as the training requires. Second, hidden unit246

activation functions are not constrained to be a partic-247

ular type. Rather, for each new hidden unit, the incre-248

mental learning algorithm can select that functional249

form which maximally reduces the residual error over250

the training data. Typical alternatives to the standard251

sigmoidal function are sine, cosine, and the Gaussian252

function. Finally, it has been shown that NDEKF, a253

quadratically convergent alternative to slower gradi-254

ent descent training algorithms (such as backpropa-255

gation) fits well within the cascade learning frame-256

work and converges to good local minima in less time257

[10].258

The flexible functional form which cascade learn-259

ing allows is ideal for abstracting human control260

strategies, since we know very little about the un-261

derlying structure of each individual’s internal con-262

troller. By making as few a priori assumptions as263

possible in modeling the human driving data, we264

improve the likelihood that the learning algorithm265

will converge to a good model of the human control266

data.267

In order for the learning algorithm to properly268

model each individual’s HCS, the model must be pre-269

sented with those state and environmental variables270

upon which the human operator relies. Thus, the in-271

puts to the cascade neural network should include:272

(1) current and previous state information{νξ , νη, θ̇},273

(2) previous output (command) information{δ, Pf },274

and (3) a description of the road visible from the275

current car position. More precisely, the network276

inputs are 277278

{νξ (k − ns), . . . , νξ (k − 1), νξ (k), νη(k − ns), . . . , 279

νη(k − 1), νη(k), θ̇ (k − ns), . . . , θ̇ (k − 1), θ̇ (k)}, 280

(21) 281282

{δ(k − nc), . . . , δ(k − 1), δ(k), Pf (k − nc), . . . , 283

Pf (k − 1), Pf (k)}, (22) 284
285

{x(1), x(2), . . . , x(nr), y(1), y(2), . . . , y(nr)}, 286

(23) 287

wherens is the length of the state histories andnc the 288

length of the previous command histories presented289

to the network as input. For the road description, we290

partition the visible view of the road ahead intonr 291

equivalently spaced, body-relative(x, y) coordinates 292

of the road median, and provide that sequence of coor-293

dinates as input to the network. Thus, the total number294

of inputs to the networkni is 295

ni = 3ns + 2nc + 2nr. (24) 296

The two outputs of the cascade network are{δ(k + 297

1), Pf (k+ 1)}. For the system as a whole, the cascade298

neural network can be viewed as a feedback controller,299

whose two outputs control the vehicle. 300

4. Performance criteria based on event analysis 301

Once we have abstracted models of driving control302

strategies from the human control data, we would like303

to evaluate the skill or performance exhibited by these304

models. The first set of performance measures that we305

develop is based on the observation that, in real driv-306

ing, obstacles such as rocks and debris can unexpect-307

edly obstruct a vehicle’s path and force drivers to react308

rapidly. In order to gauge how well our learned mod-309

els would deal with these types of events, we define310

two related performance criteria. The first measures311

a model’s ability to avoid obstacles, while the sec-312

ond measures a model’s capacity for negotiating tight313

turns. 314

4.1. Obstacle avoidance 315

Obstacle avoidance is one important measuring316

stick for gauging a model’s performance. Since our317
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HCS models receive only a description of the road318

ahead as input from the environment, we reformulate319

the task of obstacle avoidance asvirtual path follow-320

ing. Assume that an obstacle appears a distanceτ321

ahead of the driver’s current position. Furthermore,322

assume that this obstacle obstructs the width of the323

road (2w) and extends for a distanced along the324

road. Then, rather than follow the path of the actual325

road, we wish the HCS model to follow the virtual326

path illustrated in Fig. 2. This virtual path consists of:327

(1) two arcs with radius of curvatureγ , which offset328

the road median laterally by 2w, followed by (2) a329

straight-line segment of lengthd, and (3) another two330

arcs with radius of curvatureγ which return the road331

median to the original path.332

By analyzing the geometry of the virtual path, we333

can calculate the required radius of curvatureγ of the334

Fig. 2. Virtual path for obstacle avoidance.

virtual path segments as [14], 335

γ = τ2

8w
+ w

2
, (25) 336

and the corresponding sweep angleρ as, 337

ρ = sin−1
(
τ/2

γ

)
= sin−1

(
τ

τ2/4w + w

)
. (26)

338

As an example, consider an obstacle locatedτ = 60 m 339

ahead of the driver’s current position. For this ob-340

stacle distance andw = 5 m, γ evaluates to 92.5 m.341

This is less than the minimum radius of curvature342

(100 m) that we allow for the roads over which we343

collect our human control data. Hence, a particu-344

lar HCS model may deviate significantly from the345

center of the road during the obstacle avoidance346

maneuver. 347
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Below, we derive the important relationship be-348

tween the obstacle detection distanceτ and a model’s349

corresponding maximum lateral deviationψ . First,350

we takeN measurements ofψ for different values of351

τ , where we denote theith measurement as(τi, ψi).352

Next, we assume a polynomial relationship of the form353354

ψi = αpτ
p
i + αp−1τ

p−1
i + · · · + α1τi + α0 + ei355

= Γ T
i α + ei, (27)356

whereei is the additive measurement error. We can357

then write358

ψ1 = Γ T
1 α + e1,

ψ2 = Γ T
2 α + e2,

...

ψN = Γ T
Nα + eN ,

(28)

359

or, in matrix notation,360

Ψ = Γ α + e, (29)361

where Ψ = [ψ1, ψ2, . . . , ψN ]T is the observation362

vector,Γ = [Γ1, Γ2, . . . , ΓN ]T the regression matrix,363

ande = [e1, e2, . . . , eN ]T the error vector.364

Assuming white noise properties fore (E{ei} = 0365

andE{eiej } = σ 2
e δij for all i, j ), we can minimize the366

least-squares error criterion,367368

V (α̂) = 1

2
εTε = 1

2

N∑
k=1

ε2
k = 1

2
(Ψ − Γ α̂)T(Ψ − Γ α̂)

369

(30)370

with the optimal, unbiased estimateᾱ,371

ᾱ = (Γ TΓ )−1Γ TΨ (31)372

assuming that (Γ TΓ ) is invertible.373

In this relationship, as the obstacle detection dis-374

tance τ decreases, the maximum lateral offset in-375

creases [14]. Consequently, for a given model and376

initial velocity vinitial , there exists a valueτmin below377

which the maximum offset error will exceed the lane378

width w. We define the driving control for obstacle379

distances aboveτmin to be stable; likewise, we de-380

fine the driving control to be unstable for obstacle381

distances belowτmin.382

Now, we define the following obstacle avoidance383

performance criterionJ1:384

J1 = τmin

vinitial
, (32)

385

wherevinitial is the velocity of the vehicle when the386

obstacle is first detected. TheJ1 criterion measures to387

what extent a given HCS model can avoid an obsta-388

cle while still controlling the vehicle in a stable man-389

ner. The normalization byvinitial is required, because390

slower speeds increase the amount of time a driver has391

to react and therefore avoiding obstacles becomes that392

much easier. 393

4.2. Tight turning 394

Here we analyze performance by how well a partic-395

ular HCS model is able to navigate tight turns. First,396

we define a special road connection consisting of two397

straight-line segments connected directly (without a398

transition arc segment) at an angleζ . For small val- 399

ues ofζ , each HCS model will be able to success-400

fully drive through the tight turn; for larger values of401

ζ , however, some models will fail to execute the turn402

properly by temporarily running off the road or losing403

complete sight of the road. 404

Fig. 3 illustrates, e.g., how one HCS model transi-405

tions through a tight turn forζ=5π/36 rad. Fig. 3(a) 406

plots the two straight-line segments connected at an407

angle ζ . The solid line describes the road median,408

while the dashed line describes the actual trajectory409

executed by Harry’s HCS model. The length of the410

initial straight-line segment is chosen to be long411

enough (150 m) to eliminate transients by allowing412

the model to settle into a stable state. This is equiv-413

alent to allowing the vehicle to drive on a straight414

road for a long period of time before the tight turn415

appears in the road. Fig. 3(b) plots the lateral offset416

from the road median during the tight-turn maneu-417

ver. Here, Harry’s model maximally deviates about418

8 m from the road center. Both before and after the419

turn, the lateral offset converges to zero. Fig. 3(c)420

plots the commanded steering angle for Harry’s HCS421

model, and Fig. 3(d) plots the corresponding change422

in velocity. Models for other drivers yield similar423

results. 424

Now, define the maximum lateral offset error corre-425

sponding to a tight turn with angleζ to beψ . We can 426

determine a functional relationship betweenψ andζ 427

for a given HCS model. First, we takeN measure- 428

ments ofρ for different values ofζ where we de- 429

note theith measurement as(ζi, ψi). Then, we as- 430

sume a polynomial relationship betweenψ andζ such 431
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Fig. 3. Example model driving behavior through a tight turn.

that,432433

ψi = αpζ
p
i + αp−1ζ

p−1
i + · · · + α1ζi + α0 + ei,434

(33)435

The least-squares estimate of the model (α̂) is given436

by437

α̂ = (ζ̂Tζ̂ )−1ζ̂Tψ̂, (34)438

where439

ψ̂ = [ψ1, ψ2, . . . , ψN ]T, (35)440

ζ̂ =



ζ
p

1 ζ
p−1
1 · · · ζ1 1

ζ
p

2 ζ
p−1
2 · · · ζ2 1

...
...

...
...

...

ζ
p
N ζ

p−1
N · · · ζN 1


 , (36)

441

α̂ = [αp, αp−1, . . . , α0]T. (37) 442

Previously, we have observed that the linear coefficient443

α1 dominates the polynomial relationship in Eq. (33)444

[14]. Hence, as a first-order approximation, we define445

the following tight-turning performance criterionJ2: 446

J2 = α1. (38) 447

5. Performance criteria based on inherent analysis 448

In the previous section, we introduced performance449

criteria based on specific events. In this section, we450

now will investigate other performance criteria which451

evaluate the inherent characteristics of HCS models452

through analysis of the whole driving process. 453



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

FY. Xu et al. / Robotics and Autonomous Systems 965 (2002) 1–18 9

5.1. Passenger comfort454

Passenger comfort is one important criterion for455

evaluating driving control strategies. Suppose a per-456

son were sitting in a car driven by a learned HCS457

model. His/her comfort, while a combination of458

many factors, would be primarily influenced by the459

forces that that passenger experiences while in the460

car. Everytime the HCS model would change the461

applied forcePf on the car, the passenger would462

feel a longitudinal force. Similarly, everytime the463

HCS model would change the steeringδ, the pas-464

senger would experience a lateral force. Below we465

quantify passenger comfort as a function of the ap-466

plied forces on the vehicle under HCS model con-467

trol.468

Consider the vehicle shown in Fig. 4. Let the config-469

uration of the system be described by the mass center470

of the vehicle(x, y), the angleθ between the positive471

Y -axis and the axis of symmetry of the car, and the472

location of the passengerS (xs, ys). Furthermore, de-473

fine the distance fromS to the axis of symmetry ass2474

and define the distance fromS to the center of mass475

along the axis of symmetry ass1.476

The velocity of the pointS as a function of the477

coordinate velocities is given by478479

v2
s = ẋ2

s + ẏ2
s = (ẋ + s1θ̇ cosθ + s2θ̇ sinθ)2480

+(ẏ − s1θ̇ sinθ + s2θ̇ cosθ)2481

= ẋ2 + s2
1 θ̇

2 cos2θ + s2
2 θ̇

2 sin2θ + 2ẋs1θ̇ cosθ482

+2s2ẋθ̇ sinθ + 2s1s2θ̇
2 cosθ sinθ + ẏ2

483

+s2
1 θ̇

2 sin2θ + s2
2 θ̇

2 cos2θ − 2s1ẏθ̇ sinθ484

+2s2ẏθ̇ cosθ − 2s1s2θ̇
2 sinθ cosθ485

= ẋ2 + ẏ2 + s2
1 θ̇

2 + s2
2 θ̇

2 + 2s1θ̇ (ẋ cosθ486

−ẏ sinθ) + 2s2θ̇ (ẋ sinθ + ẏ cosθ). (39)487

As we described in Section 2, the longitudinal accel-488

eration of the vehicle is given by489

v̇η = Pf + Pr − Fξ f δ

m
+ vξ θ̇ − (sgnvη)cdv

2
η, (40)490

and the lateral acceleration of the vehicle is given by491

v̇ξ = Pf δ + Fξ f + Fξ r)

m
− vηθ̇ − (sgnvξ )cdv

2
ξ . (41)492

Now, the accelerations experienced by the passenger493

include not only the vehicle’s acceleration, but also the494

Fig. 4. The coordinate configuration of the vehicle and passenger.

centrifugal force, given by 495496

v2
s

R
= 1

R
[ẋ2 + ẏ2 + s2

1 θ̇
2 + s2

2 θ̇
2 + 2s1θ̇ (ẋ cosθ 497

−ẏ sinθ) + 2s2θ̇ (ẋ sinθ + ẏ cosθ)]. (42) 498

The centrifugal force generally points in the direction499

of the negative lateral acceleration of the vehicle. By500

combining the vehicle and centrifugal accelerations,501

we then arrive at the following expression for the total502

acceleration at point S: 503

a =

√√√√
v̇2
η +

(
v̇ξ − v2

0

R

)2

. (43)
504

In defining a “comfort” performance criterionJ3, we 505

will normalize this acceleration felt by the passenger,506

by the speed of the vehicle, since higher speeds gen-507

erate higher accelerations through a given curve: 508

J3 = amean

vmean
. (44)

509

Thus,J3 is defined as the ratio of average acceleration510

over average speed for a given road. 511

Let us now look at how different HCS models per-512

form with respect to this performance criterion. First,513

we collect driving data from three human operators—514

Tom, Dick and Harry. After training an HCS model for515

each individual, we then run that person’s model over516

three different roads (1, 2, and 3). Each run takes ap-517

proximately 15 min over the 20 km roads. That means518
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Table 1
The statistic of the acceleration

Data name a > g (9.8 m/s2) a > 2g (19.6 m/s2) a > 3g (29.4 m/s2) ρ = amean

Vmean

Tom1-A 28.20% 3.85% 0.39% 0.2411
Tom1-B 20.99% 0.79% 0 0.2101
Tom2-A 19.11% 0.74% 0 0.2142
Tom2-B 18.00% 0.63% 0 0.2185
Tom3-A 22.15% 0.21% 0 0.2117
Tom3-B 25.76% 0.31% 0 0.2196

Dick1-A 36.43% 8.69% 1.63% 0.2938
Dick1-B 36.85% 6.79% 0 0.2625
Dick2-A 37.73% 8.87% 2.19% 0.2956
Dick2-B 37.25% 7.31% 0.43% 0.2721
Dick3-A 43.20% 15.17% 5.13% 0.3367
Dick3-B 43.35% 14.97% 4.61% 0.3307

Harry1-A 5.93% 0.48% 0 0.1662
Harry1-B 8.13% 1.30% 0.013% 0.1941
Harry2-A 1.16% 0 0 0.1302
Harry2-B 2.69% 0 0 0.1267
Harry3-A 4.93% 0 0 0.1552
Harry3-B 11.49% 1.28% 0 0.1757

that at a data collection rate of 50 Hz, each run con-519

sists of approximately 45 000 time-sampled data vec-520

tors. In other words, for each model run, we collect521

approximately 135 000 data vectors. After data collec-522

tion, we split the three runs for each driver into two523

groups A and B, where group A represents the first524

half of each run, while group B represents the second525

half of each run. Thus, e.g., ‘Tom1-A’ represents the526

first half of Tom’s HCS model’s run over road 1.527

Table 1 gives some aggregate statistics for each of528

these model-generated data sets. Specifically, the table529

lists the percentage of time that the acceleration in a530

particular data set is larger than oneg, 2g and 3g,531

respectively. These percentages give us a rough idea532

about the comfort level of each model driver. If we533

average the percentages for each HCS model, we find534

that Tom’s model generates accelerations above one535

g 22.36% of the time, accelerations above 2g 1.09%536

of the time, and accelerations above 3g 0.065% of537

the time. The same statistics for Dick’s model are538

39.14, 10.30 and 2.33%, respectively. Similarly, for539

Harry’s model the statistics are 5.72, 0.51 and 0.00%,540

respectively. From these results, we would expect that541

Harry’s HCS model offers the smoothest ride of the542

three models, since it generates the smallest forces.543

Driving with Dick’s model, on the other hand, would544

prove to be quite uncomfortable. Calculating theJ3 545

performance criterion for each model confirms these546

qualitative observations. For Tom’s model,J3 varies 547

from 0.2101 to 0.2411, and the average is given by548

J3Tom = 0.2192. (45) 549

For Dick’s model,J3 varies from 0.2625 to 0.3367,550

and the average is given by 551

J3Dick = 0.2986. (46) 552

Finally, for Harry’s model,J3 varies from 0.1303 to 553

0.1941, and the average is given by 554

J3Harry = 0.1508. (47) 555

We observe thatJ3 is the smallest for Harry’s model,556

and that that value is much smaller thanJ3 for Dick’s 557

model. 558

5.2. Driving smoothness 559

Another way to evaluate the smoothness of a given560

driver’s control strategy is through frequency analy-561

sis of the instantaneous curvature of the road and the562

corresponding instantaneous curvature of the vehicle’s563

path. As an HCS model steers the car along the road,564

the vehicle’s curvature will in general not be the same565
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as the that of the road. Below, we will use this dif-566

ference between the two curvatures to evaluate the567

driving smoothness of a given model in the frequency568

domain. We will show that the resulting performance569

measure yields consistent results with theJ3 passen-570

ger comfort performance criterion defined in the pre-571

vious section.572

Let us defineu(k) as the instantaneous curvature of573

the road at time stepk, and letz(k) be the instanta-574

neous curvature of the vehicle’s path at time stepk.575

We can view the road’s curvatureu(k) as the input to576

the HCS model, andz(k) as the output of the HCS577

model.578

To calculate the frequency response fromu to z, we579

first partition the complete data intoN groups, where580

each group is of lengthL. Hence, thekth element of581

groupi is given by582583

ui(k) = u[k + (i − 1)L],584

zi(k) = z[k + (i − 1)L],585

i = 1,2, . . . , N; 1 ≤ k ≤ L. (48)586

We also define the following convolutions for each587

group of datai:588589

Iui ,L(w) = 1

L
Ui(jw)U∗

i (jw) = 1

L
||Ui(jw)||2,590

Iuizi ,L(jw) = 1

L
Ui(jw)Z∗

i (jw), i = 1,2, . . . , N,591

(49)592

where593

Ui(jw) =
L∑

k=1

ui(k)Hk e−jwk, (50)
594

Zi(jw) =
L∑

k=1

zi(k)Hk e−jwk (51)
595

define the discrete Fourier transform [13] and,596597

Hk = 0.54− 0.46 cos

[
2π(k − 1)

L − 1

]
,

598

k ∈ {1,2, . . . , L} (52)599

defines the Hamming coefficients, which we include600

to minimize the spectral leakage effects of data win-601

dowing.602

By summing up the terms in Eq. (50), 603

Su,L(w) = 1

N

N∑
i=1

Iui ,L(w), (53)
604

Suz,L(jw) = 1

N

N∑
i=1

Iui ,L(jw), (54)
605

we define the frequency responseG(jw) for a given 606

HCS model as 607

G(jw) = Suz,L(jw)

Su,L(w)
. (55)

608

Fig. 5 plots|G(jw)| for the HCS models correspond-609

ing to Tom, Dick and Harry, Each group of data cor-610

responds to 40 s (L = 2000 at 50 Hz), and the data611

for each model was collected over road 1. In Fig. 5612

the solid line corresponds to Tom, the dash-dotted line613

corresponds to Dick, and the dashed line corresponds614

to Harry. 615

Given the plots of|G(jw)|, we now define the fol- 616

lowing smoothness performance criterion: 617

J4 = fdomain, (56) 618

wherefdomaincorresponds to the domain frequency of619

each|G(jw)| curve. 620

We get the following smoothness results for the621

three models: 622

JHarry = 0.52 Hz, (57) 623

JTom = 0.66 Hz, (58) 624

JDick = 0.72 Hz. (59) 625

Note that these results agree with theJ3 passenger 626

comfort criterion defined in the previous section.627

Harry’s model was found to offer the best passenger628

comfort, and here, his model is found to offer the629

smoothest ride. Similarly, Dick’s model was found to630

be the least comfortable and here, his model is found631

to be the least smooth. 632

6. Performance optimization 633

In Sections 4 and 5, we introduced performance634

measures for evaluating the performance of our driv-635

ing models. Below, we develop an algorithm for636
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Fig. 5. PSD analysis with Harry (dashed), Dick (dash-dot), and Tom (solid).

optimizing a learned control strategy model with re-637

spect to one of those (or for that matter, any other)638

performance criterion. There are two primary rea-639

sons why this may be necessary in order to suc-640

cessfully transfer control strategies from humans to641

robots.642

First, while humans are in general very capable of643

demonstrating intelligent behaviors, they are far less644

capable of demonstrating those behaviors without oc-645

casional errors and random (noise) deviations from646

some nominal trajectory. The cascade learning algo-647

rithm will necessarily incorporate those in the learned648

HCS model, and will consequently be less than opti-649

mal. Second, control requirements may differ between650

humans and robots, where, e.g., stringent power or651

force requirements often have to be met. Thus, a given652

individual’s performance level may or may not be suf-653

ficient for a particular application. 654

Since an HCS model does offer an initially stable655

model, however, it represents a good starting point656

from which to further optimize performance. Let 657

ω = [ w1 w2 · · · wn ] (60) 658

denote a vector consisting of all the weights in the659

trained HCS modelΓ (ω). Also let J (ω) denote any 660

one performance criterion (e.g.,J1 or J2 in the pre- 661

vious sections). We would now like to determine662

the weight vectorω∗ which optimizes the perfor-663

mance criterionJ (ω). This optimization is difficult 664
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in principle because: (1) we have no explicit gradient665

information666

G(ω) = ∂

∂ω
J (ω), (61)667

and (2) each experimental measurement ofJ (ω) re-668

quires a significant amount of computation. We lack669

explicit gradient information, since we can only com-670

pute our performance measures empirically. Hence,671

gradient-based optimization techniques, such as steep-672

est descent and Newton–Raphson [13] are not suit-673

able. And because each performance measure evalua-674

tion is potentially computationally expensive, genetic675

optimization [3], which can requires many iterations676

to converge, also does not offer a good alternative.677

Therefore, we turn to SPSA to carry out the perfor-678

mance optimization.679

Stochastic approximation (SA) is a well-known it-680

erative algorithm for finding roots of equations in the681

presence of noisy measurements. SPSA [15] is a par-682

ticular multivariate SA technique which requires as683

few as two measurements per iteration and shows fast684

convergence in practice. Hence, it is well suited for685

our application. Denoteωk as our estimate ofω∗ at686

the kth iteration of the SA algorithm, and letωk be687

defined by the following recursive relationship:688

ωk+1 = ωk − αkḠk, (62)689

whereḠk is the simultaneously perturbed gradient ap-690

proximation at thekth iteration,691

Ḡk = 1

p

p∑
i=1

Gi
k ≈ ∂

∂ω
J (ω), (63)

692

Gi
k = J

(+)
k − J

(−)
k

2ck




1

∆kw1
1

∆kw2· · ·
1

∆kwn



. (64)

693

Eq. (63) averagesp stochastic two-point measure-694

mentsGi
k for a better overall gradient approximation,695

where696

J
(+)
k = J (ωk + ck∆k), (65)697

J
(−)
k = J (ωk − ck∆k), (66)698

∆k = [∆kw1∆kw2 · · ·∆kwn
]T, (67) 699

and where∆k is a vector of mutually indepen-700

dent, mean-zero random variables (e.g., symmetric701

Bernoulli distributed), the sequence{∆k} is indepen- 702

dent and identically distributed, and the{αk}, {ck} 703

are positive scalar sequences satisfying the following704

properties: 705

αk → 0, ck → 0 as k → ∞, (68) 706

∞∑
k=0

αk = ∞,

∞∑
k=0

(
αk

ck

)2

< ∞. (69)
707

The weight vectorω0 is of course the weight repre-708

sentation in the initially stable learned cascade model.709

Larger values ofp in Eq. (63) will give more accurate710

approximations of the gradient. Fig. 6 illustrates the711

overall performance optimization algorithm. 712

7. Experiment 713

7.1. Results 714

Here, we test the performance optimization algo-715

rithm on control data collected from two individu-716

als, Harry and Dick. In order to simplify the prob-717

lem somewhat, we keep the applied force constant at718

Pf = 300 N. Hence, the user is asked to control only719

the steeringδ. 720

For each person, we train a two-hidden-unit HCS721

model withns = nc = 3, andnr = 15; because we722

are keepingPf constant, the total number of inputs for723

the neural network models is thereforeni = 42. 724

Now, we would like to improve the tight-turning725

performance criterionJ2 defined in Eq. (38) for each726

of the trained models. In the SPSA algorithm, we em-727

pirically determine the following values for the scaling728

sequences{αk}, {ck}: 729

αk = 0.000001

k
, k > 0, (70) 730

ck = 0.001

k0.25
, k > 0. (71) 731

We also set the number of measurements per gradient732

approximation in Eq. (63) top = 1. Finally, denoteJ k
2 733

as the criterionJ2 after iterationk of the optimization 734
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Fig. 6. Stochastic optimization algorithm.

algorithm; hence,J 0
2 denotes the performance measure735

prior to any optimization.736

Fig. 7 plots 100× J k
2 /J

0
2 ,0 ≤ k ≤ 60, for the HCS737

models corresponding to Dick and Harry. We note that738

for Dick, the performance indexJ2 improves from739

J 0
2 = 25.5 toJ 60

2 = 12.5. For Harry, the improvement740

is less dramatic; his model’s performance index im-741

prove fromJ 0
2 = 17.7 to J 60

2 = 16.1. Thus, the per-742

formance optimization algorithm is able to improve743

the performance of Dick’s model by about 55% and744

Harry’s model by about 9% over their respective ini-745

tial models. In other words, the optimized models ne-746

gotiate tight turns better without running off the road.747

From Fig. 7, we observe that most of the improvement748

in the optimization algorithm occurs in the first few749

iterations. Then, ask → ∞, J k
2 converges to a stable750

value sinceαk, ck → 0. Clearly, the extent to which751

we can improve the performance in the trained HCS752

models depends on the characteristics of the origi-753

nal models. Dick’s initial performance index ofJ 0
2 =754

25.5 is much worse than Harry’s initial performance755

index ofJ 0
2 = 17.7. Therefore, we would expect that756

Dick’s initial model lies further away from the near-757

est local minimum, while Harry’s model lies closer to758

that local minimum. As a result, Harry’s model can be759

improved only a little, while Dick’s model has much760

larger room for improvement. 761

7.2. Discussion 762

Below we discuss some further issues related to per-763

formance optimization including: (1) the effect of per-764

formance optimization on other performance criteria,765

and (2) the similarity of control strategies before and766

after performance optimization. 767

First, we show how performance improvement with768

respect to one criterion can potentially affect perfor-769

mance improvement with respect to a different cri-770

terion. Consider Dick’s HCS model once again. As771

we have already observed, his tight turning perfor-772

mance criterion improves fromJ 0
2 = 25.5 to J 60

2 = 773

12.5. Now, letJ 0
1 denote the obstacle avoidance per-774

formance criterion for Dick’s initial HCS model, and775

let J 60
1 denote the obstacle avoidance performance cri-776

terion for Dick’s HCS model, optimized with respect777

to J2. Fig. 8 plots the maximum offset from the road778
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Fig. 7. Performance improvement in stochastic optimization algorithm.

median as a function of the obstacle detection distance779

τ for Dick’s initial model (solid line) and Dick’s op-780

timized model (dashed line), wherevinitial = 35.781

From Fig. 8, we can calculateJ 0
1 andJ 60

1 :782

J 0
1 ≈ 42

35 = 1.20, (72)783

J 60
1 ≈ 36

35 = 1.03. (73)784

Thus, Dick’s optimized HCS model not only improves785

tight turning performance, but obstacle-avoidance per-786

formance as well. This should not be too surprising,787

since the tight-turning and obstacle-avoidance behav-788

iors are in fact tightly related. During the obstacle789

avoidance maneuver, tight turns are precisely what is790

required for successful execution of the maneuver.791

Second, we would like to see how much per-792

formance optimization changes the model’s control793

strategy away from the original human control ap-794

proach. To do this we turn to a hidden Markov795

model-based similarity measure [9] developed for796

comparing human-based control strategies. LetHx 797

denote the human control trajectory for individualx, 798

let Mx denote control trajectories for the unoptimized799

model corresponding to individualx, and let Ox 800

denote control trajectories for the optimized model801

(with respect toJ2) corresponding to individualx. 802

Also let 0≤ σ(A,B) ≤ 1 denote the similarity mea-803

sure for two different control trajectoriesA and B, 804

where larger values indicate greater similarity, while805

smaller values indicates greater dissimilarity between806

A andB. 807
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Fig. 8. Maximum lateral offset for original (solid) and final (dashed) HCS models.

For each individual, we can calculate the following808

three similarity measures:809

σ(Hx,Mx), (74)810

σ(Hx,Ox), (75)811

σ(Mx,Ox). (76)812

Table 2 lists these similarities for Dick and Harry.813

From our experience with this similarity measure, we814

note that all the values in Table 2 indicate significant815

similarity. Specifically, the similarities forσ(Hx,Ox)816

(0.434 and 0.469) suggest that even after performance817

optimization, a substantial part of the original HCS818

is preserved. Furthermore, the other similarity mea-819

sures are consistent with the degree of performance820

improvement in each case. For Dick, where a substan-821

tial performance improvement of 55% was achieved,822

the similarity between the initial and optimized mod-823

els is far less than Harry, where the performance im-824

provement was more incremental. 825

We conclude with one final observation. Pomer-826

leau’s work on vision-guided autonomous driving827

Table 2
Control strategy similarity

x = Dick x = Harry

σ(Hx,Mx) 0.762 0.573
σ(Hx,Ox) 0.434 0.469
σ(Mx,Ox) 0.544 0.823
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[11], while impressive and ground-breaking, does828

not directly address the issues we have investigated829

here. Pomerleau learned to map the view of the830

road ahead to an appropriate steering direction, first831

through a neural network [11] and later with a statis-832

tical algorithm known as RALPH [12]. He does not833

model or analyze the dynamics inherent in human834

control strategies; rather, he very successfully solves835

the computer-vision problem of correctly estimating836

the position of the road in a video stream of data.837

Therefore, we view our work as complementary to838

Pomerleau’s work, in that both research aspects are839

desirable in an eventual autonomous driving sys-840

tem.841

8. Conclusion842

Modeling HCS analytically is difficult at best.843

Therefore, an increasing number of researchers have844

resorted to empirical modeling of HCS as a viable845

alternative. This in turn requires that performance846

criteria be developed, since few if any theoretical847

guarantees exist for these models. In this paper, we848

develop several such criteria for the task of human849

driving, including criteria based on event analysis850

and criteria based on inherent analysis. We model851

human driving using the cascade neural network852

architecture, and evaluate the performance of driv-853

ing models derived from different individuals using854

the developed performance criteria. Based on the855

criteria, we have proposed an iterative optimiza-856

tion algorithm for improving the performance of857

learned models of HCS. The algorithm keeps the858

overall structure of the learned models in tact, but859

tunes the parameters (i.e. weights) in the model to860

achieve better performance. It requires no analytic861

formulation of performance, only two experimental862

measurements of a defined performance criterion per863

iteration. We have demonstrated the viability of the864

approach for the task of human driving, where we865

model the HCS through cascade neural networks.866

While performance improvements vary between867

HCS models, the optimization algorithm always868

settles to stable, improved performance after only869

a few iterations. Furthermore, the optimized mod-870

els retain important characteristics of the original871

HCS.872
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