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Abstract

Modeling human control strategy (HCS) is becoming an increasingly popular paradigm in a number of different research
areas, ranging from robotics and intelligent vehicle highway systems to expert training and virtual reality computer games.
Usually, HCS models are derived empirically, rather than analytically, from real-time human input—output data. While these
empirical models offer an effective means of transferring intelligent behaviors from humans to robots and other machines,
there is a great need to develop adequate performance criteria for these models. It is our goal in this paper to develop several
such criteria for the task of human driving. We first collect driving data from different individuals through a real-time graphic
driving simulator that we have developed, and identify each individual’s control strategy model through the flexible cascade
neural network learning architecture. We then define performance measures for evaluating two aspects of the resultant HCS
models. The first is based on event analysis, while the second is based on inherent analysis. Using the proposed performance
criteria, we demonstrate the procedure for evaluating the relative skill of different HCS models. Finally, we propose an iterative
algorithm for optimizing an initially stable HCS model with respect to independent, user-specified performance criteria, by
applying the simultaneously perturbed stochastic approximation (SPSA) algorithm. The methods proposed herein offer a
means for modeling and transferring HCS in response to real-time inputs, and improving the intelligent behaviors of artificial
machines. © 2002 Published by Elsevier Science B.V.

Keywords: Human control strategy; Simultaneously perturbed stochastic approximation; Node-decoupled extended Kalman filtering

1. Introduction cess, developing good analytic models of human aes
tions, however, tends to be quite difficult, if not im-z7

HCS models, which accurately emulate dynamic possible. Therefore, recent work in modeling HCSs
human behavior, find application in a number of re- has focused on learning empirical models, throughy
search areas ranging from robotics to the intelligent e.g., fuzzy logic [7,16], and neural network techniques
vehicle highway system. Because human control strat- [1,8,11]. See [2,4,6,8], for detailed surveys of the hus

egy (HCS) is a dynamic, nonlinear, stochastic pro- man modeling literature. 42

Since most HCS models are empirical, few if anys
* Corresponding author. guarantees exist about their theoretical performance.
E-mail address; nechyba@mil.ufl.edu (M.C. Nechyba). In previous work, a stochastic similarity measuress
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which compares model-generated control trajectories the learned model, and will consequently be less than
to the original human training data, has been proposed optimal. Furthermore, control requirements may difes
for validating HCS models [9]. While this similarity  fer between humans and robots, where stringent powser
measure can ensure that a given HCS model ade-or force requirements often have to be met. A givesr
guately captures the driving characteristics of the hu- individual's performance level, therefore, may or mays
man operator, it does not measure a particular model’s not be sufficient for a particular application. 99
skill or performance. In other words, it does not (nor Hence, in this paper, we not only consider theo
can it) tell us which model is better or worse. Thus, problem of performance evaluation, but the additionah
performance evaluation forms an integral part of HCS problem of performance optimization. We propose ase
modeling research, without which it becomes impossi- iterative optimization algorithm, based on simultaness
ble to rank or prefer one HCS controller over another. ously perturbed stochastic approximation (SPSA), far
Moreover, only when we have developed adequate improving the performance of learned HCS modelss
performance criteria, can we hope to optimize the HCS This algorithm leaves the learned model’s structure
models with respect to those performance criteria. in tact, but tunes the parameters of the HCS modehin
In general, skill or performance can be defined order to improve performance. It requires no analyties
through a number of task-dependent as well as formulation of performance, only two experimentabs
task-independent criteria. Some of these criteria may measurements of a user-defined performance crite-
conflict with one another, and which is most appro- rion per iteration. The initial HCS model serves asia
priate for a given task depends in part on the specific good starting point for the algorithm, since it already?
goals of the task. Overall, there are two approaches generates stable control commands. 113
for defining performance criteria: (1) event analysis In this paper, we first introduce the dynamic graphics
and (2) inherent analysis. driving simulator from which we collect human contis
In event analysis, we examine performance within trol data and with which we investigate the modeiss
the context of a some event. Consider the task of hu- ing and evaluation of human control strategies. We
man driving, e.g., For this task we can define any then show how we model a given individual's drivtis
number of performance criteria tied to specific events. ing control strategies using the flexible cascade neural
In preliminary work [14], e.g., two such event-based network learning architecture. Next, we develop angb
criteria were defined, one based on the HCS model’s test performance criteria specifically related to the task
ability to avoid sudden obstacles, and the second basedof human driving, where we apply both event-based;
on the HCS model’s ability to negotiate tight turns in as well as inherent analysis. We then propose theiis
a safe and stable manner. Each of these performanceerative optimization algorithm for improving perfori24
measures tests the HCS model’s performance outsidemance in the HCS models. Finally, we describe and
the range of its training data. discuss some experimental results of the optimizatioa
In inherent analysis, we examine a given model’s algorithm. 127
behavior on a more global scale. Once again, consider
the task of human driving. For a given HCS model, we
might be interested in such measures as average speed. Experimental setup 128
passenger comfort, driving smoothness, and fuel ef-
ficiency. These measures are not based on any sin- HCS, as we define the term, encompasses a largaset
gle event, but rather are aggregate measures of per-of human-controlled tasks. It is neither practical nago
formance. In other words, they measure the inherent possible to investigate all of these tasks comprehes-
characteristics of a particular HCS model. sively. In this paper, we therefore look towards a praosz
Performance evaluation is, however, only one part totypical control application the task of human driwss
of the solution for effectively applying models of HCS. ing to collect, model and analyze control strategy data
When performing a specified task, a human will often from different human subjects. 135
commit occasional errors and deviate randomly from  Within the driving domain, we have a choice beass
some nominal trajectory. Any empirical learning algo- tween simulated driving (i.e. driving through a simesz
rithm will necessarily incorporate those problems in ulator) and real driving. For our purposes, the ideab
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control task should embody several desirable quali- Thus, for this work, we collect human driving datas?
ties. First, during the execution of the control task, the from a real-time graphic simulator, whose interfaaes
human subject must not be injured or harmed in any is shown in Fig. 1. In the simulator, the human opss
way. Second, the human subject should have prior ex- erator has independent control of the vehicle’s steem
periences that will help him complete the control task ing as well as the brake and gas pedals. The simu-
successfully. Third, the control task should pose a sig- lated vehicle’s dynamics are given by the following?2
nificant challenge to the human controller. Finally, the second-order nonlinear model [5]: 193
task shpuld be complex enpugh thgt iF gllows forvari-  pps g Fet — It Fer
ations in strategy across different individuals. 0= 7 : (1) 104
Let us examine real driving in the context of these
four criteria (safety, prior experience, control difficulty ; _ Pté + Fet + Fr

— v,,é — (Sgnv§)cdv§, (2) 195

and control strategy variations). First, unless we ask m

individuals to drive very conservatively, it i; diffipult . P+ Py — Ftd ) )

to guarantee the safety of our human subjects in real Vo = ——— —— + vg6 — (Sgnvy)cqvy, 3 106
driving experiments. If we do ask them to drive con- _

servatively, however, the control task will not be very [x } — [ cosy  sind } [Vé ] ()
challenging; moreover, variations between individuals [ ¥ —sing cosd || v, |’ 197
will be somewhat muted. Finally, with respect to prior ere 108

experience, real driving measures up to the qualities _
we seek in our control task. 6 = angular velocity of the car (5) 199
Simulated driving, on the other hand, differs from

real driving in a number of important respects. Most v; = laterglvelgcity gythe car (6) 200
importantly, the human subject poses no threat to him- v, = longitudinal velocity of the car (7) 201
self or others while driving in the simulator, no mat- 202

ter how recklessly he chooses to drive. Consequently, (sgns)a? &3
. o i . sgnd)a;
unlike in real driving, we can challenge individuals to Fer = wFx ((xk _ 2 Tk k)

drive near the edge of their abilities. This produces 3 27

203

driving control strategies that are richer and more com- > >

plex than their real counterparts. Because of this in- x\/l __ B + Ly ke{fr} (8)
creased complexity, the demonstrated control strate- (WFx)? 2’ U 204
gies will potentially exhibit greater variations from

one individual to the next. Finally, while human sub- = Ckak7 kelfr), 9)
jects may not be familiar with respect to a specific wFx 205

driving simulator prior to testing, they can, as experi-

enced drivers, transition from real driving to simulated ; = fronttire slip angle= § — M (10)
driving with relative ease and efficiency. Vg 206
With respect to our goal of modeling and analyzing 16—

human control strategies, simulated driving embod- «, = rear tire slip angle= = (11)

ies more of the qualities which we desire. Thus, we Vn 207
choose simulated driving as our primary control task. 208
We emphasize that in choosing simulated driving, we _ mgl — (Pr + P)h

do not suggest that simulation is in general better than = I +1r ’ 209
reality for experimentation. We only suggest that since mgl + (Pt + Py)h

the focus of this paper is the human control strate- Fo = I +1 ’ 12) 210

gies themselves, a simulated task can be appropriate if

it bears substantial resemblance to a comparable realg j, = pody-relative laterallongitudinal axis ~ (13) 211
task. We believe that our driving simulation environ-

ment does meet that criterion. cf, cr = 5000Q 64 000 N'rad, (14) 212
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Fig. 1. The driving simulator gives the user a perspective preview of the road ahead. The user has independent control of the steering,
break, and accelerator (gas).

(15) and the controls are given by 222

—8000N< P < 4000N (19) 223

213 c¢q = air resistance= 0.0005n L,

EES

216

217

218
219

220

221

whereu = coefficient of friction which is equal to 1.

Fix = frictionalforces j € {&,n}, ke {f r},

03
b= { ko Px,

m = 1500 kg
If =1.25m

P >0,

P <0 kn = 0.34,

1 = 2500 kg 2,
lr=15m,  h=05m,

(16)

7)

(18)

—0.2rad< § < 0.2rad (20) 224

where P; is the longitudinal force on the front tireszes
ands the steering angle. 226
We ask each individual to navigate across severad
randomly generated roads, which consist of a sequere
of: (1) straight-line segments, (2) left turns, and (3)o
right turns. The map in Fig. 1, e.g., illustrates one rarso
domly generated 20 km road for which human driving:
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data was recorded. Each straight-line segment as wellinputs are

as the radius of curvature for each turn range in length
from 100 to 200 m. Nominally, the road is divided into
two lanes, each of which has widthh= 5m. The hu-
man operator’s view of the road ahead is limited to
100 m. Finally, the entire simulator is run at 50 Hz.

3. HCS modeling

In this paper, we choose the flexible cascade neural ¥ - X2 ... x(20). y(1). y@)...... y ()}
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278
{ve(k —ng), ..., ve(k — 1), ve(k), vy(k —ng), ..., 279
vk — 1), vy (k),0(k —ng), ... ,0(k—1),0(k)}, 280
(21) 28
{6tk —ne),...,8(k—1),8(k), Ps(k —ng), ..., 283
Pr(k — 1), Pr(k)}, (22) 284
285
286
(23) o287

network architecture with node-decoupled extended
Kalman filtering (NDEKF) [10] for modeling the hu-

man driving data. We prefer this learning architecture
over others for a number of reasons. First, no a priori

model structure is assumed; the neural network au-

tomatically adds hidden units to an initially minimal

network as the training requires. Second, hidden unit
activation functions are not constrained to be a partic-
ular type. Rather, for each new hidden unit, the incre-
mental learning algorithm can select that functional
form which maximally reduces the residual error over

wherens is the length of the state histories amgdthe 288
length of the previous command histories presentse
to the network as input. For the road description, we
partition the visible view of the road ahead intp 201
equivalently spaced, body-relatie, y) coordinates 292
of the road median, and provide that sequence of cang
dinates as input to the network. Thus, the total numhes
of inputs to the network; is 295

ny = 3715 + 271(; + 2]’lr. (24) 296

the training data. Typical alternatives to the standard The two outputs of the cascade network #¢ + 297
sigmoidal function are sine, cosine, and the Gaussian 1) p;(x + 1)}. For the system as a whole, the cascazte
function. Finally, it has been shown that NDEKF, a neyral network can be viewed as a feedback controltes,

quadratically convergent alternative to slower gradi- \yhose two outputs control the vehicle. 300
ent descent training algorithms (such as backpropa-

gation) fits well within the cascade learning frame-
work and converges to good local minima in less time
[10].

The flexible functional form which cascade learn-
ing allows is ideal for abstracting human control
strategies, since we know very little about the un-
derlying structure of each individual's internal con-
troller. By making as few a priori assumptions as
possible in modeling the human driving data, we
improve the likelihood that the learning algorithm
will converge to a good model of the human control
data.

In order for the learning algorithm to properly
model each individual's HCS, the model must be pre-

4. Performance criteria based on event analysis 301
Once we have abstracted models of driving controb
strategies from the human control data, we would likes
to evaluate the skill or performance exhibited by these
models. The first set of performance measures thataxe
develop is based on the observation that, in real drigs
ing, obstacles such as rocks and debris can unexpsmwot-
edly obstruct a vehicle’s path and force drivers to react
rapidly. In order to gauge how well our learned modes
els would deal with these types of events, we defise
two related performance criteria. The first measuras
a model's ability to avoid obstacles, while the see:2

sented with those state and environmental variables ond measures a model’s capacity for negotiating tight

upon which the human operator relies. Thus, the in-
puts to the cascade neural network should include:
(1) current and previous state informatipsn, v,, 6},
(2) previous output (command) informatida, P;},
and (3) a description of the road visible from the
current car position. More precisely, the network

turns. 314

4.1. Obstacle avoidance 315

Obstacle avoidance is one important measurigng
stick for gauging a model’s performance. Since ogir?
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HCS models receive only a description of the road virtual path segments as [14], 335
ahead as input from the environment, we reformulate P

the task of obstacle avoidanceastual path follow- y = 4 ) (25) 546
ing. Assume that an obstacle appears a distance 8w 2

ahead of the driver’'s current position. Furthermore, and the corresponding sweep anglas, 337
assume that this obstacle obstructs the width of the /2 .

road (2w) and extends for a distanaé along the p=sin7t (—) = sin~t (2—> (26)
road. Then, rather than follow the path of the actual Y R %%

road, we wish the HCS model to follow the virtual As an example, consider an obstacle located 60 m 339
path illustrated in Fig. 2. This virtual path consists of: ahead of the driver's current position. For this ob4o
(1) two arcs with radius of curvatune, which offset stacle distance and = 5m, y evaluates to 92.5m.2a1
the road median laterally byu? followed by (2) a  This is less than the minimum radius of curvatueez
straight-line segment of length and (3) another two (100 m) that we allow for the roads over which we:s
arcs with radius of curvaturg which return the road  collect our human control data. Hence, a particsss

median to the original path.

lar HCS model may deviate significantly from thess

By analyzing the geometry of the virtual path, we center of the road during the obstacle avoidanee
can calculate the required radius of curvatyref the maneuver. 347

Road

Fig. 2. Virtual path for obstacle avoidance.
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Below, we derive the important relationship be-
tween the obstacle detection distancand a model’s
corresponding maximum lateral deviatioh. First,
we takeN measurements aof for different values of
7, where we denote thidh measurement as;, ¥;).
Next, we assume a polynomial relationship of the form
Vi = apt + apflfip_l +---t+oT +ao+e;

= FiT(x + e, (27)

wheree; is the additive measurement error. We can
then write

Y1 = FlTrot + e1,

Yo =1, 0+ e,

. (28)
AT

Yy = FNC( +en,

or, in matrix notation,

U ="Ia+e, (29)
where ¥ = [y, V2, ... ,wN]T is the observation

vector,I” = [I'1, I», ... , I'y]" the regression matrix,
ande = [e1, e, ... , en]T the error vector.

Assuming white noise properties fer(E{e;} = 0
andE{e;e;} = afai,- for all i, j), we can minimize the
least-squares error criterion,

y 1+ 1 2 1 ANT ~
V) == e6== gg=zW—-Ta) (¥ —-Ta)
2 2 2
k=1
(30)
with the optimal, unbiased estimaig
a=C"N 'y (31)

assuming that{ ' I") is invertible.

In this relationship, as the obstacle detection dis-
tance t decreases, the maximum lateral offset in-
creases [14]. Consequently, for a given model and
initial velocity vinitial, there exists a valuenin below
which the maximum offset error will exceed the lane
width w. We define the driving control for obstacle
distances abovenmin to be stable; likewise, we de-
fine the driving control to be unstable for obstacle
distances belownin.

Now, we define the following obstacle avoidance
performance criterion'y:

Tmin

J1=

(32

Vinitial

where vinitia) IS the velocity of the vehicle when thesss
obstacle is first detected. Thig criterion measures toss7
what extent a given HCS model can avoid an obstas
cle while still controlling the vehicle in a stable marsse
ner. The normalization byinitial iS required, becausesso
slower speeds increase the amount of time a driver bas
to react and therefore avoiding obstacles becomes that
much easier. 393
4.2. Tight turning 394
Here we analyze performance by how well a partigs
ular HCS model is able to navigate tight turns. Firsge
we define a special road connection consisting of taw
straight-line segments connected directly (withoutsas
transition arc segment) at an angleFor small val- 399
ues of¢, each HCS model will be able to successso
fully drive through the tight turn; for larger values ofo1
¢, however, some models will fail to execute the turo2
properly by temporarily running off the road or losingos
complete sight of the road. 404
Fig. 3 illustrates, e.g., how one HCS model transis
tions through a tight turn fot =57 /36 rad. Fig. 3(a) 406
plots the two straight-line segments connected at an
angle ¢. The solid line describes the road mediams
while the dashed line describes the actual trajectavy
executed by Harry’s HCS model. The length of theo
initial straight-line segment is chosen to be long:
enough (150 m) to eliminate transients by allowing2
the model to settle into a stable state. This is equixs
alent to allowing the vehicle to drive on a straight4
road for a long period of time before the tight turms
appears in the road. Fig. 3(b) plots the lateral offsat
from the road median during the tight-turn maneut?
ver. Here, Harry’s model maximally deviates abouts
8m from the road center. Both before and after the
turn, the lateral offset converges to zero. Fig. 3(ep
plots the commanded steering angle for Harry’s HG&A
model, and Fig. 3(d) plots the corresponding change
in velocity. Models for other drivers yield similars23
results. 424
Now, define the maximum lateral offset error correzs
sponding to a tight turn with angleto bevy. We can 426
determine a functional relationship betwegrand¢ 427
for a given HCS model. First, we taklf measure- 428
ments of p for different values of¢ where we de- 429
note theith measurement a&;, ¥;). Then, we as- 430
sume a polynomial relationship betweg¢rand¢ such 431
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Fig. 3. Example model driving behavior through a tight turn.

that,
Vi = apll +ap 1P T a1l a0t e,
(33)

The least-squares estimate of the modgli§ given

by

&=y, (34)

where

U=y v, ynlT, (35)
o o oal

. /S 1

S A (36)
.17 p.—l
‘v Sw eoov 1

& =lap, ap-1,..., 0] (37) 442

Previously, we have observed that the linear coefficiemt
a1 dominates the polynomial relationship in Eq. (334
[14]. Hence, as a first-order approximation, we defing
the following tight-turning performance criteriaf»: 446

Jo = og. (38) 447

5. Performancecriteria based on inherent analysis 448

In the previous section, we introduced performanee
criteria based on specific events. In this section, wee
now will investigate other performance criteria whicks1
evaluate the inherent characteristics of HCS models
through analysis of the whole driving process. 453
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5.1. Passenger confort Y

(Xs5Ys)

Passenger comfort is one important criterion for
evaluating driving control strategies. Suppose a per-
son were sitting in a car driven by a learned HCS
model. His/her comfort, while a combination of
many factors, would be primarily influenced by the
forces that that passenger experiences while in the
car. Everytime the HCS model would change the
applied force Pi on the car, the passenger would
feel a longitudinal force. Similarly, everytime the
HCS model would change the steeridgthe pas-
senger would experience a lateral force. Below we X
qguantify passenger comfort as a function of the ap-
plied forces on the vehicle under HCS model con-
trol.

Consider the vehicle shown in Fig. 4. Let the config-
uration of the system be described by the mass centercentrifugal force, given by 495
of the vehicle(x, y), the angle® between the positive

Gy (xy)

Fig. 4. The coordinate configuration of the vehicle and passenger.

2

Y-axis and the axis of symmetry of the car, and the vg 1 .5 5 5.5 5.9 -
location of the passengér (xs, ys). Furthermore, de- g — E[x + 37+ 5107 4 5507 + 25210 (¢ cos9 497
fine the distance fron§ to the axis of symmetry as —y8iN6) + 2500 (% Sinf + y cosb)]. (42) 498
and define the distance frofto the center of mass
along the axis of symmetry as. The centrifugal force generally points in the directione
The velocity of the pointS as a function of the  of the negative lateral acceleration of the vehicle. By
coordinate velocities is given by combining the vehicle and centrifugal acceleratiorss;
s o9 » ) L we then arrive at the following expression for the toted2
vg = x5 + y§ = (X + 516 COSO + 520 SIN0) acceleration at point S: 503
+(y — 516 SiNG + 506 cOSH)? 5
= %% 4 5202 cos?0 + 5262 sin? 510 ; %
+250%6 SINO + 2515062 COSH SING + 72 504
+5262sin%6 4 5262 cos?0 — 25176 sing In defining a “comfort” performance criteriofs, we so0s
425296 COSH — 2515202 SING COSH will normalize this accelt_aratior_1 felt b_y the passengeus
9 .2 2:3 2.9 . by the speed of the vehicle, since higher speeds gen-
= X7+ Y7+ 5707 + 52607 + 2510 (4 coSH erate higher accelerations through a given curve: sos
—ysing) + 2520 (x sind + y cosh). (39)
Jg = —mean @4 .
As we described in Section 2, the longitudinal accel- Umean
eration of the vehicle is given by Thus, J3 is defined as the ratio of average acceleratian
. P+ Pr— Fgfd . 2 over average speed for a given road. 511
Un = m +ve0 — (Sgnuy vy, (40) Let us now look at how different HCS models pesi2

and the lateral acceleration of the vehicle is given by orm With respect to this performance criterion. Firstjs
we collect driving data from three human operatorss+

= Po+ Fet + Fer) vy — (ngé)cdvgz- (41) Tom, Dick and Harry. After training an HCS model fos1s
m each individual, we then run that person’s model ovas

Now, the accelerations experienced by the passengerthree different roads (1, 2, and 3). Each run takes ap-
include not only the vehicle’s acceleration, but also the proximately 15 min over the 20 km roads. That meass

Vg
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Table 1
The statistic of the acceleration
Data name a>g(9.8m/) a > 2¢(196m/s) a > 3g (29.4m/S) » %‘
mean
Tom1-A 28.20% 3.85% 0.39% 0.2411
Tom1-B 20.99% 0.79% 0 0.2101
Tom2-A 19.11% 0.74% 0 0.2142
Tom2-B 18.00% 0.63% 0 0.2185
Tom3-A 22.15% 0.21% 0 0.2117
Tom3-B 25.76% 0.31% 0 0.2196
Dick1-A 36.43% 8.69% 1.63% 0.2938
Dick1-B 36.85% 6.79% 0 0.2625
Dick2-A 37.73% 8.87% 2.19% 0.2956
Dick2-B 37.25% 7.31% 0.43% 0.2721
Dick3-A 43.20% 15.17% 5.13% 0.3367
Dick3-B 43.35% 14.97% 4.61% 0.3307
Harryl-A 5.93% 0.48% 0 0.1662
Harryl-B 8.13% 1.30% 0.013% 0.1941
Harry2-A 1.16% 0 0 0.1302
Harry2-B 2.69% 0 0 0.1267
Harry3-A 4.93% 0 0 0.1552
Harry3-B 11.49% 1.28% 0 0.1757

that at a data collection rate of 50 Hz, each run con- prove to be quite uncomfortable. Calculating the sas
sists of approximately 45 000 time-sampled data vec- performance criterion for each model confirms thess
tors. In other words, for each model run, we collect qualitative observations. For Tom’s modd} varies s47
approximately 135 000 data vectors. After data collec- from 0.2101 to 0.2411, and the average is given byas
tion, we split the three runs for each driver into two
’ o =0.2192 45

groups A and B, where group A represents the first gpm (45) o4
half of each run, while group B represents the second For Dick’s model, J3 varies from 0.2625 to 0.3367 550
half of each run. Thus, e.g., ‘Tom1-A’ represents the and the average is given by 551
first half of Tom’s HCS model’s run over road 1. -

Table 1 gives some aggregate statistics for each of Japick = 0.2986 (46) 52
these model-generated data sets. Specifically, the tableFinally, for Harry’s model,J3 varies from 0.1303 to 553
lists the percentage of time that the acceleration in a 0.1941, and the average is given by 554
particular data set is larger than oge 2¢ and 3,
respectively. These percentages give us a rough idea Jattarry = 0.1508 (47) sss
about the comfort level of each model driver. If we We observe thafs is the smallest for Harry’s model ss6
average the percentages for each HCS model, we findand that that value is much smaller th&nfor Dick's ss7

that Tom’s model generates accelerations above onemodel. 558
g 22.36% of the time, accelerations above 209%
of the time, and accelerations abovg 3.065% of 5.2. Driving smoothness 559

the time. The same statistics for Dick's model are

39.14, 10.30 and 2.33%, respectively. Similarly, for  Another way to evaluate the smoothness of a give:n
Harry's model the statistics are 5.72, 0.51 and 0.00%, driver's control strategy is through frequency analys1
respectively. From these results, we would expect that sis of the instantaneous curvature of the road and tke
Harry’s HCS model offers the smoothest ride of the corresponding instantaneous curvature of the vehiclg's
three models, since it generates the smallest forces.path. As an HCS model steers the car along the ros,
Driving with Dick’s model, on the other hand, would the vehicle’s curvature will in general not be the sares
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as the that of the road. Below, we will use this dif-
ference between the two curvatures to evaluate the
driving smoothness of a given model in the frequency
domain. We will show that the resulting performance
measure yields consistent results with thepassen-
ger comfort performance criterion defined in the pre-
vious section.

Let us definai(k) as the instantaneous curvature of
the road at time step, and letz(k) be the instanta-
neous curvature of the vehicle’s path at time step
We can view the road’s curvaturgk) as the input to
the HCS model, and(k) as the output of the HCS
model.

To calculate the frequency response froto z, we
first partition the complete data infé groups, where
each group is of lengtlh. Hence, thekth element of
groupi is given by

ui(k) = ulk + (@ — L],

zi(k) = z[k + (i — DL],

i=12...,N;1<k<L. (48)

We also define the following convolutions for each
group of data':

1
Liy.(w) = ZUiGu)Uf Gw) = Z1U; Gw)] 1

1
Ly (w) = ZUi(jw)Zi*(jw), i=12...,N,
(49)
where
L .
Ui(jw) =Y ui(k) H e K, (50)
k=1
L .
Zi(jw) =Y zi(k)Hy e "k (51)

k=1
define the discrete Fourier transform [13] and,

21 (k — 1)]

H; = 0.54—0.46 cos
L-1

ke(l,2... L) (52)

defines the Hamming coefficients, which we include
to minimize the spectral leakage effects of data win-
dowing.

11
By summing up the terms in Eq. (50), 603
1 N
Sut(w) =— > Iy 1 (w), (53)
“ N ; ! 604
1 N
Swzr(w) =5 > L. (w), SO
i=1

we define the frequency responGgjw) for a given
HCS model as

. _ SUZ,L(jw)
G =5

Fig. 5 plots|G (jw)| for the HCS models correspondsos
ing to Tom, Dick and Harry, Each group of data cosio
responds to 40s( = 2000 at 50Hz), and the data11
for each model was collected over road 1. In Fig.em
the solid line corresponds to Tom, the dash-dotted line
corresponds to Dick, and the dashed line corresponds
to Harry. 615

Given the plots of G (jw)|, we now define the fol- s16
lowing smoothness performance criterion: 617

(56) 618

606
607

(55) 608

Jy = fdomain

where fgomaincorresponds to the domain frequency efs
each|G(jw)| curve. 620

We get the following smoothness results for the:
three models: 622

JHarry = 052 HZ, (57) 623
J7om = 0.66 Hz, (58) 624
Joick = 0.72 Hz (59) 625

Note that these results agree with tlig passenger 626
comfort criterion defined in the previous sectiomz7
Harry’s model was found to offer the best passenges
comfort, and here, his model is found to offer theo
smoothest ride. Similarly, Dick’s model was found teso
be the least comfortable and here, his model is fouszd
to be the least smooth. 632

6. Performance optimization 633

In Sections 4 and 5, we introduced performanes:
measures for evaluating the performance of our drigs
ing models. Below, we develop an algorithm faiss
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Fig. 5. PSD analysis with Harry (dashed), Dick (dash-dot), and Tom (solid).

optimizing a learned control strategy model with re- force requirements often have to be met. Thus, a given
spect to one of those (or for that matter, any other) individual's performance level may or may not be suéss
performance criterion. There are two primary rea- ficient for a particular application. 654
sons why this may be necessary in order to suc- Since an HCS model does offer an initially stabkss
cessfully transfer control strategies from humans to model, however, it represents a good starting poésat

robots. from which to further optimize performance. Let 657
First, while humans are in general very capable of
demonstrating intelligent behaviors, they are far less w =[w1 w2 -+ w,] (60) 658

capable of demonstrating those behaviors without oc-

casional errors and random (noise) deviations from denote a vector consisting of all the weights in theo
some nominal trajectory. The cascade learning algo- trained HCS model (w). Also let J(w) denote any e60
rithm will necessarily incorporate those in the learned one performance criterion (e.gly or J in the pre- es1
HCS model, and will consequently be less than opti- vious sections). We would now like to determines2
mal. Second, control requirements may differ between the weight vectoro* which optimizes the perfor-es3
humans and robots, where, e.g., stringent power or mance criterionJ (w). This optimization is difficult esa
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in principle because: (1) we have no explicit gradient Ay = [Aky, Akw, - - - Akwn]T, (67) 699
information

P and where A, is a vector of mutually indepen-7oo
G(w) = —J(w), (61) dent, mean-zero random variables (e.g., symmetnic

do Bernoulli distributed), the sequen¢d,} is indepen- 702
and (2) each experimental measurement/ @b) re- dent and identically distributed, and tHey}, {cx} 703
quires a significant amount of computation. We lack are positive scalar sequences satisfying the following
explicit gradient information, since we can only com- properties: 705
pute our performance measures empirically. Hence,
gradient-based optimization techniques, such as steep2 — 0: ¢k —> 0 ask — oo, (68) 706
est descent and Newton—Raphson [13] are not suit- O o\ 2
able. And because each performance measure evaluaz o = 00, Z (—k) < 0. (69)
tion is potentially computationally expensive, genetic k=0 k=0 \ K w7

optimization [3], which can requires many iterations
to converge, also does not offer a good alternative.
Therefore, we turn to SPSA to carry out the perfor-
mance optimization.

Stochastic approximation (SA) is a well-known it-

The weight vectorg is of course the weight repreos
sentation in the initially stable learned cascade modeh
Larger values op in Eq. (63) will give more accuraterio
approximations of the gradient. Fig. 6 illustrates the:

erative algorithm for finding roots of equations in the overall performance opfimization algorithm. s

presence of noisy measurements. SPSA [15] is a par-

ticular multivariate SA technique which requires as )

few as two measurements per iteration and shows fast/- EXPeriment 3

convergence in practice. Hence, it is well suited for

our application. Denotey; as our estimate ob* at 7.1. Results 14

the kth iteration of the SA algorithm, and lef; be

defined by the following recursive relationship: Here, we test the performance optimization algas
- rithm on control data collected from two individu7ie

wp+1 = 0k — kG, (62) als, Harry and Dick. In order to simplify the prob7i7

lem somewhat, we keep the applied force constant at

whereG;, is the simultaneously perturbed gradient ap- ’
k yPp 9 P P; = 300 N. Hence, the user is asked to control ontys

proximation at thekth iteration,

the steering. 720
_ 1 ; 9 For each person, we train a two-hidden-unit HCS
Gy = ; ZGk ~ %J(“))’ (63) model withng = nc = 3, andn; = 15; because wer22
i=1 are keepingPs constant, the total number of inputs forzs
ro1 ] the neural network models is therefore= 42. 724
Ak, Now, we would like to improve the tight-turningr2s
+) ) 1 performance criterion’, defined in Eq. (38) for eachrze
G = o =k Ay |- (64) of the trained models. In the SPSA algorithm, we ere?
2cy. ... pirically determine the following values for the scalingps
1 sequences$oy}, {cr}: 729
A
L Akw, o = 0.000001’ . 70)
Eq. (63) averageyp stochastic two-point measure- k
mentstc for a better overall gradient approximation, 0.001
where k= 1025 k > 0. (71) .5
Jk(+) = J(ok + cx i), (65) We also set the number of measurements per gradient

o approximation in Eq. (63) tp = 1. Finally, denotdé‘ 733
S = J(or = e Ap), (66) as the criteriorV, after iterationk of the optimization 734
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Current model
parameters ( ® )
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Perturbed cascade
network model
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network model
(T (0~ CAL))

Performance index
(J(o+CcA))

Performance index

(JCO - A))

Stochastic gradient
approximation (G k)

Updated model
parameters( Oyy)

Fig. 6. Stochastic optimization algorithm.

algorithm; hencelg denotes the performance measure
prior to any optimization.

Fig. 7 plots 100« J%/J2,0 < k < 60, for the HCS
models corresponding to Dick and Harry. We note that
for Dick, the performance inde¥, improves from
J9 = 255 t0 /90 = 12.5. For Harry, the improvement
is less dramatic; his model's performance index im-
prove fromJ9 = 17.7 to J$° = 16.1. Thus, the per-
formance optimization algorithm is able to improve
the performance of Dick's model by about 55% and
Harry’s model by about 9% over their respective ini-
tial models. In other words, the optimized models ne-
gotiate tight turns better without running off the road.
From Fig. 7, we observe that most of the improvement
in the optimization algorithm occurs in the first few
iterations. Then, a& — oo, Jé‘ converges to a stable
value sincax, ¢, — 0. Clearly, the extent to which
we can improve the performance in the trained HCS
models depends on the characteristics of the origi-
nal models. Dick’s initial performance index @ =
25.5 is much worse than Harry’s initial performance
index of J20 = 17.7. Therefore, we would expect that
Dick’s initial model lies further away from the near-

est local minimum, while Harry’s model lies closer tess
that local minimum. As a result, Harry’s model can b@g
improved only a little, while Dick’'s model has mucheso
larger room for improvement. 761
7.2. Discussion 762

Below we discuss some further issues related to pmss-
formance optimization including: (1) the effect of persa
formance optimization on other performance criterias
and (2) the similarity of control strategies before anes
after performance optimization. 767

First, we show how performance improvement wittss
respect to one criterion can potentially affect perforse
mance improvement with respect to a different crizo
terion. Consider Dick's HCS model once again. As:
we have already observed, his tight turning perfarz
mance criterion improves fronty = 255 to J20 = 773
12.5. Now, letJ? denote the obstacle avoidance perz
formance criterion for Dick’s initial HCS model, ands
let /50 denote the obstacle avoidance performance oris
terion for Dick’s HCS model, optimized with respectrz
to J». Fig. 8 plots the maximum offset from the roadrs
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Fig. 7. Performance improvement in stochastic optimization algorithm.

median as a function of the obstacle detection distance Second, we would like to see how much pers2
t for Dick’s initial model (solid line) and Dick’'s op-  formance optimization changes the model’s contrek
timized model (dashed line), whevgtia = 35. strategy away from the original human control aps4
From Fig. 8, we can calculate? and J2°: proach. To do this we turn to a hidden Markows
model-based similarity measure [9] developed fass

Jlo ~ ‘3‘—2 = 1.20, (72) comparing human-based control strategies. Hgt 797
denote the human control trajectory for individual 798

I~ % =103 (73)  let M, denote control trajectories for the unoptimizedo
model corresponding to individuat, and let O, soo0

Thus, Dick’s optimized HCS model not only improves denote control trajectories for the optimized moded:

tight turning performance, but obstacle-avoidance per- (with respect toJ,) corresponding to individuak. so2
formance as well. This should not be too surprising, Also let 0< o (A, B) < 1 denote the similarity mea-so3
since the tight-turning and obstacle-avoidance behav- sure for two different control trajectoried and B, 804
iors are in fact tightly related. During the obstacle where larger values indicate greater similarity, whises
avoidance maneuver, tight turns are precisely what is smaller values indicates greater dissimilarity betweemn
required for successful execution of the maneuver. A andB. 807
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obstacle detecting distance

Fig. 8. Maximum lateral offset for original (solid) and final (dashed) HCS models.

For each individual, we can calculate the following improvementin each case. For Dick, where a substg-
three similarity measures: tial performance improvement of 55% was achieveg,
o (Hy. M), (74) the _similarity between the initial and optimized mo_ch3

els is far less than Harry, where the performance igj,
o (Hy, Oy), (75) provement was more incremental. 825

We conclude with one final observation. Pomeszs

o (My, Ox). (76) leau’s work on vision-guided autonomous drivingy,
Table 2 lists these similarities for Dick and Harry.
From our experience with this similarity measure, we ... >
note that all the values in Table 2 indicate significant control strategy similarity
similarity. Specifically, the similarities fas (H,, O,)
(0.434 and 0.469) suggest that even after performance
optimization, a substantial part of the original HCS o (Hx, Mx) 0.762 0.573
is preserved. Furthermore, the other similarity mea- (fx> 0x) 0.434 0.469
sures are consistent with the degree of performanceo(M“ Ox) 0-544 0.823

x = Dick x = Harry
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