

Performance evaluation and optimization of human control strategy

Yangsheng Xu^{a,c}, Jingyan Song^b, Michael C. Nechyba^{d,*}, Yeung Yam^a

^a Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

^b Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

^c The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA

^d Department of Electrical and Computer Engineering, University of Florida, 216 Larsen Hall,

PO Box 116200, Gainesville, FL 32611-6200, USA

Received 28 August 2001; received in revised form 10 December 2001; accepted 10 December 2001

Abstract

Modeling human control strategy (HCS) is becoming an increasingly popular paradigm in a number of different research areas, ranging from robotics and intelligent vehicle highway systems to expert training and virtual reality computer games. Usually, HCS models are derived empirically, rather than analytically, from real-time human input-output data. While these empirical models offer an effective means of transferring intelligent behaviors from humans to robots and other machines, there is a great need to develop adequate performance criteria for these models. It is our goal in this paper to develop several such criteria for the task of human driving. We first collect driving data from different individuals through a real-time graphic driving simulator that we have developed, and identify each individual's control strategy model through the flexible cascade neural network learning architecture. We then define performance measures for evaluating two aspects of the resultant HCS models. The first is based on event analysis, while the second is based on inherent analysis. Using the proposed performance criteria, we demonstrate the procedure for evaluating the relative skill of different HCS models. Finally, we propose an iterative algorithm for optimizing an initially stable HCS model with respect to independent, user-specified performance criteria, by applying the simultaneously perturbed stochastic approximation (SPSA) algorithm. The methods proposed herein offer a means for modeling and transferring HCS in response to real-time inputs, and improving the intelligent behaviors of artificial machines. © 2002 Published by Elsevier Science B.V.

28 **Keywords:** Human control strategy; Simultaneously perturbed stochastic approximation; Node-decoupled extended Kalman filtering

30 1. Introduction

31 HCS models, which accurately emulate dynamic
 32 human behavior, find application in a number of re-
 33 search areas ranging from robotics to the intelligent
 34 vehicle highway system. Because human control strat-
 35 egy (HCS) is a dynamic, nonlinear, stochastic pro-

cess, developing good analytic models of human actions, however, tends to be quite difficult, if not impossible. Therefore, recent work in modeling HCS has focused on learning empirical models, through, e.g., fuzzy logic [7,16], and neural network techniques [1,8,11]. See [2,4,6,8], for detailed surveys of the human modeling literature.

Since most HCS models are empirical, few if any guarantees exist about their theoretical performance. In previous work, a stochastic similarity measure,

* Corresponding author.

E-mail address: nechyba@mil.ufl.edu (M.C. Nechyba).

46 which compares model-generated control trajectories
 47 to the original human training data, has been proposed
 48 for validating HCS models [9]. While this similarity
 49 measure can ensure that a given HCS model ade-
 50 quately captures the driving characteristics of the hu-
 51 man operator, it does not measure a particular model's
 52 skill or performance. In other words, it does not (nor
 53 can it) tell us which model is better or worse. Thus,
 54 performance evaluation forms an integral part of HCS
 55 modeling research, without which it becomes impossi-
 56 ble to rank or prefer one HCS controller over another.
 57 Moreover, only when we have developed adequate
 58 performance criteria, can we hope to optimize the HCS
 59 models with respect to those performance criteria.

60 In general, skill or performance can be defined
 61 through a number of task-dependent as well as
 62 task-independent criteria. Some of these criteria may
 63 conflict with one another, and which is most appro-
 64 priate for a given task depends in part on the specific
 65 goals of the task. Overall, there are two approaches
 66 for defining performance criteria: (1) event analysis
 67 and (2) inherent analysis.

68 In event analysis, we examine performance within
 69 the context of a some event. Consider the task of hu-
 70 man driving, e.g., For this task we can define any
 71 number of performance criteria tied to specific events.
 72 In preliminary work [14], e.g., two such event-based
 73 criteria were defined, one based on the HCS model's
 74 ability to avoid sudden obstacles, and the second based
 75 on the HCS model's ability to negotiate tight turns in
 76 a safe and stable manner. Each of these performance
 77 measures tests the HCS model's performance outside
 78 the range of its training data.

79 In inherent analysis, we examine a given model's
 80 behavior on a more global scale. Once again, consider
 81 the task of human driving. For a given HCS model, we
 82 might be interested in such measures as average speed,
 83 passenger comfort, driving smoothness, and fuel ef-
 84 ficiency. These measures are not based on any sin-
 85 gle event, but rather are aggregate measures of per-
 86 formance. In other words, they measure the inherent
 87 characteristics of a particular HCS model.

88 Performance evaluation is, however, only one part
 89 of the solution for effectively applying models of HCS.
 90 When performing a specified task, a human will often
 91 commit occasional errors and deviate randomly from
 92 some nominal trajectory. Any empirical learning algo-
 93 rithm will necessarily incorporate those problems in

the learned model, and will consequently be less than
 94 optimal. Furthermore, control requirements may dif-
 95 fer between humans and robots, where stringent power
 96 or force requirements often have to be met. A given
 97 individual's performance level, therefore, may or may
 98 not be sufficient for a particular application.
 99

100 Hence, in this paper, we not only consider the
 101 problem of performance evaluation, but the additional
 102 problem of performance optimization. We propose an
 103 iterative optimization algorithm, based on simultane-
 104 ously perturbed stochastic approximation (SPSA), for
 105 improving the performance of learned HCS models.
 106 This algorithm leaves the learned model's structure
 107 in tact, but tunes the parameters of the HCS model in
 108 order to improve performance. It requires no analytic
 109 formulation of performance, only two experimental
 110 measurements of a user-defined performance crite-
 111 rion per iteration. The initial HCS model serves as a
 112 good starting point for the algorithm, since it already
 113 generates stable control commands.
 114

115 In this paper, we first introduce the dynamic graphic
 116 driving simulator from which we collect human con-
 117 trol data and with which we investigate the model-
 118 ing and evaluation of human control strategies. We
 119 then show how we model a given individual's driv-
 120 ing control strategies using the flexible cascade neural
 121 network learning architecture. Next, we develop and
 122 test performance criteria specifically related to the task
 123 of human driving, where we apply both event-based,
 124 as well as inherent analysis. We then propose the it-
 125 erative optimization algorithm for improving perfor-
 126 mance in the HCS models. Finally, we describe and
 127 discuss some experimental results of the optimization
 128 algorithm.

2. Experimental setup

129 HCS, as we define the term, encompasses a large set
 130 of human-controlled tasks. It is neither practical nor
 131 possible to investigate all of these tasks comprehen-
 132 sively. In this paper, we therefore look towards a pro-
 133tototypical control application the task of human driv-
 134 ing to collect, model and analyze control strategy data
 135 from different human subjects.

136 Within the driving domain, we have a choice be-
 137 tween simulated driving (i.e. driving through a sim-
 138 ulator) and real driving. For our purposes, the ideal

139 control task should embody several desirable qualities. First, during the execution of the control task, the
 140 human subject must not be injured or harmed in any
 141 way. Second, the human subject should have prior ex-
 142 periences that will help him complete the control task
 143 successfully. Third, the control task should pose a sig-
 144 nificant challenge to the human controller. Finally, the
 145 task should be complex enough that it allows for vari-
 146 ations in strategy across different individuals.
 147

148 Let us examine real driving in the context of these
 149 four criteria (safety, prior experience, control difficulty
 150 and control strategy variations). First, unless we ask
 151 individuals to drive very conservatively, it is difficult
 152 to guarantee the safety of our human subjects in real
 153 driving experiments. If we do ask them to drive con-
 154 servatively, however, the control task will not be very
 155 challenging; moreover, variations between individuals
 156 will be somewhat muted. Finally, with respect to prior
 157 experience, real driving measures up to the qualities
 158 we seek in our control task.

159 Simulated driving, on the other hand, differs from
 160 real driving in a number of important respects. Most
 161 importantly, the human subject poses no threat to him-
 162 self or others while driving in the simulator, no mat-
 163 ter how recklessly he chooses to drive. Consequently,
 164 unlike in real driving, we can challenge individuals to
 165 drive near the edge of their abilities. This produces
 166 driving control strategies that are richer and more com-
 167 plex than their real counterparts. Because of this in-
 168 creased complexity, the demonstrated control strate-
 169 gies will potentially exhibit greater variations from
 170 one individual to the next. Finally, while human sub-
 171 jects may not be familiar with respect to a specific
 172 driving simulator prior to testing, they can, as exper-
 173 ienced drivers, transition from real driving to simulated
 174 driving with relative ease and efficiency.

175 With respect to our goal of modeling and analyzing
 176 human control strategies, simulated driving embodies
 177 more of the qualities which we desire. Thus, we
 178 choose simulated driving as our primary control task.
 179 We emphasize that in choosing simulated driving, we
 180 do not suggest that simulation is in general better than
 181 reality for experimentation. We only suggest that since
 182 the focus of this paper is the human control strate-
 183 gies themselves, a simulated task can be appropriate if
 184 it bears substantial resemblance to a comparable real
 185 task. We believe that our driving simulation environ-
 186 ment does meet that criterion.

Thus, for this work, we collect human driving data
 187 from a real-time graphic simulator, whose interface
 188 is shown in Fig. 1. In the simulator, the human op-
 189 erator has independent control of the vehicle's steer-
 190 ing as well as the brake and gas pedals. The simu-
 191 lated vehicle's dynamics are given by the following
 192 second-order nonlinear model [5]:
 193

$$\ddot{\theta} = \frac{l_f P_f \delta + l_f F_{\xi f} - l_r F_{\xi r}}{I}, \quad (1) \quad 194$$

$$\dot{v}_{\xi} = \frac{P_f \delta + F_{\xi f} + F_{\xi r}}{m} - v_{\eta} \dot{\theta} - (\text{sgn } v_{\xi}) c_d v_{\xi}^2, \quad (2) \quad 195$$

$$\dot{v}_{\eta} = \frac{P_f + P_r - F_{\xi f} \delta}{m} + v_{\xi} \dot{\theta} - (\text{sgn } v_{\eta}) c_d v_{\eta}^2, \quad (3) \quad 196$$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} v_{\xi} \\ v_{\eta} \end{bmatrix}, \quad (4) \quad 197$$

where
 198

$\dot{\theta}$ = angular velocity of the car,
 199

v_{ξ} = lateral velocity of the car,
 200

v_{η} = longitudinal velocity of the car,
 201
 202

$$F_{\xi k} = \mu F_{zk} \left(\tilde{\alpha}_k - \frac{(\text{sgn } \delta) \tilde{\alpha}_k^2}{3} + \frac{\tilde{\alpha}_k^3}{27} \right) \quad 203$$

$$\times \sqrt{1 - \frac{P_k^2}{(\mu F_{zk})^2} + \frac{P_k^2}{c_k^2}}, \quad k \in \{f, r\}, \quad (8) \quad 204$$

$$\tilde{\alpha}_k = \frac{c_k \alpha_k}{\mu F_{zk}}, \quad k \in \{f, r\}, \quad (9) \quad 205$$

$$\alpha_f = \text{front tire slip angle} = \delta - \frac{l_f \dot{\theta} + v_{\xi}}{v_{\eta}}, \quad (10) \quad 206$$

$$\alpha_r = \text{rear tire slip angle} = \frac{l_r \dot{\theta} - v_{\xi}}{v_{\eta}}, \quad (11) \quad 207$$

$$F_{zf} = \frac{m g l_r - (P_f + P_r) h}{l_f + l_r}, \quad 209$$

$$F_{zr} = \frac{m g l_f + (P_f + P_r) h}{l_f + l_r}, \quad (12) \quad 210$$

ξ, η = body-relative lateral, longitudinal axis,
 211

$c_f, c_r = 50\,000, 64\,000 \text{ N/rad}, \quad (14) \quad 212$

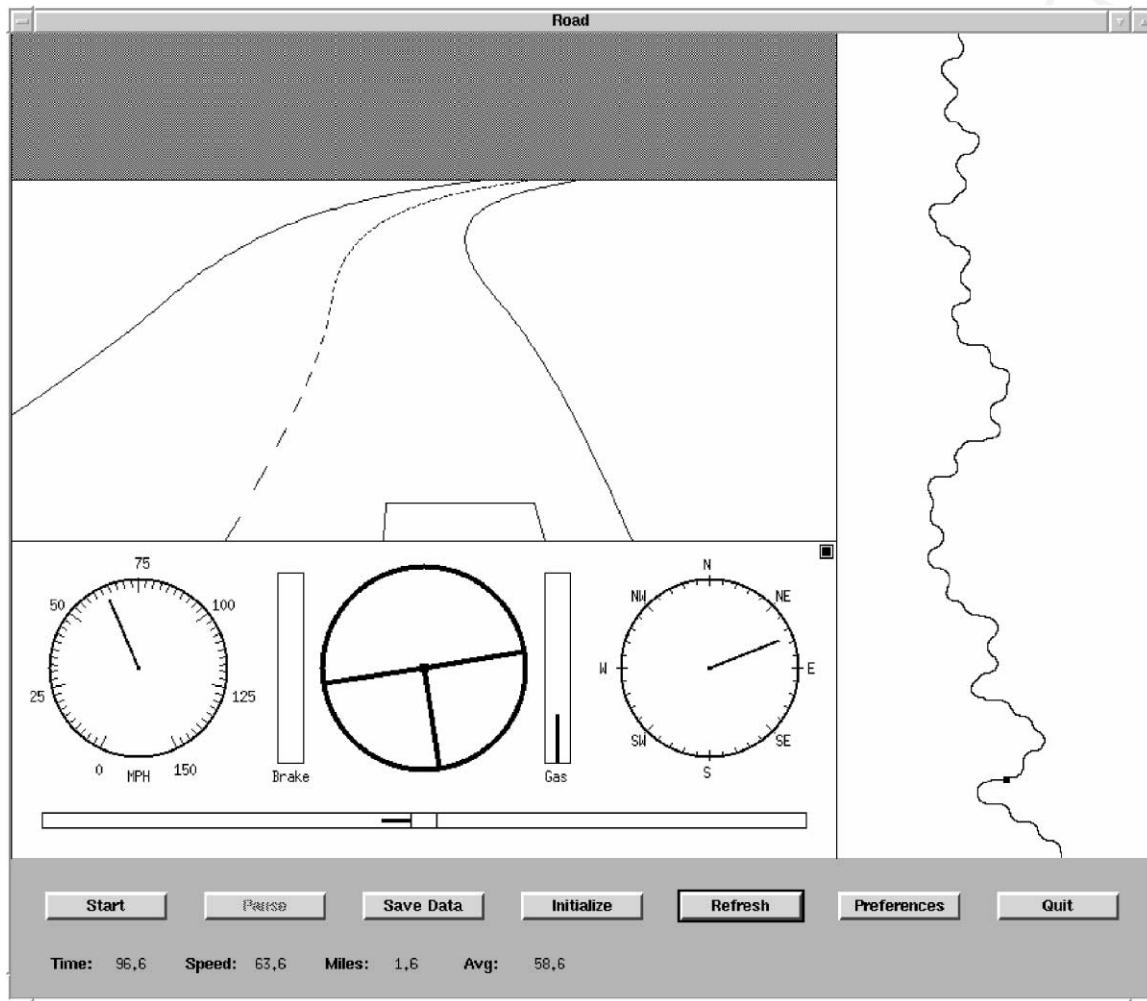


Fig. 1. The driving simulator gives the user a perspective preview of the road ahead. The user has independent control of the steering, break, and accelerator (gas).

213 $c_d = \text{air resistance} = 0.0005 \text{ m}^{-1}$, (15)

214 where $\mu = \text{coefficient of friction}$ which is equal to 1.

216 $F_{jk} = \text{frictional forces}, \quad j \in \{\xi, \eta\}, \quad k \in \{f, r\}$,
217 (16)

218 $P_r = \begin{cases} 0, & P_f \geq 0, \\ k_b P_f, & P_f < 0 \end{cases}, \quad k_b = 0.34$, (17)

220 $m = 1500 \text{ kg}, \quad I = 2500 \text{ kg m}^{-2}$,
221 $l_f = 1.25 \text{ m}, \quad l_r = 1.5 \text{ m}, \quad h = 0.5 \text{ m}$, (18)

and the controls are given by

222 $-8000 \text{ N} \leq P_f \leq 4000 \text{ N}$, (19)

224 $-0.2 \text{ rad} \leq \delta \leq 0.2 \text{ rad}$, (20)

225 where P_f is the longitudinal force on the front tires, and δ the steering angle.

227 We ask each individual to navigate across several randomly generated roads, which consist of a sequence of: (1) straight-line segments, (2) left turns, and (3) right turns. The map in Fig. 1, e.g., illustrates one randomly generated 20 km road for which human driving

232 data was recorded. Each straight-line segment as well
 233 as the radius of curvature for each turn range in length
 234 from 100 to 200 m. Nominally, the road is divided into
 235 two lanes, each of which has width $w = 5$ m. The hu-
 236 man operator's view of the road ahead is limited to
 237 100 m. Finally, the entire simulator is run at 50 Hz.

238 **3. HCS modeling**

239 In this paper, we choose the flexible cascade neural
 240 network architecture with node-decoupled extended
 241 Kalman filtering (NDEKF) [10] for modeling the hu-
 242 man driving data. We prefer this learning architecture
 243 over others for a number of reasons. First, no a priori
 244 model structure is assumed; the neural network au-
 245 tomatically adds hidden units to an initially minimal
 246 network as the training requires. Second, hidden unit
 247 activation functions are not constrained to be a partic-
 248 ular type. Rather, for each new hidden unit, the incre-
 249 mental learning algorithm can select that functional
 250 form which maximally reduces the residual error over
 251 the training data. Typical alternatives to the standard
 252 sigmoidal function are sine, cosine, and the Gaussian
 253 function. Finally, it has been shown that NDEKF, a
 254 quadratically convergent alternative to slower gradi-
 255 ent descent training algorithms (such as backpropa-
 256 gation) fits well within the cascade learning frame-
 257 work and converges to good local minima in less time
 258 [10].

259 The flexible functional form which cascade learn-
 260 ing allows is ideal for abstracting human control
 261 strategies, since we know very little about the un-
 262 derlying structure of each individual's internal con-
 263 troller. By making as few a priori assumptions as
 264 possible in modeling the human driving data, we
 265 improve the likelihood that the learning algorithm
 266 will converge to a good model of the human control
 267 data.

268 In order for the learning algorithm to properly
 269 model each individual's HCS, the model must be pre-
 270 sented with those state and environmental variables
 271 upon which the human operator relies. Thus, the in-
 272 puts to the cascade neural network should include:
 273 (1) current and previous state information $\{v_\xi, v_\eta, \dot{\theta}\}$,
 274 (2) previous output (command) information $\{\delta, P_f\}$,
 275 and (3) a description of the road visible from the
 276 current car position. More precisely, the network

inputs are

$$\{v_\xi(k - n_s), \dots, v_\xi(k - 1), v_\xi(k), v_\eta(k - n_s), \dots, \\ v_\eta(k - 1), v_\eta(k), \dot{\theta}(k - n_s), \dots, \dot{\theta}(k - 1), \dot{\theta}(k)\}, \quad (21)$$

$$\{\delta(k - n_c), \dots, \delta(k - 1), \delta(k), P_f(k - n_c), \dots, \\ P_f(k - 1), P_f(k)\}, \quad (22)$$

$$\{x(1), x(2), \dots, x(n_r), y(1), y(2), \dots, y(n_r)\}, \quad (23)$$

where n_s is the length of the state histories and n_c the
 length of the previous command histories presented
 to the network as input. For the road description, we
 partition the visible view of the road ahead into n_r
 equivalently spaced, body-relative (x, y) coordinates
 of the road median, and provide that sequence of coor-
 dinates as input to the network. Thus, the total number
 of inputs to the network n_i is

$$n_i = 3n_s + 2n_c + 2n_r. \quad (24)$$

The two outputs of the cascade network are $\{\delta(k + 1), P_f(k + 1)\}$. For the system as a whole, the cascade
 neural network can be viewed as a feedback controller,
 whose two outputs control the vehicle.

4. Performance criteria based on event analysis 301

Once we have abstracted models of driving control
 strategies from the human control data, we would like
 to evaluate the skill or performance exhibited by these
 models. The first set of performance measures that we
 develop is based on the observation that, in real driv-
 ing, obstacles such as rocks and debris can unexpect-
 edly obstruct a vehicle's path and force drivers to react
 rapidly. In order to gauge how well our learned mod-
 els would deal with these types of events, we define
 two related performance criteria. The first measures
 a model's ability to avoid obstacles, while the sec-
 ond measures a model's capacity for negotiating tight
 turns.

4.1. Obstacle avoidance 315

Obstacle avoidance is one important measuring
 stick for gauging a model's performance. Since our

318 HCS models receive only a description of the road
 319 ahead as input from the environment, we reformulate
 320 the task of obstacle avoidance as *virtual path following*. Assume that an obstacle appears a distance τ
 321 ahead of the driver's current position. Furthermore,
 322 assume that this obstacle obstructs the width of the
 323 road ($2w$) and extends for a distance d along the
 324 road. Then, rather than follow the path of the actual
 325 road, we wish the HCS model to follow the virtual
 326 path illustrated in Fig. 2. This virtual path consists of:
 327 (1) two arcs with radius of curvature γ , which offset
 328 the road median laterally by $2w$, followed by (2) a
 329 straight-line segment of length d , and (3) another two
 330 arcs with radius of curvature γ which return the road
 331 median to the original path.
 332

333 By analyzing the geometry of the virtual path, we
 334 can calculate the required radius of curvature γ of the

virtual path segments as [14],

335

$$\gamma = \frac{\tau^2}{8w} + \frac{w}{2}, \quad (25) \quad 336$$

and the corresponding sweep angle ρ as,

337

$$\rho = \sin^{-1} \left(\frac{\tau/2}{\gamma} \right) = \sin^{-1} \left(\frac{\tau}{\tau^2/4w + w} \right). \quad (26) \quad 338$$

As an example, consider an obstacle located $\tau = 60$ m ahead of the driver's current position. For this obstacle distance and $w = 5$ m, γ evaluates to 92.5 m. This is less than the minimum radius of curvature (100 m) that we allow for the roads over which we collect our human control data. Hence, a particular HCS model may deviate significantly from the center of the road during the obstacle avoidance maneuver.

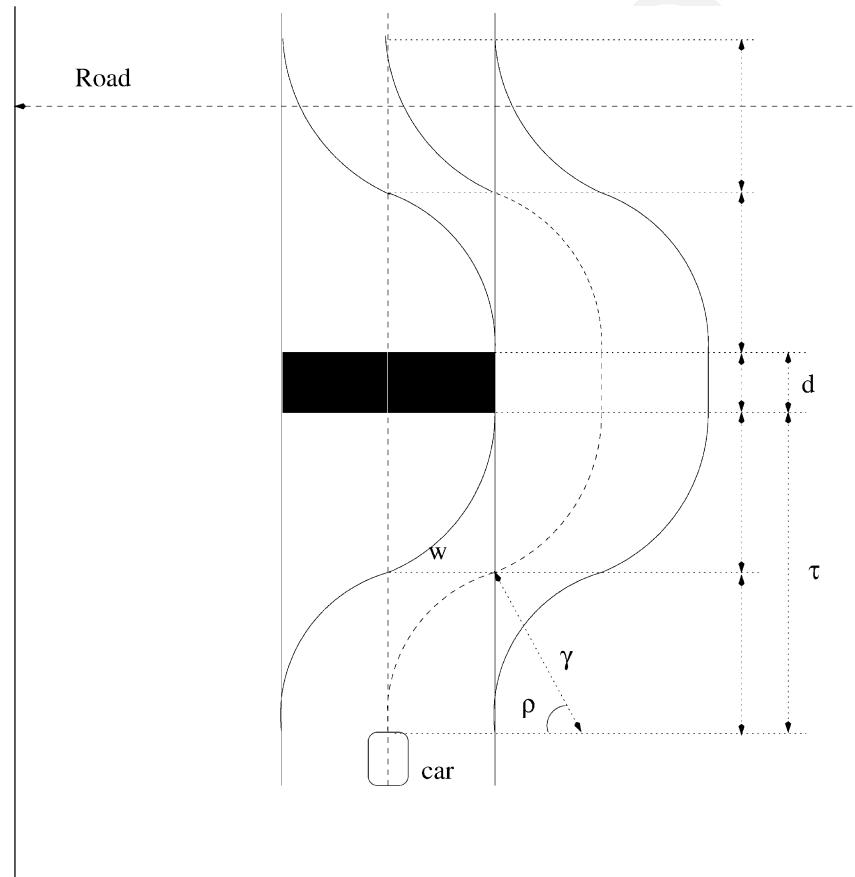


Fig. 2. Virtual path for obstacle avoidance.

348 Below, we derive the important relationship be-
 349 tween the obstacle detection distance τ and a model's
 350 corresponding maximum lateral deviation ψ . First,
 351 we take N measurements of ψ for different values of
 352 τ , where we denote the i th measurement as (τ_i, ψ_i) .
 353 Next, we assume a polynomial relationship of the form

$$355 \quad \psi_i = \alpha_p \tau_i^p + \alpha_{p-1} \tau_i^{p-1} + \cdots + \alpha_1 \tau_i + \alpha_0 + e_i \\ 356 \quad = \Gamma_i^T \alpha + e_i, \quad (27)$$

357 where e_i is the additive measurement error. We can
 358 then write

$$359 \quad \begin{aligned} \psi_1 &= \Gamma_1^T \alpha + e_1, \\ \psi_2 &= \Gamma_2^T \alpha + e_2, \\ &\vdots \\ \psi_N &= \Gamma_N^T \alpha + e_N, \end{aligned} \quad (28)$$

360 or, in matrix notation,

$$361 \quad \Psi = \Gamma \alpha + e, \quad (29)$$

362 where $\Psi = [\psi_1, \psi_2, \dots, \psi_N]^T$ is the observation
 363 vector, $\Gamma = [\Gamma_1, \Gamma_2, \dots, \Gamma_N]^T$ the regression matrix,
 364 and $e = [e_1, e_2, \dots, e_N]^T$ the error vector.

365 Assuming white noise properties for e ($E\{e_i\} = 0$
 366 and $E\{e_i e_j\} = \sigma_e^2 \delta_{ij}$ for all i, j), we can minimize the
 367 least-squares error criterion,

$$369 \quad V(\hat{\alpha}) = \frac{1}{2} \varepsilon^T \varepsilon = \frac{1}{2} \sum_{k=1}^N \varepsilon_k^2 = \frac{1}{2} (\Psi - \Gamma \hat{\alpha})^T (\Psi - \Gamma \hat{\alpha}) \\ 370 \quad (30)$$

371 with the optimal, unbiased estimate $\bar{\alpha}$,

$$372 \quad \bar{\alpha} = (\Gamma^T \Gamma)^{-1} \Gamma^T \Psi \quad (31)$$

373 assuming that $(\Gamma^T \Gamma)$ is invertible.

374 In this relationship, as the obstacle detection dis-
 375 tance τ decreases, the maximum lateral offset in-
 376 creases [14]. Consequently, for a given model and
 377 initial velocity v_{initial} , there exists a value τ_{\min} below
 378 which the maximum offset error will exceed the lane
 379 width w . We define the driving control for obstacle
 380 distances above τ_{\min} to be stable; likewise, we de-
 381 fine the driving control to be unstable for obstacle
 382 distances below τ_{\min} .

383 Now, we define the following obstacle avoidance
 384 performance criterion J_1 :

$$385 \quad J_1 = \frac{\tau_{\min}}{v_{\text{initial}}}, \quad (32)$$

386 where v_{initial} is the velocity of the vehicle when the
 387 obstacle is first detected. The J_1 criterion measures to
 388 what extent a given HCS model can avoid an obsta-
 389 cle while still controlling the vehicle in a stable man-
 390 ner. The normalization by v_{initial} is required, because
 391 slower speeds increase the amount of time a driver has
 392 to react and therefore avoiding obstacles becomes that
 393 much easier.

4.2. Tight turning

394 Here we analyze performance by how well a partic-
 395 ular HCS model is able to navigate tight turns. First,
 396 we define a special road connection consisting of two
 397 straight-line segments connected directly (without a
 398 transition arc segment) at an angle ζ . For small val-
 399 ues of ζ , each HCS model will be able to success-
 400 fully drive through the tight turn; for larger values of
 401 ζ , however, some models will fail to execute the turn
 402 properly by temporarily running off the road or losing
 403 complete sight of the road.

404 Fig. 3 illustrates, e.g., how one HCS model transi-
 405 tions through a tight turn for $\zeta=5\pi/36$ rad. Fig. 3(a)
 406 plots the two straight-line segments connected at an
 407 angle ζ . The solid line describes the road median,
 408 while the dashed line describes the actual trajectory
 409 executed by Harry's HCS model. The length of the
 410 initial straight-line segment is chosen to be long
 411 enough (150 m) to eliminate transients by allowing
 412 the model to settle into a stable state. This is equiv-
 413 alent to allowing the vehicle to drive on a straight
 414 road for a long period of time before the tight turn
 415 appears in the road. Fig. 3(b) plots the lateral offset
 416 from the road median during the tight-turn maneu-
 417 ver. Here, Harry's model maximally deviates about
 418 8 m from the road center. Both before and after the
 419 turn, the lateral offset converges to zero. Fig. 3(c)
 420 plots the commanded steering angle for Harry's HCS
 421 model, and Fig. 3(d) plots the corresponding change
 422 in velocity. Models for other drivers yield similar
 423 results.

424 Now, define the maximum lateral offset error corre-
 425 sponding to a tight turn with angle ζ to be ψ . We can
 426 determine a functional relationship between ψ and ζ
 427 for a given HCS model. First, we take N measure-
 428 ments of ρ for different values of ζ where we de-
 429 note the i th measurement as (ζ_i, ψ_i) . Then, we as-
 430 sume a polynomial relationship between ψ and ζ such
 431

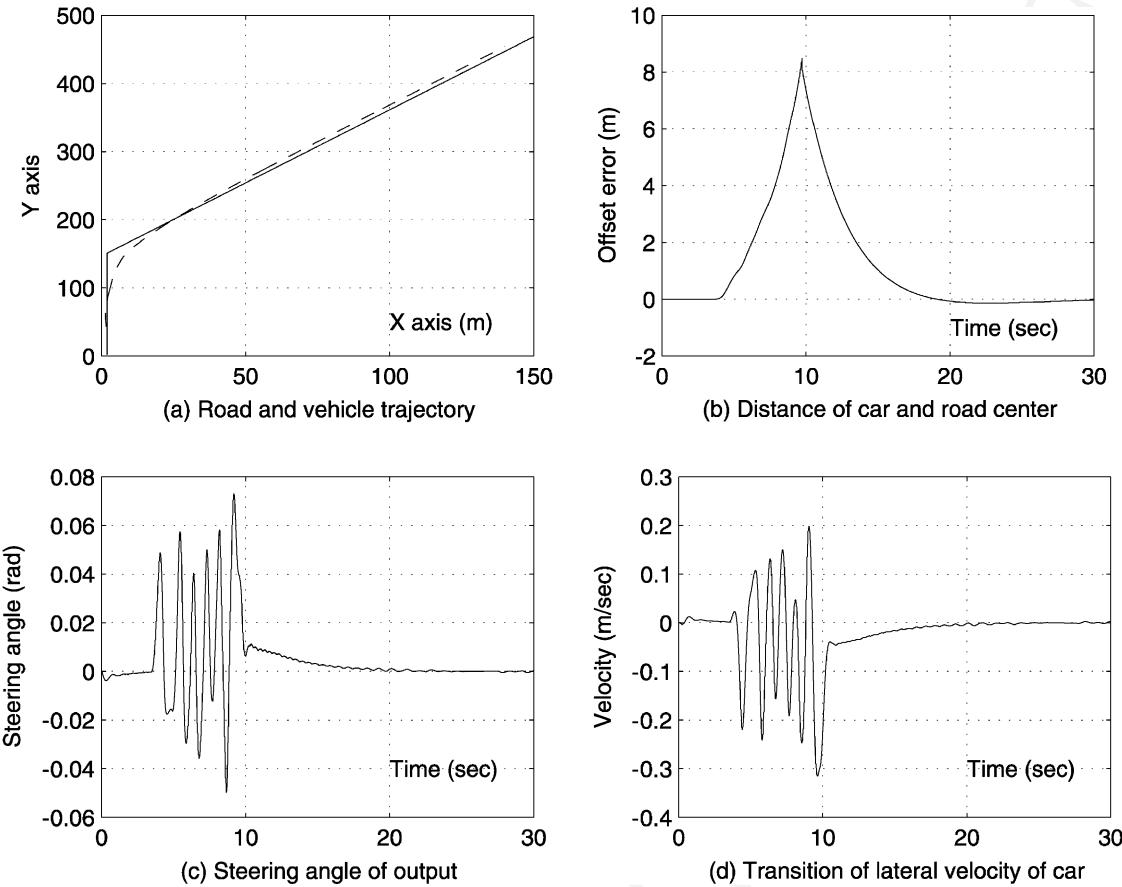


Fig. 3. Example model driving behavior through a tight turn.

432 that,

$$\psi_i = \alpha_p \zeta_i^p + \alpha_{p-1} \zeta_i^{p-1} + \cdots + \alpha_1 \zeta_i + \alpha_0 + e_i, \quad (33)$$

436 The least-squares estimate of the model ($\hat{\alpha}$) is given
437 by

$$438 \quad \hat{\alpha} = (\hat{\zeta}^T \hat{\zeta})^{-1} \hat{\zeta}^T \hat{\psi}, \quad (34)$$

439 where

$$440 \quad \hat{\psi} = [\psi_1, \psi_2, \dots, \psi_N]^T, \quad (35)$$

$$\hat{\xi} = \begin{bmatrix} \zeta_1^p & \zeta_1^{p-1} & \cdots & \zeta_1 & 1 \\ \zeta_2^p & \zeta_2^{p-1} & \cdots & \zeta_2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \zeta_N^p & \zeta_N^{p-1} & \cdots & \zeta_N & 1 \end{bmatrix}, \quad (36)$$

$$\hat{\alpha} = [\alpha_p, \alpha_{p-1}, \dots, \alpha_0]^T.$$

Previously, we have observed that the linear coefficient α_1 dominates the polynomial relationship in Eq. (33) [14]. Hence, as a first-order approximation, we define the following tight-turning performance criterion J_2 : 446

$$J_2 = \alpha_1. \quad (38) \quad 447$$

5. Performance criteria based on inherent analysis 448

In the previous section, we introduced performance criteria based on specific events. In this section, we now will investigate other performance criteria which evaluate the inherent characteristics of HCS models through analysis of the whole driving process. 449
450
451
452
453

454 5.1. Passenger comfort

455 Passenger comfort is one important criterion for
 456 evaluating driving control strategies. Suppose a per-
 457 son were sitting in a car driven by a learned HCS
 458 model. His/her comfort, while a combination of
 459 many factors, would be primarily influenced by the
 460 forces that that passenger experiences while in the
 461 car. Everytime the HCS model would change the
 462 applied force P_f on the car, the passenger would
 463 feel a longitudinal force. Similarly, everytime the
 464 HCS model would change the steering δ , the pas-
 465 senger would experience a lateral force. Below we
 466 quantify passenger comfort as a function of the ap-
 467 plied forces on the vehicle under HCS model con-
 468 trol.

469 Consider the vehicle shown in Fig. 4. Let the config-
 470 uration of the system be described by the mass center
 471 of the vehicle (x, y) , the angle θ between the positive
 472 Y -axis and the axis of symmetry of the car, and the
 473 location of the passenger $S (x_s, y_s)$. Furthermore, de-
 474 fine the distance from S to the axis of symmetry as s_2
 475 and define the distance from S to the center of mass
 476 along the axis of symmetry as s_1 .

477 The velocity of the point S as a function of the
 478 coordinate velocities is given by

$$\begin{aligned}
 480 \quad v_s^2 &= \dot{x}_s^2 + \dot{y}_s^2 = (\dot{x} + s_1\dot{\theta}\cos\theta + s_2\dot{\theta}\sin\theta)^2 \\
 481 &\quad + (\dot{y} - s_1\dot{\theta}\sin\theta + s_2\dot{\theta}\cos\theta)^2 \\
 482 &= \dot{x}^2 + s_1^2\dot{\theta}^2\cos^2\theta + s_2^2\dot{\theta}^2\sin^2\theta + 2\dot{x}s_1\dot{\theta}\cos\theta \\
 483 &\quad + 2s_2\dot{x}\dot{\theta}\sin\theta + 2s_1s_2\dot{\theta}^2\cos\theta\sin\theta + \dot{y}^2 \\
 484 &\quad + s_1^2\dot{\theta}^2\sin^2\theta + s_2^2\dot{\theta}^2\cos^2\theta - 2s_1\dot{y}\dot{\theta}\sin\theta \\
 485 &\quad + 2s_2\dot{y}\dot{\theta}\cos\theta - 2s_1s_2\dot{\theta}^2\sin\theta\cos\theta \\
 486 &= \dot{x}^2 + \dot{y}^2 + s_1^2\dot{\theta}^2 + s_2^2\dot{\theta}^2 + 2s_1\dot{\theta}(\dot{x}\cos\theta \\
 487 &\quad - \dot{y}\sin\theta) + 2s_2\dot{\theta}(\dot{x}\sin\theta + \dot{y}\cos\theta). \quad (39)
 \end{aligned}$$

488 As we described in Section 2, the longitudinal ac-
 489 celeration of the vehicle is given by

$$490 \quad \dot{v}_\eta = \frac{P_f + P_r - F_{\xi f}\delta}{m} + v_\xi\dot{\theta} - (\text{sgn } v_\eta)c_d v_\eta^2, \quad (40)$$

491 and the lateral acceleration of the vehicle is given by

$$492 \quad \dot{v}_\xi = \frac{P_f\delta + F_{\xi f} + F_{\xi r}}{m} - v_\eta\dot{\theta} - (\text{sgn } v_\xi)c_d v_\xi^2. \quad (41)$$

493 Now, the accelerations experienced by the passenger
 494 include not only the vehicle's acceleration, but also the

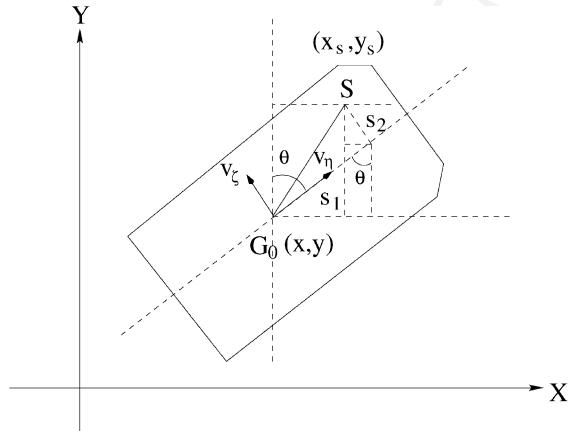


Fig. 4. The coordinate configuration of the vehicle and passenger.

495 centrifugal force, given by

$$\frac{v_s^2}{R} = \frac{1}{R}[\dot{x}^2 + \dot{y}^2 + s_1^2\dot{\theta}^2 + s_2^2\dot{\theta}^2 + 2s_1\dot{\theta}(\dot{x}\cos\theta - \dot{y}\sin\theta) + 2s_2\dot{\theta}(\dot{x}\sin\theta + \dot{y}\cos\theta)]. \quad (42) \quad 496$$

497 The centrifugal force generally points in the direction
 498 of the negative lateral acceleration of the vehicle. By
 499 combining the vehicle and centrifugal accelerations,
 500 we then arrive at the following expression for the total
 501 acceleration at point S: 502
503

$$504 \quad a = \sqrt{\dot{v}_\eta^2 + \left(\dot{v}_\xi - \frac{v_0^2}{R}\right)^2}. \quad (43) \quad 504$$

505 In defining a “comfort” performance criterion J_3 , we
 506 will normalize this acceleration felt by the passenger,
 507 by the speed of the vehicle, since higher speeds gen-
 508 erate higher accelerations through a given curve: 508

$$509 \quad J_3 = \frac{a_{\text{mean}}}{v_{\text{mean}}}. \quad (44) \quad 509$$

510 Thus, J_3 is defined as the ratio of average acceleration
 511 over average speed for a given road.

512 Let us now look at how different HCS models per-
 513 form with respect to this performance criterion. First,
 514 we collect driving data from three human operators—
 515 Tom, Dick and Harry. After training an HCS model for
 516 each individual, we then run that person's model over
 517 three different roads (1, 2, and 3). Each run takes ap-
 518 proximately 15 min over the 20 km roads. That means 518

Table 1
The statistic of the acceleration

Data name	$a > g$ (9.8 m/s ²)	$a > 2g$ (19.6 m/s ²)	$a > 3g$ (29.4 m/s ²)	$\rho = \frac{a_{\text{mean}}}{V_{\text{mean}}}$
Tom1-A	28.20%	3.85%	0.39%	0.2411
Tom1-B	20.99%	0.79%	0	0.2101
Tom2-A	19.11%	0.74%	0	0.2142
Tom2-B	18.00%	0.63%	0	0.2185
Tom3-A	22.15%	0.21%	0	0.2117
Tom3-B	25.76%	0.31%	0	0.2196
Dick1-A	36.43%	8.69%	1.63%	0.2938
Dick1-B	36.85%	6.79%	0	0.2625
Dick2-A	37.73%	8.87%	2.19%	0.2956
Dick2-B	37.25%	7.31%	0.43%	0.2721
Dick3-A	43.20%	15.17%	5.13%	0.3367
Dick3-B	43.35%	14.97%	4.61%	0.3307
Harry1-A	5.93%	0.48%	0	0.1662
Harry1-B	8.13%	1.30%	0.013%	0.1941
Harry2-A	1.16%	0	0	0.1302
Harry2-B	2.69%	0	0	0.1267
Harry3-A	4.93%	0	0	0.1552
Harry3-B	11.49%	1.28%	0	0.1757

519 that at a data collection rate of 50 Hz, each run
520 consists of approximately 45 000 time-sampled data
521 vectors. In other words, for each model run, we collect
522 approximately 135 000 data vectors. After data collec-
523 tion, we split the three runs for each driver into two
524 groups A and B, where group A represents the first
525 half of each run, while group B represents the second
526 half of each run. Thus, e.g., 'Tom1-A' represents the
527 first half of Tom's HCS model's run over road 1.

528 Table 1 gives some aggregate statistics for each of
529 these model-generated data sets. Specifically, the table
530 lists the percentage of time that the acceleration in a
531 particular data set is larger than one g , $2g$ and $3g$,
532 respectively. These percentages give us a rough idea
533 about the comfort level of each model driver. If we
534 average the percentages for each HCS model, we find
535 that Tom's model generates accelerations above one
536 g 22.36% of the time, accelerations above $2g$ 1.09%
537 of the time, and accelerations above $3g$ 0.065% of
538 the time. The same statistics for Dick's model are
539 39.14, 10.30 and 2.33%, respectively. Similarly, for
540 Harry's model the statistics are 5.72, 0.51 and 0.00%,
541 respectively. From these results, we would expect that
542 Harry's HCS model offers the smoothest ride of the
543 three models, since it generates the smallest forces.
544 Driving with Dick's model, on the other hand, would

prove to be quite uncomfortable. Calculating the J_3 545 performance criterion for each model confirms these 546 qualitative observations. For Tom's model, J_3 varies 547 from 0.2101 to 0.2411, and the average is given by 548

$$J_{3\text{Tom}} = 0.2192. \quad (45) \quad 549$$

For Dick's model, J_3 varies from 0.2625 to 0.3367, 550 and the average is given by 551

$$J_{3\text{Dick}} = 0.2986. \quad (46) \quad 552$$

Finally, for Harry's model, J_3 varies from 0.1303 to 553 0.1941, and the average is given by 554

$$J_{3\text{Harry}} = 0.1508. \quad (47) \quad 555$$

We observe that J_3 is the smallest for Harry's model, 556 and that that value is much smaller than J_3 for Dick's 557 model. 558

5.2. Driving smoothness

Another way to evaluate the smoothness of a given 560 driver's control strategy is through frequency analy- 561 sis of the instantaneous curvature of the road and the 562 corresponding instantaneous curvature of the vehicle's 563 path. As an HCS model steers the car along the road, 564 the vehicle's curvature will in general not be the same 565

566 as the that of the road. Below, we will use this difference
 567 between the two curvatures to evaluate the driving smoothness of a given model in the frequency
 568 domain. We will show that the resulting performance
 569 measure yields consistent results with the J_3 passenger
 570 comfort performance criterion defined in the previous
 571 section.

572 Let us define $u(k)$ as the instantaneous curvature of
 573 the road at time step k , and let $z(k)$ be the instantaneous curvature of the vehicle's path at time step k .
 574 We can view the road's curvature $u(k)$ as the input to
 575 the HCS model, and $z(k)$ as the output of the HCS
 576 model.

577 To calculate the frequency response from u to z , we
 578 first partition the complete data into N groups, where
 579 each group is of length L . Hence, the k th element of
 580 group i is given by

$$584 \quad u_i(k) = u[k + (i - 1)L], \\ 585 \quad z_i(k) = z[k + (i - 1)L], \\ 586 \quad i = 1, 2, \dots, N; 1 \leq k \leq L. \quad (48)$$

587 We also define the following convolutions for each
 588 group of data i :

$$589 \quad I_{u_i, L}(w) = \frac{1}{L} U_i(jw) U_i^*(jw) = \frac{1}{L} \|U_i(jw)\|^2, \\ 590 \quad I_{u_i z_i, L}(jw) = \frac{1}{L} U_i(jw) Z_i^*(jw), \quad i = 1, 2, \dots, N, \\ 591 \quad (49)$$

593 where

$$594 \quad U_i(jw) = \sum_{k=1}^L u_i(k) H_k e^{-jwk}, \quad (50)$$

$$595 \quad Z_i(jw) = \sum_{k=1}^L z_i(k) H_k e^{-jwk} \quad (51)$$

596 define the discrete Fourier transform [13] and,

$$598 \quad H_k = 0.54 - 0.46 \cos \left[\frac{2\pi(k-1)}{L-1} \right], \\ 599 \quad k \in \{1, 2, \dots, L\} \quad (52)$$

600 defines the Hamming coefficients, which we include
 601 to minimize the spectral leakage effects of data win-
 602 downing.

603 By summing up the terms in Eq. (50),

$$604 \quad S_{u, L}(w) = \frac{1}{N} \sum_{i=1}^N I_{u_i, L}(w), \quad (53)$$

$$605 \quad S_{u z, L}(jw) = \frac{1}{N} \sum_{i=1}^N I_{u_i z_i, L}(jw), \quad (54)$$

606 we define the frequency response $G(jw)$ for a given
 607 HCS model as

$$608 \quad G(jw) = \frac{S_{u z, L}(jw)}{S_{u, L}(w)}. \quad (55)$$

609 Fig. 5 plots $|G(jw)|$ for the HCS models correspond-
 610 ing to Tom, Dick and Harry. Each group of data cor-
 611 responds to 40 s ($L = 2000$ at 50 Hz), and the data
 612 for each model was collected over road 1. In Fig. 5
 613 the solid line corresponds to Tom, the dash-dotted line
 614 corresponds to Dick, and the dashed line corresponds
 615 to Harry.

616 Given the plots of $|G(jw)|$, we now define the fol-
 617 lowing smoothness performance criterion:

$$618 \quad J_4 = f_{\text{domain}}, \quad (56)$$

619 where f_{domain} corresponds to the domain frequency of
 620 each $|G(jw)|$ curve.

621 We get the following smoothness results for the
 622 three models:

$$623 \quad J_{\text{Harry}} = 0.52 \text{ Hz}, \quad (57)$$

$$624 \quad J_{\text{Tom}} = 0.66 \text{ Hz}, \quad (58)$$

$$625 \quad J_{\text{Dick}} = 0.72 \text{ Hz}.$$

626 Note that these results agree with the J_3 passenger
 627 comfort criterion defined in the previous section.
 628 Harry's model was found to offer the best passenger
 629 comfort, and here, his model is found to offer the
 630 smoothest ride. Similarly, Dick's model was found to
 631 be the least comfortable and here, his model is found
 632 to be the least smooth.

6. Performance optimization

634 In Sections 4 and 5, we introduced performance
 635 measures for evaluating the performance of our driv-
 636 ing models. Below, we develop an algorithm for

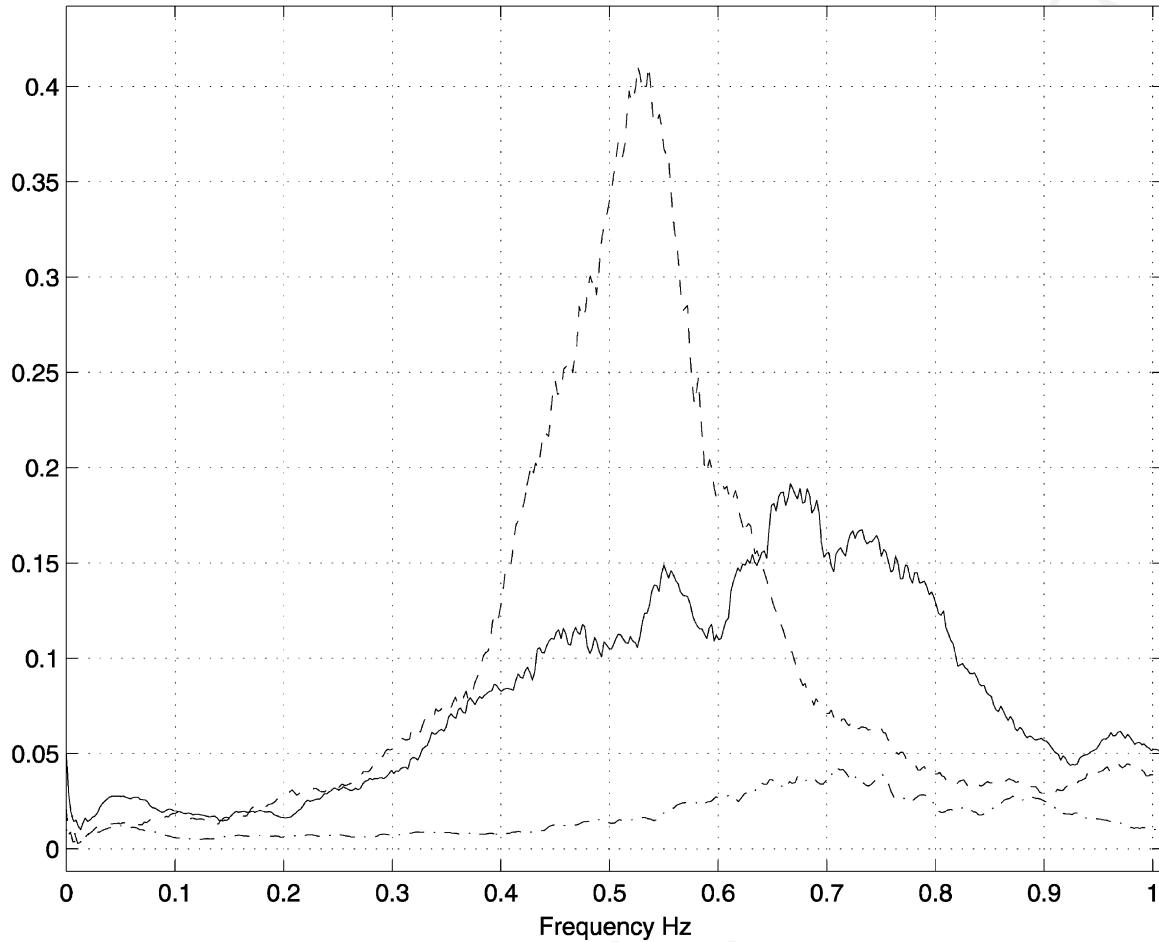


Fig. 5. PSD analysis with Harry (dashed), Dick (dash-dot), and Tom (solid).

637 optimizing a learned control strategy model with re-
 638 spect to one of those (or for that matter, any other)
 639 performance criterion. There are two primary rea-
 640 sons why this may be necessary in order to suc-
 641 cessfully transfer control strategies from humans to
 642 robots.

643 First, while humans are in general very capable of
 644 demonstrating intelligent behaviors, they are far less
 645 capable of demonstrating those behaviors without oc-
 646 casional errors and random (noise) deviations from
 647 some nominal trajectory. The cascade learning algo-
 648 rithm will necessarily incorporate those in the learned
 649 HCS model, and will consequently be less than opti-
 650 mal. Second, control requirements may differ between
 651 humans and robots, where, e.g., stringent power or

652 force requirements often have to be met. Thus, a given
 653 individual's performance level may or may not be suf-
 654 ficient for a particular application.

655 Since an HCS model does offer an initially stable
 656 model, however, it represents a good starting point
 657 from which to further optimize performance. Let

$$\omega = [w_1 \quad w_2 \quad \cdots \quad w_n] \quad (60) \quad 658$$

659 denote a vector consisting of all the weights in the
 660 trained HCS model $\Gamma(\omega)$. Also let $J(\omega)$ denote any
 661 one performance criterion (e.g., J_1 or J_2 in the pre-
 662 vious sections). We would now like to determine
 663 the weight vector ω^* which optimizes the perfor-
 664 mance criterion $J(\omega)$. This optimization is difficult

665 in principle because: (1) we have no explicit gradient
666 information

$$667 \quad G(\omega) = \frac{\partial}{\partial \omega} J(\omega), \quad (61)$$

668 and (2) each experimental measurement of $J(\omega)$ re-
669quires a significant amount of computation. We lack
670 explicit gradient information, since we can only com-
671 pute our performance measures empirically. Hence,
672 gradient-based optimization techniques, such as steep-
673 est descent and Newton–Raphson [13] are not suit-
674 able. And because each performance measure evalua-
675 tion is potentially computationally expensive, genetic
676 optimization [3], which can requires many iterations
677 to converge, also does not offer a good alternative.
678 Therefore, we turn to SPSA to carry out the per-
679 formance optimization.

680 Stochastic approximation (SA) is a well-known it-
681 erative algorithm for finding roots of equations in the
682 presence of noisy measurements. SPSA [15] is a par-
683 ticular multivariate SA technique which requires as
684 few as two measurements per iteration and shows fast
685 convergence in practice. Hence, it is well suited for
686 our application. Denote ω_k as our estimate of ω^* at
687 the k th iteration of the SA algorithm, and let ω_k be
688 defined by the following recursive relationship:

$$689 \quad \omega_{k+1} = \omega_k - \alpha_k \bar{G}_k, \quad (62)$$

690 where \bar{G}_k is the simultaneously perturbed gradient ap-
691 proximation at the k th iteration,

$$692 \quad \bar{G}_k = \frac{1}{p} \sum_{i=1}^p G_k^i \approx \frac{\partial}{\partial \omega} J(\omega), \quad (63)$$

$$693 \quad G_k^i = \frac{J_k^{(+)} - J_k^{(-)}}{2c_k} \begin{bmatrix} \frac{1}{\Delta_{kw_1}} \\ \frac{1}{\Delta_{kw_2}} \\ \dots \\ \frac{1}{\Delta_{kw_n}} \end{bmatrix}. \quad (64)$$

694 Eq. (63) averages p stochastic two-point measure-
695 ments G_k^i for a better overall gradient approximation,
696 where

$$697 \quad J_k^{(+)} = J(\omega_k + c_k \Delta_k), \quad (65)$$

$$698 \quad J_k^{(-)} = J(\omega_k - c_k \Delta_k), \quad (66)$$

$$\Delta_k = [\Delta_{kw_1} \Delta_{kw_2} \dots \Delta_{kw_n}]^T, \quad (67) \quad 699$$

and where Δ_k is a vector of mutually indepen-
700 dent, mean-zero random variables (e.g., symmetric
701 Bernoulli distributed), the sequence $\{\Delta_k\}$ is indepen-
702 dent and identically distributed, and the $\{\alpha_k\}$, $\{c_k\}$
703 are positive scalar sequences satisfying the following
704 properties:
705

$$\alpha_k \rightarrow 0, \quad c_k \rightarrow 0 \text{ as } k \rightarrow \infty, \quad (68) \quad 706$$

$$\sum_{k=0}^{\infty} \alpha_k = \infty, \quad \sum_{k=0}^{\infty} \left(\frac{\alpha_k}{c_k} \right)^2 < \infty. \quad (69) \quad 707$$

The weight vector ω_0 is of course the weight repre-
708 sentation in the initially stable learned cascade model.
709 Larger values of p in Eq. (63) will give more accurate
710 approximations of the gradient. Fig. 6 illustrates the
711 overall performance optimization algorithm.
712

7. Experiment

7.1. Results

Here, we test the performance optimization algo-
715 rithm on control data collected from two individu-
716 als, Harry and Dick. In order to simplify the prob-
717 lem somewhat, we keep the applied force constant at
718 $P_f = 300$ N. Hence, the user is asked to control only
719 the steering δ .
720

For each person, we train a two-hidden-unit HCS
721 model with $n_s = n_c = 3$, and $n_r = 15$; because we
722 are keeping P_f constant, the total number of inputs for
723 the neural network models is therefore $n_i = 42$.
724

Now, we would like to improve the tight-turning
725 performance criterion J_2 defined in Eq. (38) for each
726 of the trained models. In the SPSA algorithm, we em-
727 pirically determine the following values for the scaling
728 sequences $\{\alpha_k\}$, $\{c_k\}$:
729

$$\alpha_k = \frac{0.000001}{k}, \quad k > 0, \quad (70) \quad 730$$

$$c_k = \frac{0.001}{k^{0.25}}, \quad k > 0. \quad (71) \quad 731$$

We also set the number of measurements per gradient
732 approximation in Eq. (63) to $p = 1$. Finally, denote J_2^k
733 as the criterion J_2 after iteration k of the optimization
734

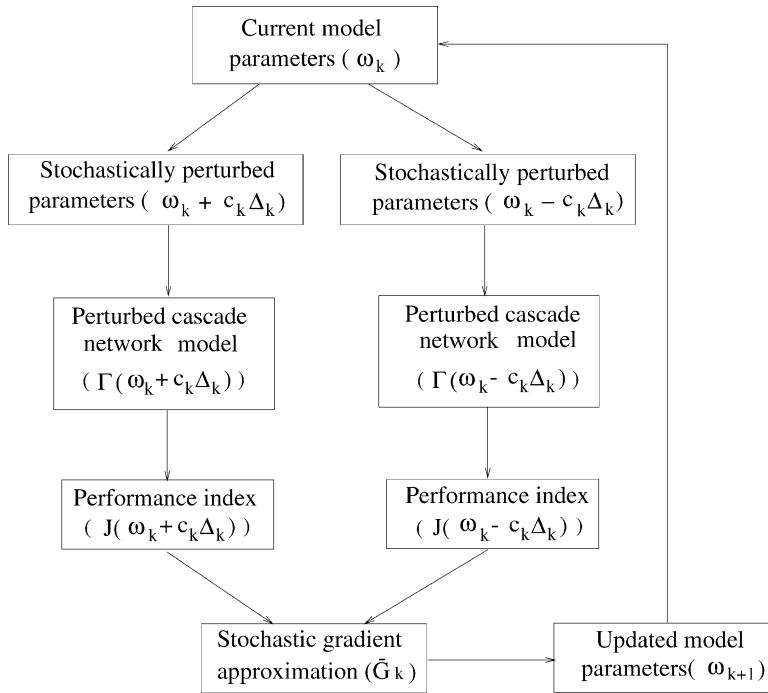


Fig. 6. Stochastic optimization algorithm.

735 algorithm; hence, J_2^0 denotes the performance measure
 736 prior to any optimization.

737 Fig. 7 plots $100 \times J_2^k / J_2^0$, $0 \leq k \leq 60$, for the HCS
 738 models corresponding to Dick and Harry. We note that
 739 for Dick, the performance index J_2 improves from
 740 $J_2^0 = 25.5$ to $J_2^{60} = 12.5$. For Harry, the improvement
 741 is less dramatic; his model's performance index im-
 742 prove from $J_2^0 = 17.7$ to $J_2^{60} = 16.1$. Thus, the per-
 743 formance optimization algorithm is able to improve
 744 the performance of Dick's model by about 55% and
 745 Harry's model by about 9% over their respective ini-
 746 tial models. In other words, the optimized models ne-
 747 gotiate tight turns better without running off the road.
 748 From Fig. 7, we observe that most of the improvement
 749 in the optimization algorithm occurs in the first few
 750 iterations. Then, as $k \rightarrow \infty$, J_2^k converges to a stable
 751 value since $\alpha_k, c_k \rightarrow 0$. Clearly, the extent to which
 752 we can improve the performance in the trained HCS
 753 models depends on the characteristics of the origi-
 754 nal models. Dick's initial performance index of $J_2^0 =$
 755 is much worse than Harry's initial performance
 756 index of $J_2^0 = 17.7$. Therefore, we would expect that
 757 Dick's initial model lies further away from the near-

758 est local minimum, while Harry's model lies closer to 758
 759 that local minimum. As a result, Harry's model can be 759
 760 improved only a little, while Dick's model has much 760
 761 larger room for improvement. 761

7.2. Discussion

762
 763 Below we discuss some further issues related to per-
 764 formance optimization including: (1) the effect of per-
 765 formance optimization on other performance criteria,
 766 and (2) the similarity of control strategies before and
 767 after performance optimization.

768 First, we show how performance improvement with
 769 respect to one criterion can potentially affect perfor-
 770 mance improvement with respect to a different cri-
 771 terion. Consider Dick's HCS model once again. As
 772 we have already observed, his tight turning perfor-
 773 mance criterion improves from $J_2^0 = 25.5$ to $J_2^{60} =$
 774 12.5. Now, let J_1^0 denote the obstacle avoidance per-
 775 formance criterion for Dick's initial HCS model, and
 776 let J_1^{60} denote the obstacle avoidance performance cri-
 777 terion for Dick's HCS model, optimized with respect
 778 to J_2 . Fig. 8 plots the maximum offset from the road

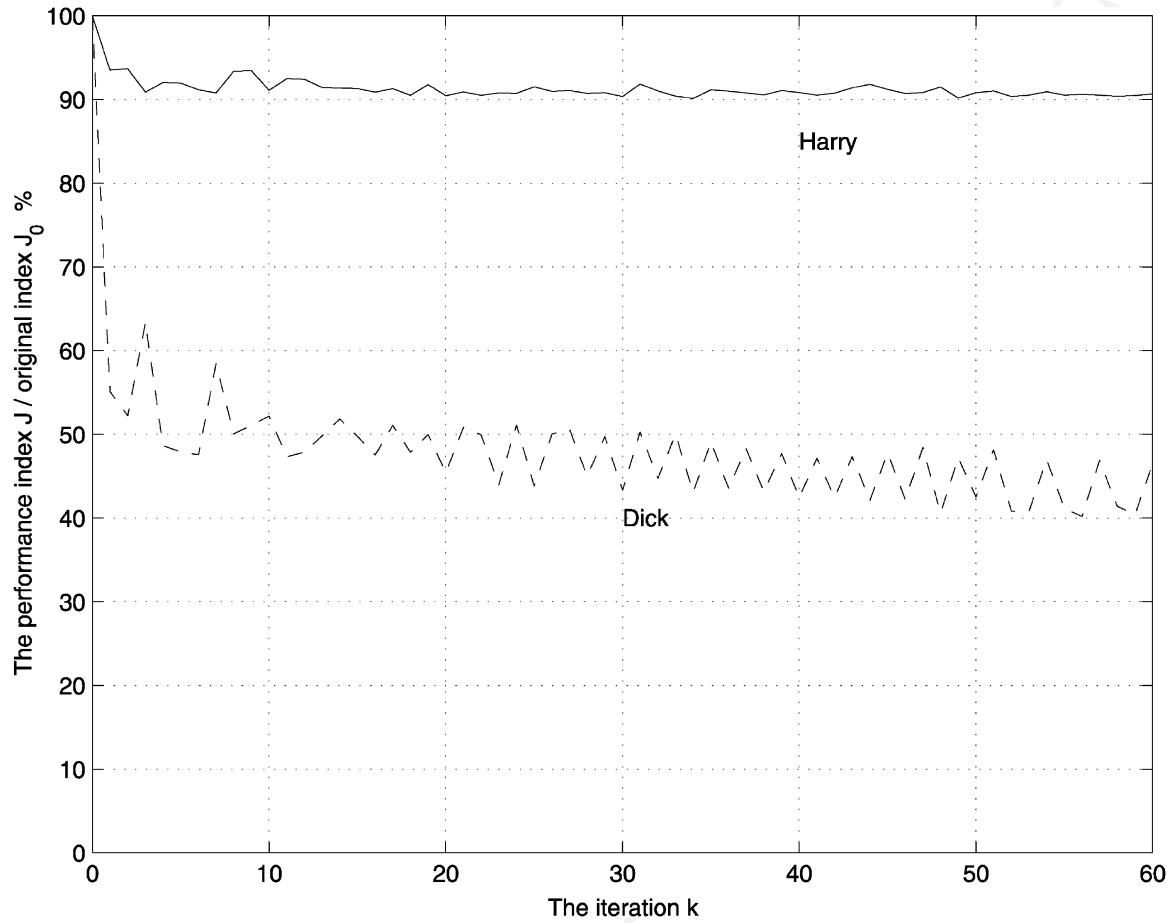


Fig. 7. Performance improvement in stochastic optimization algorithm.

779 median as a function of the obstacle detection distance
 780 τ for Dick's initial model (solid line) and Dick's op-
 781 timized model (dashed line), where $v_{\text{initial}} = 35$.
 782 From Fig. 8, we can calculate J_1^0 and J_1^{60} :

$$783 J_1^0 \approx \frac{42}{35} = 1.20, \quad (72)$$

$$784 J_1^{60} \approx \frac{36}{35} = 1.03. \quad (73)$$

785 Thus, Dick's optimized HCS model not only improves
 786 tight turning performance, but obstacle-avoidance per-
 787 formance as well. This should not be too surprising,
 788 since the tight-turning and obstacle-avoidance behav-
 789 iors are in fact tightly related. During the obstacle
 790 avoidance maneuver, tight turns are precisely what is
 791 required for successful execution of the maneuver.

792 Second, we would like to see how much per-
 793 formance optimization changes the model's control
 794 strategy away from the original human control ap-
 795 proach. To do this we turn to a hidden Markov
 796 model-based similarity measure [9] developed for
 797 comparing human-based control strategies. Let H_x
 798 denote the human control trajectory for individual x ,
 799 let M_x denote control trajectories for the unoptimized
 800 model corresponding to individual x , and let O_x
 801 denote control trajectories for the optimized model
 802 (with respect to J_2) corresponding to individual x .
 803 Also let $0 \leq \sigma(A, B) \leq 1$ denote the similarity mea-
 804 sure for two different control trajectories A and B ,
 805 where larger values indicate greater similarity, while
 806 smaller values indicates greater dissimilarity between
 807 A and B .

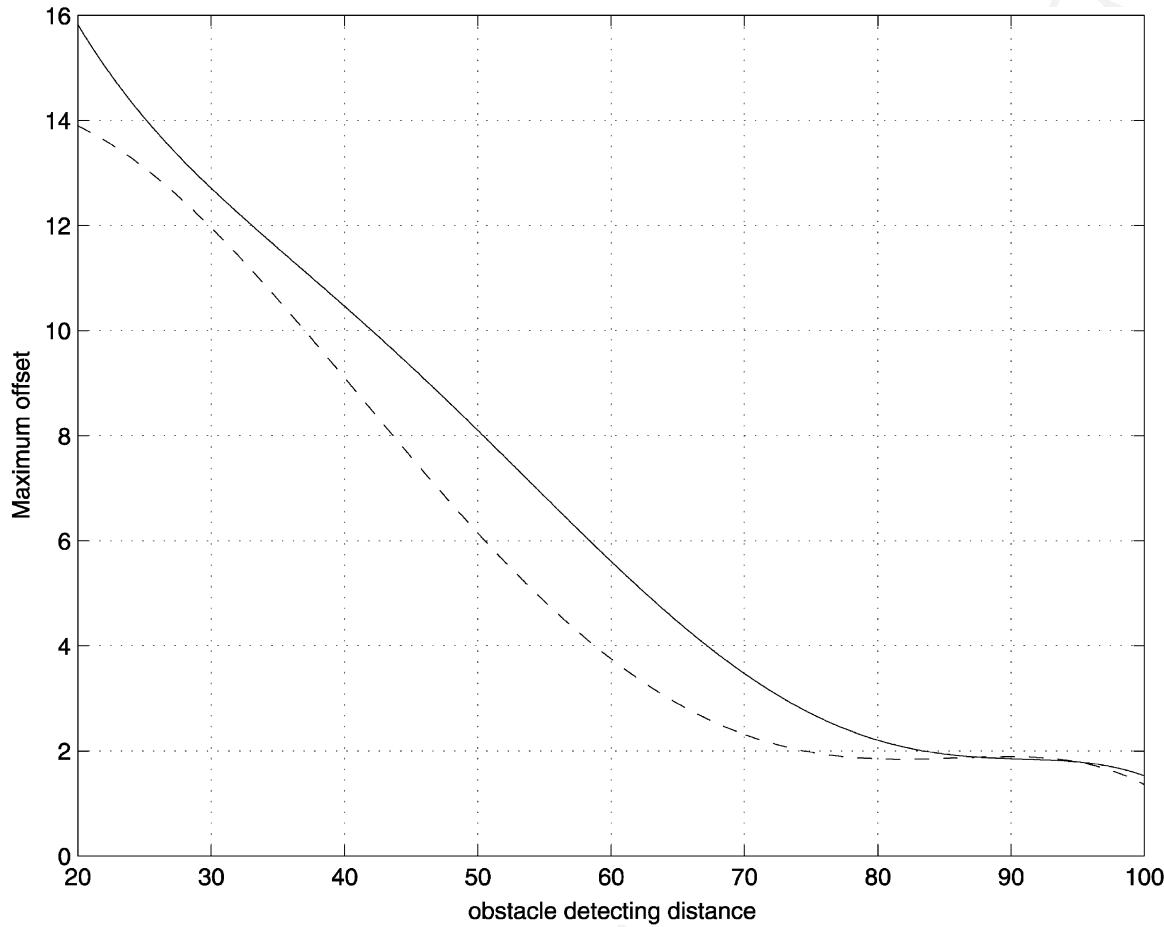


Fig. 8. Maximum lateral offset for original (solid) and final (dashed) HCS models.

808 For each individual, we can calculate the following
 809 three similarity measures:

810 $\sigma(H_x, M_x)$, (74)

811 $\sigma(H_x, O_x)$, (75)

812 $\sigma(M_x, O_x)$. (76)

813 Table 2 lists these similarities for Dick and Harry.
 814 From our experience with this similarity measure, we
 815 note that all the values in Table 2 indicate significant
 816 similarity. Specifically, the similarities for $\sigma(H_x, O_x)$
 817 (0.434 and 0.469) suggest that even after performance
 818 optimization, a substantial part of the original HCS
 819 is preserved. Furthermore, the other similarity mea-
 820 sures are consistent with the degree of performance

821 improvement in each case. For Dick, where a substan-
 822 tial performance improvement of 55% was achieved,
 823 the similarity between the initial and optimized mod-
 824 els is far less than Harry, where the performance im-
 825 provement was more incremental.

826 We conclude with one final observation. Pomer-
 827 leau's work on vision-guided autonomous driving

Table 2
 Control strategy similarity

	$x = \text{Dick}$	$x = \text{Harry}$
$\sigma(H_x, M_x)$	0.762	0.573
$\sigma(H_x, O_x)$	0.434	0.469
$\sigma(M_x, O_x)$	0.544	0.823

[11], while impressive and ground-breaking, does not directly address the issues we have investigated here. Pomerleau learned to map the view of the road ahead to an appropriate steering direction, first through a neural network [11] and later with a statistical algorithm known as RALPH [12]. He does not model or analyze the dynamics inherent in human control strategies; rather, he very successfully solves the computer-vision problem of correctly estimating the position of the road in a video stream of data. Therefore, we view our work as complementary to Pomerleau's work, in that both research aspects are desirable in an eventual autonomous driving system.

8. Conclusion

Modeling HCS analytically is difficult at best. Therefore, an increasing number of researchers have resorted to empirical modeling of HCS as a viable alternative. This in turn requires that performance criteria be developed, since few if any theoretical guarantees exist for these models. In this paper, we develop several such criteria for the task of human driving, including criteria based on event analysis and criteria based on inherent analysis. We model human driving using the cascade neural network architecture, and evaluate the performance of driving models derived from different individuals using the developed performance criteria. Based on the criteria, we have proposed an iterative optimization algorithm for improving the performance of learned models of HCS. The algorithm keeps the overall structure of the learned models in tact, but tunes the parameters (i.e. weights) in the model to achieve better performance. It requires no analytic formulation of performance, only two experimental measurements of a defined performance criterion per iteration. We have demonstrated the viability of the approach for the task of human driving, where we model the HCS through cascade neural networks. While performance improvements vary between HCS models, the optimization algorithm always settles to stable, improved performance after only a few iterations. Furthermore, the optimized models retain important characteristics of the original HCS.

Acknowledgements

This work is supported in part by Hong Kong Research Council Grant No. CUHK519/95E, CUHK-4138/97E and Carnegie Mellon University.

References

- [1] H. Asada, S. Liu, Transfer of human skills to neural net robot controllers, *Proceedings of the IEEE International Conference on Robotics and Automation* 3 (1991) 2442–2447.
- [2] H. Friedrich, M. Kaiser, R. Dillman, What can robots learn from humans? *Annual Reviews in Control* 20 (1996) 167–172.
- [3] D.E. Goldberg, *Genetic Algorithms in Search, Optimization and Machine Learning*, Addison-Wesley, Reading, MA, 1989.
- [4] M. Kaiser, Transfer of elementary skills via human–robot interaction, *Adaptive Behavior* 5 (4) (1997) 249–280.
- [5] H. Hatwal, E.C. Mikulcik, Some inverse solutions to an automobile path-tracking problem with input control of steering and brakes, *Vehicle System Dynamics* 15 (1986) 61–71.
- [6] R.A. Hess, Human-in-the-loop control, in: W.S. Levine (Ed.), *The Control Handbook*, CRC Press, Boca Raton, FL, 1996, pp. 1497–1505.
- [7] U. Kramer, On the application of fuzzy sets to the analysis of the system driver-vehicle-environment, *Automatica* 21 (1) (1985) 101–107.
- [8] M.C. Nechyba, Y. Xu, Human control strategy: abstraction, verification and replication, *IEEE Control Systems Magazine* 17 (5) (1997) 48–61.
- [9] M.C. Nechyba, Y. Xu, Stochastic similarity for validating human control strategy models, *Proceedings of the IEEE Conference on Robotics and Automation* 1 (1997) 278–283.
- [10] M.C. Nechyba, Y. Xu, Cascade neural networks with node-decoupled extended Kalman filtering, *Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation* 1 (1997) 214–219.
- [11] D.A. Pomerleau, *Neural Network Perception for Mobile Robot Guidance*, Kluwer Academic Publishers, Boston, 1993.
- [12] D.A. Pomerleau, T. Jochem, Rapidly adapting machine vision for automated vehicle steering, *IEEE Expert* 11 (2) (1996) 19–27.
- [13] W.H. Press, et al., *Numerical Recipes in C*, 2nd Edition, Cambridge University Press, Cambridge, 1992.
- [14] J. Song, Y. Xu, M.C. Nechyba, Y. Yam, Two measures for evaluating human control strategy, *Proceedings of the IEEE Conference on Robotics and Automation* 3 (1998) 2250–2255.
- [15] J.C. Spall, Multivariate stochastic approximation using a simultaneous perturbation gradient approximation, *IEEE Transactions on Automation Control* 37 (3) (1992) 332–341.
- [16] M. Sugeno, T. Yasukawa, A fuzzy-logic-based approach to qualitative modeling, *IEEE Transactions on Fuzzy Systems* 1 (1) (1993).

30

Yangsheng Xu received his Ph.D. from the University of Pennsylvania in Robotics. He is currently Professor and Chairman of the Department of Automation and Computer-Aided Engineering at the Chinese University of Hong Kong (CUHK). Before joining CUHK, he was a faculty member at the Robotics Institute, Carnegie Mellon University, where he was working on space robotics, zero-gravity systems, robot design and control, and human skill learning. Recently, he has been working on microsystems, wearable robots and dynamically stable systems. He has published over 180 papers and has served on the editorial board of the IEEE Transactions on Robotics and Automation and the Journal of Automation. He has also served on various advisory boards to industry and government organizations in Hong Kong, US, Japan, Korea, mainland China and the United Nations. He is a Fellow of HKIE.

31

Jingyan Song is an Associate Professor in the Department of Automation at Tsinghua University, Beijing. He received his Ph.D. in systems engineering and engineering management at the Chinese University of Hong Kong (CUHK) in 1999. His current research interests include machine learning, robotics, intelligent control, neural networks and intelligent transportation systems.

32

Michael C. Nechyba received his B.S. in electrical engineering at the University of Florida in 1992, and his Ph.D. in robotics at Carnegie Mellon University in 1998. He is currently an Assistant Professor in the Department of Electrical and Computer Engineering at the University of Florida, where he serves as associate director of the Machine Intelligence Laboratory. His current research interests include real-time computer vision, machine learning, human-centered robotics, neural networks and hidden Markov models. Current research projects include vision-based activity tracking and vision-based flight autonomy for micro-air vehicles.

33

Yeung Yam received his B.S. and M.S. degrees in physics from the Chinese University of Hong Kong (CUHK) and the University of Akron, respectively, in 1975 and 1977, and his M.S. and Sc.D. degrees in aeronautics and astronautics from the Massachusetts Institute of Technology, Cambridge, in 1979 and 1983, respectively. He is currently Associate Professor in the Department of Automation and Computer-Aided Engineering at the CUHK. Before joining the university in 1992, he was with the Control Analysis Research Group of the Guidance and Control Section at Jet Propulsion Laboratory, Pasadena, CA. His research interests include dynamics modeling, control analysis and design, and system identification.